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Abstract: The linguistic interval-valued intuitionistic fuzzy (LIVIF) set is an efficient tool to represent
data in the form of interval membership degrees in a qualitative rather than a quantitative manner.
The LIVIF set combines the features of interval-valued intuitionistic fuzzy sets (IFSs) and the linguistic
variables (LV) and hence provides more freedom to decision-makers. Under this environment,
the main objective of this manuscript is to propose some new aggregation operators by capturing the
prioritized relationship between the objects. For this, different weighted averaging and geometric
aggregation operators are proposed in which preferences related to each object are expressed in terms
of LIVIF numbers. Desirable properties of the proposed operators are studied. Further, a group
decision-making (DM) approach is presented to solve the multi-attribute DM problems, and its
efficiency has been verified with an illustrative example.

Keywords: interval-valued numbers; aggregation operators; group decision-making (DM); linguistic
numbers; prioritized operators; multi-attribute group decision-making (MAGDM)

1. Introduction

Decision-making (DM) problems are the imperative part of modern decision theory, where a set
of alternatives has to be assessed against multiple influential attributes before the best alternative is
selected. In decision theory, an important problem is how to express the preference value. Due to the
increasing complexity of the socioeconomic environment and the insufficiency of awareness or the
data of the DM problems, it is very difficult for a single decision-maker to consider all the relevant
aspects of the problem. Thus, there is a need to incorporate the multiple decision-makers into the
decision-makers and hence construct a multi-attribute group decision-making (MAGDM) problem.
In MAGDM problems, we achieve the target of the problems based on several decision-makers’
preferences. However, it is hard for the decision-maker(s) to provide the exact decision as there is
always imprecise, vague or uncertain information [1–3]. Thus, to handle the uncertainties in the data,
Zadeh [4] introduced the concept of the fuzzy set (FS), and after that, its extensions such as intuitionistic
fuzzy sets (IFSs) [5] and interval-valued IFSs (IVIFSs) [6] have become more powerful tools to describe
the uncertainties. During the last five decades, researchers have been paying more attention to
these theories and have effectively applied them to the different situations in the DM process such
as information measures [7–9] and aggregation operators [10–16]. Among these, an aggregation
operator (AO) is an important part of the DM process, which usually takes the form of a mathematical
function to aggregate all the input values into a single one. Due to its successful wide application,
several researchers have made efforts in the research on aggregation operators. For instance, Xu and
Yager [14] developed some weighted, ordered weighted and hybrid geometric aggregation operators
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for the different intuitionistic fuzzy numbers (IFNs). Later on, Xu and Chen [10] proposed some of
these aggregation operators for interval-valued intuitionistic numbers. Garg [17] presented improved
aggregation operators based on the interactive operation laws between the membership degrees.

In all the above existing approaches, the information used for accessing the objects is expressed
in a quantitative manner. However, in real-life problems, there are many attribute values that are
qualitative in nature and cannot be expressed by a numeric value. For instance, in order to measure
the performance of a person, we usually prefer terms such as “excellent”, “better”, “good”, “bad”, etc,
which cannot be expressed by a numeric value. In such cases, it is easy to describe the preference values
as a linguistic variable (LV). For this, Zadeh [18] proposed the concept of a LV. In the field of AOs,
Xu [19] presented a DM approach based on aggregating operators and the possibility degree method
under uncertain linguistic information. Zhou et al. [20] presented prioritized operators for aggregating
the uncertain linguistic fuzzy information. Garg and Arora [21] presented scaled prioritized AOs under
the intuitionistic fuzzy soft environment. Garg and Arora [22] proposed some generalized power
AOs based on t-norm operations for intuitionistic fuzzy soft set environment. Later on, Zhang [23]
defined the linguistic intuitionistic fuzzy set (LIFS) in which membership and non-membership
degree is represented by the linguistic term, and they presented aggregating operators based on it.
Chen et al. [24] presented an MAGDM approach in the LIFS environment. Liu and Wang [25] defined
some improved operational laws for LIFNs and aggregation operators based on it. Xian et al. [26]
presented a new hybrid aggregation operator and DM approach based on it. Garg and Kumar [27]
presented some aggregation operators for LIFSs by using the connection number of the set pair
analysis theory. Liu and Qin [28] presented the power averaging operator for aggregating the LIFNs
and multi-attribute group DM method. Liu and Liu [29] proposed power Bonferroni mean operators for
aggregating the LIFN information. Garg and Kumar [30] proposed the possibility degree measures for
the LIFS and the linguistic intuitionistic fuzzy aggregation operators using Einstein t-norm operations.
Garg [31] presented the linguistic Pythagorean FSs.

The above theories have been successfully applied in many different fields, but their aggregating
operators and the DM approaches for IFS/LIFS strictly considered that the different attributes are at the
same priority level. Furthermore, in many DM situations, there is always an unequal importance given
to each attribute based on their priority level; for example, if we are buying a car based on the attributes
such as cost and safety features. In this case, we should assign a higher priority to safety features than
cost. To handle such types of problems, Yager [32] proposed the prioritized averaging operator, which
highlights the support of input values during the aggregation process. Xu and Yager [15] and Yu [33]
investigated the prioritized averaging and geometric aggregation operators under the IFS environment.
Arora and Garg [34] presented prioritized averaging and geometric aggregation operators under
intuitionistic fuzzy soft set information. Rani and Garg [35] presented power aggregation operators
for the complex IFS.

As it is seen from the above study that LIFS theory is widely used by the researchers, due to
the complexity of the DM problems, sometimes, decision-makers are not capable of providing their
judgment in the form of crisp membership degrees (MDs) and non-membership degrees (NMDs).
Consequently, an extension of the existing theories might be extremely valuable to depict the
uncertainties because of his/her reluctant judgment in complex DM problems. Thus, to provide
more freedom to the decision-makers, Garg and Kumar [36] presented the concept of the linguistic
interval-valued intuitionistic fuzzy (LIVIFS) set in which membership and non-membership degrees
are represented by interval-valued linguistic terms. Henceforth, an LIVIFS is a more generalized
extension of the existing theories such as IFSs, IVIFSs and LIFSs. Later on, Garg and Kumar [37]
presented some distance measure-based extended technique for order preference by similarity to
ideal solution (TOPSIS) approaches for solving the MAGDM problem under the LIVIFS environment.
Thus, by considering the fact that the LIVIFS is a combination of both LV and IVIFS, it can easily
express the qualitative, as well as the quantitative aspects. As far as the authors are aware, there is
no investigation on how to aggregate the different preferences of decision-makers under the LIVIF
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information. Therefore, an interesting and important issue is how to utilize the collective decision
matrix and the unknown preferences information to find the most desirable alternative(s) during the
DM process.

Keeping the advantage of the LIVIFS and the prioritized relation during the process,
we introduced some new prioritized weighted averaging and geometric AOs to aggregate the different
linguistic interval-valued intuitionistic fuzzy numbers (LIVIFNs). The main characteristic of these
operators is that they consider the prioritized relationship between the input arguments. Thus,
these considerations have led us to consider the following main objectives for this paper:

1. to represent the preference of decision-makers in terms of linguistic features;
2. to present some new aggregation operators to aggregate the preferences of the decision-makers;
3. to propose an algorithm to solve the group DM problems;
4. to present an illustrative example to describe an algorithm.

To achieve Objective 1, in this article, we have utilized the features of the interval-valued terms
and the LVs to describe the information of the various experts as the LIVIF environment in which
MDs and NMDs are represented by linguistic interval-valued terms. Objective 2 is achieved by
developing some new prioritized aggregation operators, namely the LIVIF prioritized weighted
averaging (LIVIFPWA) operator, LIVIF prioritized ordered weighted averaging (LIVIFPOWA) operator,
LIVIF prioritized weighted geometric (LIVIFPWG) operator and LIVIF prioritized ordered weighted
geometric (LIVIFPOWG) operator. The various desirable properties of these proposed operators
are discussed in detail. To achieve Objective 3, we establish an MAGDM method based on the
proposed operators where rating values corresponding to each alternative are expressed as LIVIFNs.
Finally, Objective 4 is explained through an illustrative example to demonstrate the approach, and the
computed results are compared with some of the existing approaches to show their efficiency.

The rest of the manuscript is organized as follows. Section 2 discusses some basic notion of
IVIFS, LIFS and LIVIFS. In Section 3, we develop some prioritized weighted averaging and geometric
aggregation operators and investigate their desirable properties. Section 4 describes an MAGDM
approach based on the proposed operators for ranking the different alternatives under the LIVIF
environment. In Section 5, the presented approach is illustrated with a numerical example, and the
computed results are compared with some existing approaches. Section 6 ends with the concluding
remarks.

2. Preliminaries

In this section, some concepts related to IVIFS, LIFS and LIVIFS are reviewed briefly.

Definition 1. [6] An IVIFS ‘A’ in X is defined as:

A =
{ (

x, [uL
A(x), uU

A(x)], [vL
A(x), vU

A(x)]
)
| x ∈ X

}
, (1)

where [uL
A(x), uU

A(x)], [vL
A(x), vU

A(x)] ⊆ [0, 1] represents the MDs and NMDs of x to A. For any x ∈ X, 0 ≤
uU

A + vU
A ≤ 1, the pair

(
[uL

A, uU
A ], [v

L
A, vU

A ]
)

is called an IVIF number (IVIFN).

Definition 2. [38] Let S =
{

st | t = 0, 1, 2, . . . , h
}

be a finite odd cardinality linguistic term set (LTS). Each
linguistic term st must have the following characteristics.

1. sk ≤ st ⇔ k ≤ t;
2. Negation operator: Neg(sk) = st where t = h− k;
3. Max operator: max(sk, st) = sk ⇔ sk ≥ st;
4. Min operator: min(sk, st) = sk ⇔ sk ≤ st
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In DM problems [23,24], most of the times, the information is expressed as qualitative terms rather
than numerical values. In such situations, it is necessary to consider them as LVs. Let S = {si | i =
0, 1, . . . , h} be a linguistic term set with odd cardinality, where si’s represent a possible value for a LV.
Further, Xu [19] extended this set to a continuous set S[0,h] =

{
sz | s0 ≤ sz ≤ sh

}
, where, if sz ∈ S, then

sz is called the original, otherwise, virtual.

Definition 3. [23] For a finite universal set X and a continuous linguistic term set S[0,h], an LIFS A is
stated as:

A =
{(

x, sτ(x), sθ(x)

)
| x ∈ X

}
, (2)

where sτ , sθ ∈ S[0,h] represent the linguistic membership and non-membership degrees, respectively, and
0 ≤ τ + θ ≤ h. The linguistic indeterminacy is defined as sπ = sh−τ−θ . Usually, the pair (sτ , sθ) is called the
LIF number (LIFN), and it is often written as γ = 〈sτ , sθ〉 where sτ , sθ ∈ S[0,h] and τ + θ ≤ h. If sτ , sθ ∈ S,
then the LIFN is called original, otherwise virtual.

Definition 4. [32] For real numbers γt(t = 1, 2, . . . , n), the prioritized weighted aggregation (PWA) operator
is given as:

PWA(γ1, γ2, . . . , γt) =
n

∑
t=1

wtγt,

where wt =
Tt

n
∑

j=1
Tj

, T1 = 1 and Tt =
t−1
∏

k=1
γt, t = 2, 3, . . . , n.

Definition 5. [36] Let S[0,h] be a continuous linguistic term set. A LIVIFS is defined in the finite universe of
discourse X mathematically with the form:

A =
{(

x,
[
sτ(x), sη(x)

]
,
[
sθ(x), sυ(x)

])
| x ∈ X

}
, (3)

where [sτ , sη ] and [sθ , sυ] are all subsets of [s0, sh] and represent the linguistic membership and non-membership
degrees of x to A, respectively. For any x ∈ X, sη(x) + sυ(x) ≤ sh (i.e., η + υ ≤ h) is always satisfied,
and in turn, the linguistic intuitionistic index of x to A is defined as sπ(x) = [sh−η(x)−υ(x), sh−τ(x)−θ(x)].

Usually, the pair
(
[sτ(x), sη(x)], [sθ(x), sυ(x)]

)
is called the linguistic interval-valued intuitionistic fuzzy

number (LIVIFN).

For convenience, we denote the LIVIFN as γ =
(
[sτ , sη ], [sθ , sυ]

)
, where [sτ , sη ] ⊆ [s0, sh], [sθ , sυ] ⊆

[s0, sh], η + υ ≤ h and also sτ , sη , sθ , sυ ∈ S[0,h] holds.

Definition 6. [36] Let γ1 = ([sτ1 , sη1 ], [sθ1 , sυ1 ]) and γ2 = ([sτ2 , sη2 ], [sθ2 , sυ2 ]) be two LIVIFNs, then:

1. γ1 � γ2 if τ1 ≤ τ2, η1 ≤ η2, θ1 ≥ θ2, and υ1 ≥ υ2;
2. γ1 = γ2 if and only if γ1 � γ2 and γ2 � γ1 ;
3. γc

1 = ([sθ1 , sυ1 ], [sτ1 , sη1 ]) is the complement of γ1;

4. γ1 ∪ γ2 =

([
max{sτ1 , sτ2},
max{sη1 , sη2}

]
,

[
min{sθ1 , sθ2},
min{sυ1 , sυ2}

])
;

5. γ1 ∩ γ2 =

([
min{sτ1 , sτ2},
min{sη1 , sη2}

]
,

[
max{sθ1 , sθ2},
max{sυ1 , sυ2}

])
.
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Definition 7. [36] For LIVIFN γ =
(
[sτ , sη ], [sθ , sυ]

)
, a score function is defined as:

S(γ) = s(2h+τ−θ+η−υ)/4, (4)

and the accuracy function is:

H(γ) = s(τ+η+θ+υ)/2 (5)

Based on it, we define an order relation between two LIVIFNs γ1 and γ2, as:

1. If S(γ1) > S(γ2), then γ1 > γ2;

2. If S(γ1) = S(γ2), then

{
H(γ1) > H(γ1) ⇒ γ1 > γ2;

H(γ2) = H(γ2) ⇒ γ1 = γ2

Definition 8. [36] Let γ1 =
(
[sτ1 , sη1 ], [sθ1 , sυ1 ]

)
and γ2 =

(
[sτ2 , sη2 ], [sθ2 , sυ2 ]

)
be two LIVIFNs and λ > 0

be real, then some basic operational laws are defined as follows:

1. γ1 ⊕ γ2 =

([
s

τ1+τ2−
τ1τ2

h
, s

η1+η2−
η1η2

h

]
,
[

s θ1θ2
h

, s υ1υ2
h

])
;

2. γ1 ⊗ γ2 =

([
s τ1τ2

h
, s η1η2

h

]
,
[

s
θ1+θ2−

θ1θ2
h

, s
υ1+υ2−

υ1υ2
h

])
;

3. λγ1 =

([
s

h
(

1−(1− τ1
h )

λ
), s

h
(

1−(1− η1
h )

λ
)
]

,

[
s

h
(

θ1
h

)λ , s
h(

υ1
h )

λ

])
;

4. γλ
1 =

[s
h(

τ1
h )

λ , s
h(

η1
h )

λ

]
,

s
h
(

1−
(

1− θ1
h

)λ
), s

h
(

1−(1− υ1
h )

λ
)
.

3. New Prioritized Aggregation Operator for LIVIFNs

In this section, we have defined the prioritized aggregation operators for a collection of LIVIFNs
defined over the finite universal set X = {x1, x2, . . . , xn}, and S[0,h] is a continuous LTS.

3.1. Properties of LIVIFNs

Theorem 1. If γ1 and γ2 are two LIVIFNs, then operations defined in Definition 8 are also LIVIFNs.

Proof. Let γ1 =
(
[sτ1 , sη1 ], [sθ1 , sυ1 ]

)
and γ2 =

(
[sτ2 , sη2 ], [sθ2 , sυ2 ]

)
be two LIVIFNs, so we have 0 ≤

η1, η2, υ1, υ2 ≤ h, η1 + υ1 ≤ h and η2 + υ2 ≤ h. Therefore, we have 0 ≤
(
1− η1

h
) (

1− η2
h
)
≤ 1

⇔ 0 ≤ 1−
(
1− η1

h
) (

1− η2
h
)
≤ 1⇔ 0 ≤ h

(
1−

(
1− η1

h
) (

1− η2
h
))
≤ h. Similarly, 0 ≤ υ1υ2

h ≤ h. On

the other hand, we have η1 + η2 − η1η2
h + υ1υ2

h ≤ η1 + η2 − η1η2
h + (h−η1)(h−η2)

h = h. Hence, γ1 ⊕ γ2 is
an LIVIFN. This is similar for the other cases.

Theorem 2. Let γ =
(
[sτ , sη ], [sθ , sυ]

)
, γ1 =

(
[sτ1 , sη1 ], [sθ1 , sυ1 ]

)
, γ2 =

(
[sτ2 , sη2 ], [sθ2 , sυ2 ]

)
be three

LIVIFNs and λ, λ1, λ2 > 0 be three real numbers, then:

1. γ1 ⊕ γ2 = γ2 ⊕ γ1;
2. λ(γ1 ⊕ γ2) = λγ1 ⊕ λγ2;
3. λ1γ⊕ λ2γ = (λ1 + λ2)γ;
4. γ1 ⊗ γ2 = γ2 ⊗ γ1;
5. γλ1 ⊗ γλ2 = γλ1+λ2 ;
6. γλ

1 ⊗ γλ
2 = (γ1 ⊗ γ2)

λ;
7. γc

1 ⊕ γc
2 = (γ1 ⊗ γ2)

c;
8. γc

1 ⊗ γc
2 = (γ1 ⊕ γ2)

c;
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9. γc
1 ∪ γc

2 = (γ1 ∩ γ2)
c;

10. γc
1 ∩ γc

2 = (γ1 ∪ γ2)
c;

11. (γ1 ∪ γ2) ∩ γ2 = γ2;
12. (γ1 ∩ γ2) ∪ γ2 = γ2;
13. (γc)λ = (λγ)c;
14. λ(γc) = (γλ)c;
15. γ1 ∪ γ2 = γ2 ∪ γ1;
16. γ1 ∩ γ2 = γ2 ∩ γ1;
17. λ(γ1 ∪ γ2) = λγ1 ∪ λγ2;
18. γλ

1 ∪ γλ
2 = (γ1 ∪ γ2)

λ.

Proof. Here, we shall prove only Parts (1)–(3), while rest can be proven similarly.

1. According to Definition 8, we have:

γ1 ⊕ γ2 =

s
τ1+τ2−

τ1τ2
h

,

s
η1+η2−

η1η2
h

 ,

s θ1θ2
h

,

s υ1υ2
h


=

s
τ2+τ1−

τ2τ1
h

,

s
η2+η1−

η2η1
h

 ,

s θ2θ1
h

,

s υ2υ1
h


= γ2 ⊕ γ1

2. For λ > 0, we have:

λγ1 =


s

h
(

1−(1− τ1
h )

λ
),

s
h
(

1−(1− η1
h )

λ
)
 ,

s
h
(

θ1
h

)λ ,

s
h(

υ1
h )

λ




and:

λγ2 =


s

h
(

1−(1− τ2
h )

λ
),

s
h
(

1−(1− η2
h )

λ
)
 ,

s
h
(

θ2
h

)λ ,

s
h( υ2

h )
λ




Therefore,

λγ1 ⊕ λγ2 =


s

h
(

1−(1− τ1
h )

λ
),

s
h
(

1−(1− η1
h )

λ
)
 ,

s
h
(

θ1
h

)λ ,

s
h(

υ1
h )

λ


⊕


s

h
(

1−(1− τ2
h )

λ
),

s
h
(

1−(1− η2
h )

λ
)
 ,

s
h
(

θ2
h

)λ ,

s
h( υ2

h )
λ




=


s

h
(

1−(1− τ1
h )

λ
(1− τ2

h )
λ
)

s
h
(

1−(1− η1
h )

λ
(1− η2

h )
λ
)
 ,


s

h
(

θ1θ2
h2

)λ ,

s
h
(

υ1υ2
h2

)λ ,




= λ(γ1 ⊕ γ2)
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3. For λ1, λ2 > 0, we have:

λ1γ1 ⊕ λ2γ1 =


s

h
(

1−(1− τ1
h )

λ1
),

s
h
(

1−(1− η1
h )

λ1
)
 ,

s
h
(

θ1
h

)λ1 ,

s
h(

υ1
h )

λ1


⊕


s

h
(

1−(1− τ1
h )

λ2
),

s
h
(

1−(1− η1
h )

λ2
)
 ,

s
h
(

θ1
h

)λ2 ,

s
h(

υ1
h )

λ2




=


s

h
(

1−(1− τ1
h )

λ1+λ2
),

s
h
(

1−(1− η1
h )

λ1+λ2
)
 ,

s
h
(

θ1
h

)λ1+λ2 ,

s
h(

υ1
h )

λ1+λ2




= (λ1 + λ2)γ1

Theorem 3. For two LIVIFNs γ1 =
(
[sτ1 , sη1 ], [sθ1 , sυ1 ]

)
and γ2 =

(
[sτ2 , sη2 ], [sθ2 , sυ2 ]

)
, we have:

1. (γ1 ∪ γ2)⊕ (γ1 ∩ γ2) = γ1 ⊕ γ2;
2. (γ1 ∪ γ2)⊗ (γ1 ∩ γ2) = γ1 ⊗ γ2.

Proof. Here, we shall show that only (1) and (2) can be proven similarly.

(γ1 ∪ γ2)⊕ (γ1 ∩ γ2)

=

([
max{sτ1 , sτ2},
max{sη1 , sη2}

]
,

[
min{sθ1 , sθ2},
min{sυ1 , sυ2}

])
⊕
([

min{sτ1 , sτ2},
min{sη1 , sη2}

]
,

[
max{sθ1 , sθ2},
max{sυ1 , sυ2}

])

=


 s

max{τ1,τ2}+min{τ1,τ2}−
max{τ1,τ2}·min{τ1,τ2}

h
,

s
max{η1,η2}+min{η1,η2}−

max{η1,η2}·min{η1,η2}
h

 ,

s min{θ1,θ2}·max{θ1,θ2}
h

,

s min{υ1,υ2}·max{υ1,υ2}
h




=

s
τ1+τ2−

τ1τ2
h

,

s
η1+η2−

η1η2
h

 ,

s θ1θ2
h

,

s υ1υ2
h


= γ1 ⊕ γ2

Theorem 4. Let γ1 =
(
[sτ1 , sη1 ], [sθ1 , sυ1 ]

)
, γ2 =

(
[sτ2 , sη2 ], [sθ2 , sυ2 ]

)
and γ3 =

(
[sτ3 , sη3 ], [sθ3 , sυ3 ]

)
be

three LIVIFNs, then

1. (γ1 ∪ γ2) ∩ γ3 = (γ1 ∩ γ3) ∪ (γ2 ∩ γ3);
2. (γ1 ∩ γ2) ∪ γ3 = (γ1 ∪ γ3) ∩ (γ2 ∪ γ3);
3. (γ1 ∪ γ2)⊕ γ3 = (γ1 ⊕ γ3) ∪ (γ2 ⊕ γ3);
4. (γ1 ∩ γ2)⊕ γ3 = (γ1 ⊕ γ3) ∩ (γ2 ⊕ γ3);
5. (γ1 ∪ γ2)⊗ γ3 = (γ1 ⊗ γ3) ∪ (γ2 ⊗ γ3);
6. (γ1 ∩ γ2)⊗ γ3 = (γ1 ⊗ γ3) ∩ (γ2 ⊗ γ3).

Proof. It is a trivial.

Theorem 5. Let γ1, γ2 and γ3 be three LIVIFNs, then:

1. γ1 ∪ γ2 ∪ γ3 = γ1 ∪ γ3 ∪ γ2;
2. γ1 ∩ γ2 ∩ γ3 = γ1 ∩ γ3 ∩ γ2;
3. γ1 ⊕ γ2 ⊕ γ3 = γ1 ⊕ γ3 ⊕ γ2;
4. γ1 ⊗ γ2 ⊗ γ3 = γ1 ⊗ γ3 ⊗ γ2.

Proof. It is a trivial.
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3.2. Prioritized Averaging Aggregation Operators

In the next section, we define averaging and geometric AOs to aggregate the different LIVIF
information over the continuous LTS S[0,h]. For this, let Ω be the set of all LIVIFNs.

Definition 9. For LIVIFNs γt(t = 1, 2, . . . , n) and an operator LIVIFPWA : Ωn → Ω defined as:

LIVIFPWA(γ1, γ2, . . . , γn) =
n⊕

t=1

Tt
n
∑

j=1
Tj

γt, (6)

where T1 = 1 and Tt =
t−1
∏

k=1

I
(

S(γk)
)

h , t = 2, 3, . . . , n. Furthermore, I
(
S(γk)

)
is the subscript of score function

S(γk).

Theorem 6. The aggregated value by using LIVIFPWA operator, as defined in Definition 9, for n LIVIFNs
γt =

(
[sτt , sηt ], [sθt , sυt ]

)
(t = 1, 2, . . . , n) is again LIVIFN and given by:

LIVIFPWA(γ1, γ2, . . . , γn) =





s

h

1−
n
∏

t=1
(1− τt

h )

Tt
n
∑

j=1
Tj


,

s

h

1−
n
∏

t=1
(1− ηt

h )

Tt
n
∑

j=1
Tj




,



s

h


n
∏

t=1

(
θt
h

) Tt
n
∑

j=1
Tj


,

s

h


n
∏

t=1
( υt

h )

Tt
n
∑

j=1
Tj






, (7)

where T1 = 1 and Tt =
t−1
∏

k=1

I
(

S(γk)
)

h , t = 2, 3, . . . , n, I
(
S(γk)

)
is the subscript of score function S(γk).

Proof. To prove Equation (7), we use mathematical induction on n, and the following steps
are executed.

Step 1: For n = 2 and by Definition 8, we have:

T1
n
∑

j=1
Tj

γ1 =





s

h

1−(1− τ1
h )

T1
n
∑

j=1
Tj


,

s

h

1−(1− η1
h )

T1
n
∑

j=1
Tj




,



s

h


(

θ1
h

) T1
n
∑

j=1
Tj


,

s

h

( υ1
h )

T1
n
∑

j=1
Tj







and
T2

n
∑

j=1
Tj

γ2 =





s

h

1−(1− τ2
h )

T2
n
∑

j=1
Tj


,

s

h

1−(1− η2
h )

T2
n
∑

j=1
Tj




,



s

h


(

θ2
h

) T2
n
∑

j=1
Tj


,

s

h

( υ2
h )

T2
n
∑

j=1
Tj
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Therefore,

LIVIFPWA(γ1, γ2) =
T1

n
∑

j=1
Tj

γ1 ⊕
T2

n
∑

j=1
Tj

γ2

=





s

h

1−(1− τ1
h )

T1
n
∑

j=1
Tj
(1− τ2

h )

T2
n
∑

j=1
Tj


,

s

h

1−(1− η1
h )

T1
n
∑

j=1
Tj
(1− η2

h )

T2
n
∑

j=1
Tj




,



s

h


(

θ1
h

) T2
n
∑

j=1
Tj ( θ2

h

) T2
n
∑

j=1
Tj


,

s

h

( υ1
h )

T2
n
∑

j=1
Tj
( υ2

h )

T2
n
∑

j=1
Tj






which is true for n = 2.

Step 2: Assume that Equation (7) is true for n = k, that is:

LIVIFPWA(γ1, γ2, . . . , γk) =





s

h

1−
k

∏
t=1
(1− τt

h )

Tt
n
∑

j=1
Tj


,

s

h

1−
k

∏
t=1
(1− ηt

h )

Tt
n
∑

j=1
Tj




,



s

h


k

∏
t=1

(
θt
h

) Tt
n
∑

j=1
Tj


,

s

h


k

∏
t=1
( υt

h )

Tt
n
∑

j=1
Tj






then for n = k + 1, we have:

LIVIFPWA(γ1, γ2, . . . γk+1)

= LIVIFPWA(γ1, γ2, . . . γk)⊕
Tk+1
n
∑

j=1
Tj

γk+1

=





s

h

1−
k

∏
t=1
(1− τt

h )

Tt
n
∑

j=1
Tj


,

s

h

1−
k

∏
t=1
(1− ηt

h )

Tt
n
∑

j=1
Tj




,



s

h


k

∏
t=1

(
θt
h

) Tt
n
∑

j=1
Tj


,

s

h


k

∏
t=1
( υt

h )

Tt
n
∑

j=1
Tj







⊕





s

h

1−
(

1− τk+1
h

) Tk+1
n
∑

j=1
Tj


,

s

h

1−
(

1− ηk+1
h

) Tk+1
n
∑

j=1
Tj




,



s

h


(

θk+1
h

) Tk+1
n
∑

j=1
Tj


,

s

h


(

υk+1
h

) Tk+1
n
∑

j=1
Tj
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=





s

h

1−
k

∏
t=1
(1− τt

h )

Tt
n
∑

j=1
Tj (

1− τk+1
h

) Tk+1
n
∑

j=1
Tj


,

s

h

1−
k

∏
t=1
(1− ηt

h )

Tt
n
∑

j=1
Tj (

1− ηk+1
h

) Tk+1
n
∑

j=1
Tj




,



s

h


k

∏
t=1

(
θt
h

) Tt
n
∑

j=1
Tj ( θk+1

h

) Tk+1
n
∑

j=1
Tj


,

s

h


k

∏
t=1
( υt

h )

Tt
n
∑

j=1
Tj ( υk+1

h

) Tk+1
n
∑

j=1
Tj







=





s

h

1−
k+1
∏

t=1
(1− τt

h )

Tt
n
∑

j=1
Tj


,

s

h

1−
k+1
∏

t=1
(1− ηt

h )

Tt
n
∑

j=1
Tj




,



s

h


k+1
∏

t=1

(
θt
h

) Tt
n
∑

j=1
Tj


,

s

h


k+1
∏

t=1
( υt

h )

Tt
n
∑

j=1
Tj






Thus, we get that Equation (7) holds for n = k + 1 also, which completes the proof of the
theorem.

Example 1. Let S[0,8] =
{

sz | s0 ≤ sz ≤ s8
}

be a continuous LTS, and let γ1 = ([s2, s4], [s1, s2]),
γ2 = ([s2, s3], [s1, s4]) and γ3 = ([s3, s5], [s2, s3]) be three LIVIFNs, and based on these numbers, we obtain
T1 = 1.0000, T2 = 0.5938 and T3 = 0.2969. Hence, the aggregated value of these numbers is calculated as:

LIVIFPWA(γ1, γ2, γ3) =





s

8

1−
3
∏

t=1
(1− τt

h )

Tt
3
∑

j=1
Tj


,

s

8

1−
3
∏

t=1
(1− ηt

h )

Tt
3
∑

j=1
Tj




,



s

8


3
∏

t=1

(
θt
h

) Tt
3
∑

j=1
Tj


,

s

8


3
∏

t=1
( υt

h )

Tt
3
∑

j=1
Tj







=


s

8
(

1−(1− 2
8 )

0.5289×(1− 2
8 )

0.3141×(1− 3
8 )

0.1570),

s
8
(

1−(1− 4
8 )

0.5289×(1− 3
8 )

0.3141×(1− 5
8 )

0.1570)
 ,

s
8
(
( 1

8 )
0.5289×( 1

8 )
0.3141×( 2

8 )
0.1570),

s
8
(
( 2

8 )
0.5289×( 4

8 )
0.3141×( 3

8 )
0.1570)




=

([
s2.1693,

s3.8991

]
,

[
s1.1150,

s2.6498

])

It is observed that the proposed LIVIFPWA operator satisfies the certain properties, which are
stated as follows.

Theorem 7. (Idempotency) Let γt(t = 1, 2, . . . , n) be a collection of LIVIFNs. If γ is another LIVIFN such
that γi = γ for all t, then:

LIVIFPWA(γ1, γ2, . . . , γn) = γ



Mathematics 2018, 6, 209 11 of 26

Proof. As γt = γ for all t and by the definition of the LIFPWA operator, we have:

LIVIFPWA(γ1, γ2, . . . γn) =
T1

n
∑

j=1
Tj

γ1 ⊕
T2

n
∑

j=1
Tj

γ2 ⊕ . . .⊕ Tn
n
∑

j=1
Tj

γn

=
T1

n
∑

j=1
Tj

γ⊕ T2
n
∑

j=1
Tj

γ⊕ . . .⊕ Tn
n
∑

j=1
Tj

γ

=
n

∑
t=1

Tt
n
∑

j=1
Tj

γ

= γ.

Theorem 8. (Boundedness) Let γ− =
(
[sτ− , sη− ], [sθ− , sυ− ]

)
and γ+ =

(
[sτ+ , sη+ ], [sθ+ , sυ+ ]

)
,

where τ− = min
t
{τt}, η− = min

t
{ηt}, θ− = max

t
{θt}, υ− = max

t
{υt} , τ+ = max

t
{τt}, η+ = max

t
{ηt},

θ+ = min
t
{θt}, υ+ = min

t
{υt}, then we have:

γ− � LIVIFPWA(γ1, γ2, . . . γn) � γ+.

Proof. For the membership part of the LIVIFPWA operator on a collection of LIVIFNs γt =(
[sτt , sηt ], [sθt , sυt ]

)
, t = 1, 2, . . . , n, we have:

τ− = min
t
{τt} ≤ τt ≤ max

t
{τt} = τ+

⇒ 1− τ−

h
≥ 1− τt

h
≥ 1− τ+

h

⇒
n

∏
t=1

(
1− τ−

h

) Tt
n
∑

j=1
Tj
≥

n

∏
t=1

(
1− τt

h

) Tt
n
∑

j=1
Tj
≥

n

∏
t=1

(
1− τ+

h

) Tt
n
∑

j=1
Tj

⇒ h

1−
(

1− τ−

h

) n
∑

t=1

Tt
n
∑

j=1
Tj

 ≤ h

1−
n

∏
t=1

(
1− τt

h

) Tt
n
∑

j=1
Tj

 ≤ h

1−
(

1− τ+

h

) n
∑

t=1

Tt
n
∑

j=1
Tj



⇒ τ− ≤ h

1−
n

∏
t=1

(
1− τt

h

) Tt
n
∑

j=1
Tj

 ≤ τ+.

which implies that:

sτ− ≤ s

h

1−
n
∏

t=1
(1− τt

h )

Tt
n
∑

j=1
Tj


≤ sτ+ (8)

Similarly for the upper limit of the membership part, we have:

sη− ≤ s

h

1−
n
∏

t=1
(1− ηt

h )

Tt
n
∑

j=1
Tj


≤ sη+
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On the other hand, for the non-membership part of the LIVIFPWA operator, we have:

θ+ = min
t
{θt} ≤ θt ≤ max

t
{θt} = θ−

⇒ θ+

h
≤ θt

h
≤ θ−

h

⇒
n

∏
t=1

(
θ+

h

) Tt
n
∑

j=1
Tj
≤

n

∏
t=1

(
θt

h

) Tt
n
∑

j=1
Tj
≤

n

∏
t=1

(
θ−

h

) Tt
n
∑

j=1
Tj

⇒
(

θ+

h

) n
∑

t=1

Tt
n
∑

j=1
Tj
≤

n

∏
t=1

(
θt

h

) Tt
n
∑

j=1
Tj
≤
(

θ−

h

) n
∑

t=1

Tt
n
∑

j=1
Tj

⇒ θ+ ≤ h

 n

∏
t=1

(
θt

h

) Tt
n
∑

j=1
Tj

 ≤ θ−

which implies that

sθ+ ≤ s

h


n
∏

t=1

(
θt
h

) Tt
n
∑

j=1
Tj


≤ sθ−

Similarly, we can obtain:

sυ+ ≤ s

h


n
∏

t=1
( υt

h )

Tt
n
∑

j=1
Tj


≤ sυ−

Hence, according to Definition 6, we obtain:

γ− � LIVIFPWA(γ1, γ2, . . . γn) � γ+.

Remark 1. From the proposed LIVIFPWA operator, it is observed that it does not satisfy the monotonicity
property, i.e., there exist some collections of LIVIFNs γt and βt where t = 1, 2, . . . , n, which satisfy the relation
γt ≤ βt for all t, but LIVIFPWA(γ1, γ2, . . . , γn) � LIVIFPWA(β1, β2, . . . , βn).

Now, we extend the idea of LIVIFPWA into the LIVIFPOWA operator as follows.

Definition 10. For LIVIFNs γt(t = 1, 2, . . . , n), a mapping LIVIFPOWA : Ωn → Ω given by:

LIVIFPOWA(γ1, γ2, . . . γn) =
n⊕

t=1

Tt
n
∑

j=1
Tj

γσ(t), (9)

where γσ(t) =
(
[sτσ(t), sησ(t)], [sθσ(t), sυσ(t)]

)
is the tth largest value of the γt, T1 = 1 and Tt =

t−1
∏

k=1

I
(

S(γσ(k))
)

h .
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Theorem 9. The aggregated value for different LIVIFNs γt =
(
[sτt , sηt ], [sθt , sυt ]

)
(t = 1, 2, . . . , n) by using

the LIVIFPOWA operator is also a LIVIFN and given by:

LIVIFPOWA(γ1, γ2, . . . γn) =





s

h

1−
n
∏

t=1

(
1−

τσ(t)
h

) Tt
n
∑

j=1
Tj


,

s

h

1−
n
∏

t=1

(
1−

ησ(t)
h

) Tt
n
∑

j=1
Tj




,



s

h


n
∏

t=1

(
θσ(t)

h

) Tt
n
∑

j=1
Tj


,

s

h


n
∏

t=1

( υσ(t)
h

) Tt
n
∑

j=1
Tj






where T1 = 1, Tt =

t−1
∏

k=1

I
(

S(γσ(k))
)

h , t = 2, 3, . . . , n, S(γσ(k)) represents the score function of the LIVIFN γσ(k)

and I
(
S(γσ(k))

)
is the subscript of S(γσ(k)).

The proof follows from Theorem 6.
Further, the LIVIFPOWA operator satisfies the properties of idempotency and boundedness.

3.3. Prioritized Geometric Aggregation Operators

In the following, motivated by the geometric AOs [10], we present some LIVIF prioritized
weighted geometric (LIVIFPWG) AOs as follows.

Definition 11. Let γt =
(
[sτt , sηt ], [sθt , sυt ]

)
, t = 1, 2, . . . , n, be a collection of LIVIFNs, then LIVIFPWG :

Ωn → Ω is defined as follows:

LIVIFPWG(γ1, γ2, . . . γn) =
n⊗

t=1

γ

Tt
n
∑

j=1
Tj

t , (10)

where T1 = 1, Tt =
t−1
∏

k=1

I
(

S(γk)
)

h , t = 2, 3, . . . , n and I
(
S(γk)

)
is the subscript of score function S(γk).

Theorem 10. The aggregated value of n LIVIFNs γt =
(
[sτt , sηt ], [sθt , sυt ]

)
by Definition 11 is still LIVIFN

and given by:

LIVIFPWG(γ1, γ2, . . . γn) =





s

h


n
∏

t=1
( τt

h )

Tt
n
∑

j=1
Tj


,

s

h


n
∏

t=1
( ηt

h )

Tt
n
∑

j=1
Tj




,



s

h

1−
n
∏

t=1

(
1− θt

h

) Tt
n
∑

j=1
Tj


,

s

h

1−
n
∏

t=1
(1− υt

h )

Tt
n
∑

j=1
Tj






(11)

Proof. This is similar to Theorem 6, so we omit it here.

The following properties are satisfied by LIVIFPWG for a collection of LIVIFNs γt, t = 1, 2, . . . , n.

Theorem 11. (Idempotency) If all γt are equal, i.e, γt = γ =
(
[sτ , sη ], [sθ , sυ]

)
, for all t, then:

LIVIFPWG(γ1, γ2, . . . γn) = γ.



Mathematics 2018, 6, 209 14 of 26

Proof.

LIVIFPWG(γ1, γ2, . . . γn) =





s

h


n
∏

t=1
( τt

h )

Tt
n
∑

j=1
Tj


,

s

h


n
∏

t=1
( ηt

h )

Tt
n
∑

j=1
Tj




,



s

h

1−
n
∏

t=1

(
1− θt

h

) Tt
n
∑

j=1
Tj


,

s

h

1−
n
∏

t=1
(1− υt

h )

Tt
n
∑

j=1
Tj







=





s

h


n
∏

t=1
( τ

h )

Tt
n
∑

j=1
Tj


,

s

h


n
∏

t=1
( η

h )

Tt
n
∑

j=1
Tj




,



s

h

1−
n
∏

t=1
(1− θ

h )

Tt
n
∑

j=1
Tj


,

s

h

1−
n
∏

t=1
(1− υ

h )

Tt
n
∑

j=1
Tj







=





s

h

( τ
h )

n
∑

t=1

Tt
n
∑

j=1
Tj


,

s

h

( η
h )

n
∑

t=1

Tt
n
∑

j=1
Tj




,



s

h

1−(1− θ
h )

n
∑

t=1

Tt
n
∑

j=1
Tj


,

s

h

1−(1− υ
h )

n
∑

t=1

Tt
n
∑

j=1
Tj






=

(
[sτ , sη ], [sθ , sυ]

)

Theorem 12. Let γ− =
(
[sτ− , sη− ], [sθ− , sυ− ]

)
and γ+ =

(
[sτ+ , sη+ ], [sθ+ , sυ+ ]

)
, where τ− = min

t
{τt},

η− = min
t
{ηt}, θ− = max

t
{θt}, υ− = max

t
{υt} , τ+ = max

t
{τt}, η+ = max

t
{ηt}, θ+ = min

t
{θt},

υ+ = min
t
{υt}, then we have:

γ− � LIVIFPWG(γ1, γ2, . . . γn) � γ+.

Proof. For each t and by the definition of γ−, γt and γ+, we can easily see that γ− � γt � γ+. Thus,
from Equation (10), we get:

LIVIFPWG(γ1, γ2, . . . γn) =
n⊗

t=1

γ

Tt
n
∑

j=1
Tj

t �
n⊗

t=1

(
γ+
) Tt

n
∑

j=1
Tj

=
(
γ+
) n

∑
t=1

Tt
n
∑

j=1
Tj

= γ+

and:

LIVIFPWG(γ1, γ2, . . . γn) =
n⊗

t=1

γ

Tt
n
∑

j=1
Tj

t �
n⊗

t=1

(
γ−
) Tt

n
∑

j=1
Tj

=
(
γ−
) n

∑
t=1

Tt
n
∑

j=1
Tj

= γ−
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Hence,

γ− � LIVIFPWG(γ1, γ2, . . . γn) � γ+.

Definition 12. Let γt =
(
[sτt , sηt ], [sθt , sυt ]

)
, t = 1, 2, . . . , n, be a collection of LIVIFNs, then the

LIVIFPOWG : Ωn → Ω operator is defined as follows:

LIVIFPOWG(γ1, γ2, . . . γn) =
n⊗

t=1

γ

Tt
n
∑

j=1
Tj

σ(t) , (12)

where γσ(t) =
(
[sτσ(t), sησ(t)], [sθσ(t), sυσ(t)]

)
is the tth largest value of the γt, t = 1, 2, . . . , n. T1 = 1 and

Tt =
t−1
∏

k=1

I
(

S(γσ(k))
)

h , t = 2, 3, . . . , n.

Theorem 13. The value for LIVIFNs γt =
(
[sτt , sηt ], [sθt , sυt ]

)
, (t = 1, 2, . . . , n) by using the LIVIFPOWG

operator is again LIVIFN and given by:

LIVIFPOWG(γ1, γ2, . . . γn) =





s

h


n
∏

t=1

(
τσ(t)

h

) Tt
n
∑

j=1
Tj


,

s

h


n
∏

t=1

( ησ(t)
h

) Tt
n
∑

j=1
Tj




,



s

h

1−
n
∏

t=1

(
1−

θσ(t)
h

) Tt
n
∑

j=1
Tj


,

s

h

1−
n
∏

t=1

(
1−

υσ(t)
h

) Tt
n
∑

j=1
Tj






where Tt =

t−1
∏

k=1

I
(

S(γσ(k))
)

h , t = 2, 3, . . . , n, T1 = 1.

Proof. This is similar to the above.

4. Proposed MAGDM Approach under the LIVIF Environment

In this section, we present an approach for solving MAGDM problems using the
proposed operators.

Consider an MAGDM problem consisting of A1, A2, . . . , Am alternatives and G1, G2, . . . , Gn

attributes with their own prioritized relation as G1 � G2 � . . . � Gn. Here, � refers to “preferred
to”. To evaluate them, a set of l decision-makers D(1), D(2), . . . , D(l) is taken with their own
prioritized relation as D(1) � D(2) � . . . � D(l). Each decision-maker has to evaluate the given

alternatives under the LIVIFS environment and represented as γ̃
(q)
kt =

(
[s̃

τ
(q)
kt

, s̃
η
(q)
kt
], [s̃

θ
(q)
kt

, s̃
υ
(q)
kt
]

)
(q = 1, 2, . . . , l; k = 1, 2, . . . , m; t = 1, 2, . . . , n). Then, the presented approach to get the best
alternative(s) is summarized in the following steps.
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Step 1: Construct the decision matrices R̃(q) =
(

γ̃
(q)
kt

)
m×n

for each decision-maker as:

R̃(q) =

G1 G2 . . . Gn


A1 γ̃
(q)
11 γ̃

(q)
12 . . . γ̃

(q)
1n

A2 γ̃
(q)
21 γ̃

(q)
22 . . . γ̃

(q)
2n

...
...

...
. . .

...

Am γ̃
(q)
m1 γ̃

(q)
m2 . . . γ̃

(q)
mn

(13)

Step 2: Normalize R̃(q), if required, into R(q) =
(

γ
(q)
kt

)
m×n

where γ
(q)
kt is given as:

γ
(q)
kt =


([

s̃
τ
(q)
kt

, s̃
η
(q)
kt

]
,
[

s̃
θ
(q)
kt

, s̃
υ
(q)
kt

])
; if Gt is the benefit type attribute([

s̃
θ
(q)
kt

, s̃
υ
(q)
kt

]
,
[

s̃
τ
(q)
kt

, s̃
η
(q)
kt

])
; if Gt is the cost type attribute

(14)

Step 3: Calculate T(q)
kt (q = 1, 2, . . . , l) as follows:

T(1)
kt = 1, (15)

T(q)
kt =

q−1

∏
p=1

I
(
S(γ(p)

kt )
)

h
, q = 2, 3, . . . , l, (16)

Step 4: Aggregate each expert preference into the collective one by using either the LIVIFPOWA
or the LIVIFPOWG operator, and get decision matrix R = (γkt)m×n , k = 1, 2, . . . , m; t =

1, 2, . . . , n, where γkt =
(
[sτkt , sηkt ], [sθkt , sυkt ]

)
. For instance, by utilizing the LIVIFPOWA

operator, we have:

γkt = LIVIFPOWA
(

γ
(1)
kt , γ

(2)
kt , . . . , γ

(l)
kt

)
(17)

=





s

h

1−
l

∏
q=1

(
1−

τ
σ(q)
kt

h

)w(q)
kt


,

s

h

1−
l

∏
q=1

(
1−

η
σ(q)
kt

h

)w(q)
kt




,



s

h

 l
∏

q=1

(
θ
σ(q)
kt

h

)w(q)
kt


,

s

h

 l
∏

q=1

(
υ

σ(q)
kt
h

)w(q)
kt






(18)

while by the LIVIFPOWG operator, we have:

γkt = LIVIFPOWG
(

γ
(1)
kt , γ

(2)
kt , . . . , γ

(l)
kt

)
(19)

=





s

h

 l
∏

q=1

(
τ

σ(q)
kt

h

)w(q)
kt


,

s

h

 l
∏

q=1

(
η

σ(q)
kt

h

)w(q)
kt




,



s

h

1−
l

∏
q=1

(
1−

θ
σ(q)
kt

h

)w(q)
kt


,

s

h

1−
l

∏
q=1

(
1−

υ
σ(q)
kt
h

)w(q)
kt






(20)

where γ
σ(q)
kt =

([
sσ(q)

τkt , sσ(q)
ηkt

]
,
[
sσ(q)

θkt
, sσ(q)

υkt

])
and w(q)

kt =
T(q)

kt
l

∑
q=1

T(q)
kt

.
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Step 5: Calculate the value of Tkt as follows:

Tk1 = 1; k = 1, 2, . . . , m (21)

Tkt =
t−1

∏
ν=1

I
(
S(γkν)

)
h

; t = 2, 3, . . . , n, (22)

Step 6: Utilize either the LIVIFPWA or the LIVIFPWG operator to obtain the overall values γk of
each alternative Ak(k = 1, 2, . . . , m) as:

γk =
([

sτk , sηk

]
,
[
sθk , sυk

])
(23)

= LIVIFPWA(γk1, γk2, . . . , γkn) (24)

=




s
h
(

1−
n
∏

t=1
(1− τkt

h )
ωkt
),

s
h
(

1−
n
∏

t=1
(1− ηkt

h )
ωkt
)
 ,


s

h
(

n
∏

t=1

(
θkt
h

)ωkt
),

s
h
(

n
∏

t=1
(

υkt
h )

ωkt
)

 (25)

or:

γk =
([

sτk , sηk

]
,
[
sθk , sυk

])
(26)

= LIVIFPWG(γk1, γk2, . . . , γkn) (27)

=




s
h
(

n
∏

t=1
(

τkt
h )

ωkt
),

s
h
(

n
∏

t=1
(

ηkt
h )

ωkt
)
 ,


s

h
(

1−
n
∏

t=1

(
1− θkt

h

)ωkt
),

s
h
(

1−
n
∏

t=1
(1− υkt

h )
ωkt
)

 (28)

where ωkt =
Tkt

n
∑

t=1
Tkt

.

Step 7: Compute the score values of γk as:

S(γk) = s(2h+τk−θk+ηk−υk)/4 (29)

If there is no difference between two score values S(γk1) and S(γk2) for any two positive
k1, k2, then compute the accuracy value of the alternative as:

H(γk) = s(τk+θk+ηk+υk)/2 (30)

Step 8: Rank all the given alternatives Ak(k = 1, 2, . . . , m) according to Definition 7 and, hence, select
the desirable alternative(s).

5. Illustrative Example

In order to demonstrate the above-mentioned approach, an illustrative example has been taken as
below under the LIVIFS environment.

5.1. A Case Study

Jharkhand is the eastern state of the India, which has the 40 percent mineral resources of the
country and second leading state of the mineral wealth after Chhatisgarh state. It is also known for
its vast forest resources. Jamshedpur, Bokaro and Dhanbad cities of the Jharkhand are famous for
industries in all over the world. After that, it is the widespread poverty state of the India because
it is the primarily a rural state as 76 percent of the population live in the villages which depend on
the agriculture and wages. Only 30 percent villages are connected by roads while only 55 percent
villages have access to electricity and other facilities. But in the today’s life, every one is changing
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fast to himself for a better life, therefore, every one moves to the urban cities for a better job. To stop
this emigration, Jharkhand government wants to setup the industries based on the agriculture in the
rural areas. For this, government have been organized “MOMENTUM JHARKHAND” global investor
submit 2017 in Ranchi to invite the companies for investment in the rural areas. The government
announced the various facilities for setup the food processing parks in the rural areas and consider the
four attributes required for company selection to setup them, namely, project quality (G1), technical
capability (G2), company background (G3), reference from previous project (G4) and assign the
weights of relative importance of each attributes. The four companies/candidates taken as in the
form of the alternatives, namely, Surya Food and Agro Pvt. Ltd. (A1), Mother Dairy Fruit and
Vegetable Pvt. Ltd. (A2), Parle Products Ltd. (A3), Heritage Food Ltd. (A4) interested for these
projects. Then the main objective of the government is to choose the best company among them
for the required task. In order to fulfill this, three senior experts D(1), D(2) and D(3) are invited
to give their preferences on each attribute in terms of LIVIFNs according to the linguistic term set

S =
{

s0 = “extremely poor”, s1 = “very poor”, s2 = “poor”, s3 = “slightly poor”, s4 = “fair”, s5 =

“slightly good”, s6 = “good”, s7 = “very good”, s8 = “extremely good”
}

. Then, the steps of the
proposed approach are executed as follows to find the best alternative(s).

Step 1: Rating values of the three decision-makers are noted in the form of a decision matrix
summarized in Tables 1–3, respectively.

Table 1. Linguistic interval-valued intuitionistic fuzzy decision matrix R̃(1) of decision-maker D(1).

G1 G2 G3 G4

A1 ([s3, s5], [s2, s3]) ([s4, s5], [s1, s2]) ([s4, s5], [s2, s3]) ([s3, s4], [s1, s2])
A2 ([s3, s5], [s2, s3]) ([s2, s4], [s1, s2]) ([s2, s4], [s3, s4]) ([s1, s3], [s2, s3])
A3 ([s4, s6], [s1, s2]) ([s5, s6], [s1, s1]) ([s3, s4], [s2, s3]) ([s4, s5], [s1, s3])
A4 ([s4, s5], [s2, s3]) ([s1, s3], [s3, s4]) ([s3, s5], [s1, s3]) ([s6, s7], [s1, s1])

Table 2. Linguistic interval-valued intuitionistic fuzzy decision matrix R̃(2) of decision-maker D(2).

G1 G2 G3 G4

A1 ([s2, s4], [s1, s3]) ([s4, s5], [s1, s2]) ([s4, s5], [s1, s3]) ([s3, s6], [s1, s2])
A2 ([s3, s5], [s1, s3]) ([s1, s2], [s1, s4]) ([s2, s3], [s3, s4]) ([s3, s5], [s1, s3])
A3 ([s3, s4], [s2, s3]) ([s5, s6], [s1, s2]) ([s3, s5], [s2, s3]) ([s3, s4], [s2, s3])
A4 ([s4, s5], [s1, s2]) ([s1, s2], [s3, s5]) ([s3, s3], [s2, s3]) ([s2, s3], [s1, s2])

Table 3. Linguistic interval-valued intuitionistic fuzzy decision matrix R̃(3) of decision-maker D(3).

G1 G2 G3 G4

A1 ([s2, s4], [s1, s2]) ([s2, s3], [s2, s4]) ([s3, s5], [s2, s3]) ([s5, s6], [s1, s2])
A2 ([s1, s4], [s2, s3]) ([s4, s5], [s1, s2]) ([s2, s4], [s1, s3]) ([s3, s4], [s2, s4])
A3 ([s2, s3], [s1, s3]) ([s3, s5], [s2, s3]) ([s3, s5], [s1, s3]) ([s3, s5], [s2, s3])
A4 ([s3, s4], [s2, s3]) ([s1, s2], [s3, s4]) ([s3, s5], [s1, s2]) ([s5, s6], [s1, s2])

Step 2: Each attribute is of the profit type, so there is no need for normalization.
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Step 3: Calculate the T(q)
kt , q = 1, 2, 3, and obtain:

T(1)
kt =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 , T(2)
kt =


0.5938 0.6875 0.6250 0.6250
0.5938 0.5938 0.4688 0.4688
0.7188 0.7813 0.5625 0.6563
0.6250 0.4063 0.6250 0.8438



T(3)
kt =


0.3340 0.4727 0.4102 0.4297
0.3711 0.2598 0.2051 0.2930
0.4043 0.5859 0.3340 0.3691
0.4297 0.1396 0.3320 0.4746


Step 4: W.l.o.g., we utilize the LIVIFPOWA operator, i.e., Equation (17), to fuse the information of

each expert. Their values are represented in Table 4.

Table 4. Aggregated linguistic interval-valued intuitionistic fuzzy decision matrix R by using the
LIVIFPOWA operator.

G1 G2 G3 G4

A1 ([s2.5415, s4.5545], [s1.4327, s2.6478]) ([s3.6289, s4.6452], [s1.1638, s2.3275]) ([s3.8160, s5.0000], [s1.4227, s3.0000]) ([s4.1006, s5.6880], [s1.0000, s2.0000])
A2 ([s2.6719, s4.8325], [s1.4055, s3.0000]) ([s3.0736, s4.3748], [s1.0000, s2.2040]) ([s2.0000, s3.8891], [s1.5562, s3.3684]) ([s2.7123, s4.4742], [s1.3495, s3.2387])
A3 ([s3.3398, s4.9889], [s1.2645, s2.4784]) ([s4.5956, s5.7889], [s1.1872, s1.6499]) ([s3.0000, s4.8441], [s1.3877, s3.0000]) ([s3.5216, s4.8385], [s1.4204, s3.0000])
A4 ([s3.8089, s4.8140], [s1.4273, s2.4627]) ([s1.0000, s2.6675], [s3.0000, s4.0814]) ([s3.0000, s4.7284], [s1.1248, s2.4386]) ([s5.0974, s6.2108], [s1.0000, s1.4831])

Step 5: Calculate Tkt (k, t = 1, 2, 3, 4) as:

Tkt =


1.0000 0.5942 0.3859 0.2460
1.0000 0.5968 0.3776 0.2002
1.0000 0.6433 0.4734 0.2878
1.0000 0.6479 0.2548 0.1606


Step 6: Use Tkt and the LIVIFPWA operator; we get the aggregated value γk for each alternative as:

γ1 = ([s3.2667, s4.8041], [s1.3010, s2.5344]) , γ2 = ([s2.6804, s4.5267], [s1.2981, s2.8325]) ,

γ3 = ([s3.6762, s5.1855], [s1.2840, s2.3613]) , γ4 = ([s3.1098, s4.4074], [s1.7022, s2.7710])

Step 7: Using Equation (29), we get S(γ1) = 5.0589, S(γ2) = 4.7691, S(γ3) = 5.3041, S(γ4) = 4.7610.
Step 8: Since S(γ3) > S(γ1) > S(γ2) > S(γ4), therefore A3 � A1 � A2 � A4. Hence, A3 is the

best candidate.

If we utilize weighted geometric AOs instead of averaging operators to aggregate the numbers in
Steps 3 and 5, then the following steps are executed

Step 1: The preference values of each expert are given in Tables 1–3, respectively.
Step 2: Each attribute is of the profit type, so there is no need for normalization.
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Step 3: Calculate the T(q)
kt , q = 1, 2, 3, and get:

T(1)
kt =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 , T(2)
kt =


0.5938 0.6875 0.6250 0.6250
0.5938 0.5938 0.4688 0.4688
0.7188 0.7813 0.5625 0.6563
0.6250 0.4063 0.6250 0.8438



T(3)
kt =


0.3340 0.4727 0.4102 0.4297
0.3711 0.2598 0.2051 0.2930
0.4043 0.5859 0.3340 0.3691
0.4297 0.1396 0.3320 0.4746


Step 4: Utilize the LIVIFPOWG operator as given in Equation (19) to aggregate the preference of

each decision-maker. The results corresponding to it are summarized in Table 5.

Table 5. Aggregated linguistic interval-valued intuitionistic fuzzy decision matrix R by using the
LIVIFPOWG operator.

G1 G2 G3 G4

A1 ([s2.4682, s4.4909], [s1.5380, s2.7112]) ([s3.4371, s4.4712], [s1.2322, s2.5094]) ([s3.7747, s5.0000], [s1.5279, s3.0000]) ([s3.8467, s5.5122], [s1.0000, s2.0000])
A2 ([s2.4379, s4.7937], [s1.5103, s3.0000]) ([s2.6379, s4.0941], [s1.0000, s2.3314]) ([s2.0000, s3.8615], [s1.8868, s3.4296]) ([s2.4991, s4.3280], [s1.4513, s3.2882])
A3 ([s3.1801, s4.5836], [s1.3559, s2.5516]) ([s4.4061, s5.7352], [s1.2621, s1.8788]) ([s3.0000, s4.8073], [s1.4919, s3.0000]) ([s3.4579, s4.8007], [s1.5255, s3.0000])
A4 ([s3.7664, s4.7720], [s1.5325, s2.5360]) ([s1.0000, s2.5998], [s3.0000, s4.1026]) ([s3.0000, s4.5849], [s1.1807, s2.5118]) ([s4.4839, s5.5642], [s1.0000, s1.5875])

Step 5: The values of Tkt, k, t = 1, 2, 3, 4, are computed as:

Tkt =


1.0000 0.5847 0.3685 0.2331
1.0000 0.5850 0.3547 0.1834
1.0000 0.6205 0.4460 0.2692
1.0000 0.6397 0.2498 0.1553


Step 6: Utilize the LIVIFPWG operator, as given in Equation (26), to obtain the overall value of each

alternative, and get:

γ1 = ([s3.0373, s4.6685], [s1.3998, s2.6366]) , γ2 = ([s2.4155, s4.3880], [s1.4342, s2.9272]) ,

γ3 = ([s3.4627, s4.9356], [s1.3772, s2.5263]) , γ4 = ([s2.4515, s3.9731], [s1.9579, s3.0213])

Step 7: By using Equation (29), the score values of each alternative are S(γ1) = 4.9173, S(γ2) =

4.6105, S(γ3) = 5.1237 and S(γ4) = 4.3614.
Step 8: Since S(γ3) > S(γ1) > S(γ2) > S(γ4), therefore A3 � A1 � A2 � A4. Hence, A3 is the

best candidate.

However, apart from the above analysis, in order to analyze the effect of the different aggregation
operators on to the DM steps, we perform an experiment where we set up the different operators in
Step 4 and Step 6 according to the decision-maker preferences: the optimism or pessimism point of
way. For instance, initially, we utilize the LIVIFPOWA operator during the implementation of Step
4 of the proposed algorithm, to aggregate the different preferences of each expert and by varying
all the other algorithms in Step 6. The results corresponding to each alternative are summarized
in Table 6. Under this analysis, it is assumed that the expert/decision-maker wants an optimism
behavior towards the expert preferences and a different behavior towards the criteria. Similarly, if the
decision-maker can chooses the pessimistic behavior towards the expert preferences, then we utilize
the LIVIFPOWG operator during the implementation of Step 4 of the proposed algorithm. Further,
by selecting the nature of the decision-maker in Step 6 of the algorithm, we vary all the proposed
operators and compute the final score values for each operator. The results corresponding to it are
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summarized in Table 6 along with the final ranking order. The first four rows of Table 6 depict an
optimistic approach towards the aggregation, while the last four rows depict the pessimistic approach
by taking the geometric aggregation operator. Furthermore, it is clearly seen from the table that the
final score values of the alternatives are less for the pessimistic approach than the optimistic approach.
The final ranking order suggests the effect of the proposed operators on the best alternative as per the
decision-maker preferences.

Table 6. The effect of the operators on the alternatives and ranking order. LIVIFPOWA, linguistic
interval-valued intuitionistic fuzzy prioritized ordered weighted averaging; LIVIFPWA, LIVIF
prioritized weighted averaging; LIVIFPWG, LIVIF prioritized weighted geometric; LIVIFPOWG,
LIVIF prioritized ordered weighted geometric.

Operators Used in Step 4 Operators Used in Step 6 Rating Values Ranking
A1 A2 A3 A4

LIVIFPOWA

LIVIFPWA 5.0589 4.7691 5.3041 4.7610 A3 � A1 � A2 � A4
LIVIFPOWA 5.3820 4.8557 5.4304 5.6292 A4 � A3 � A1 � A2
LIVIFPWG 5.0145 4.7343 5.2486 4.4213 A3 � A1 � A2 � A4
LIVIFPOWG 5.3369 4.8223 5.3636 5.3839 A4 � A3 � A1 � A2

LIVIFPOWG

LIVIFPWA 4.9582 4.6438 5.1737 4.6656 A3 � A1 � A4 � A2
LIVIFPOWA 5.2861 4.7079 5.3151 5.3997 A4 � A3 � A1 � A2
LIVIFPWG 4.9173 4.6105 5.1237 4.3614 A3 � A1 � A2 � A4
LIVIFPOWG 5.2416 4.6760 5.2556 5.2233 A3 � A1 � A4 � A2

To examine whether the proposed approach is stable under the different criteria, we have
investigated the following tests as proposed by Wang and Triantaphyllou [39].

5.2. Validity Test

The following three test criteria were established by Wang and Triantaphyllou [39] to validate the
MAGDM methods.
Test 1: “An effective MAGDM method does not change the index of the best alternative by replacing a
non optimal alternative with a worse alternative without shifting the corresponding importance of
every decision attribute”.
Test 2: “To an effective MAGDM method must be satisfy transitive property”.
Test 3: “If we decomposed a MAGDM problem into the sub DM problems and same MAGDM method
is utilized on sub problems to rank alternatives, collective ranking of alternatives must be identical to
ranking of un-decomposed DM problem”.

5.2.1. Validity by Test 1

Under this test, if we replace the values of non-optimal alternative A4 with its worse one A′4 for
each decision-maker (given in Table 7), then by performing the steps of the proposed approach on
them, we get the final score values of each alternative as 5.0589, 4.7691, 5.3041 and 3.2519. Thus, we
conclude that the ranking order is A3 � A1 � A2 � A′4, which coincides with the original ordering.
Therefore, Test 1 is valid for the approach.

Table 7. Worse alternative A′4 for every decision-maker.

G1 G2 G3 G4

D(1) ([s2, s3], [s3, s4]) ([s0, s3], [s4, s5]) ([s2, s4], [s2, s4]) ([s3, s4], [s2, s3])

D(2) ([s2, s3], [s3, s4]) ([s0, s1], [s4, s6]) ([s1, s2], [s3, s4]) ([s1, s2], [s3, s4])

D(3) ([s1, s2], [s3, s5]) ([s1, s1], [s4, s5]) ([s2, s4], [s3, s4]) ([s2, s3], [s2, s3])
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5.2.2. Validity by Tests 2 and 3

Under this test, we decompose the original problem into three smaller sub-problems, which
contain alternatives {A1, A2, A4}, {A1, A3, A4} and {A2, A3, A4}. Now, to each sub-problem, we apply
the proposed approach, and the final ranking order of them is computed as A1 � A2 � A4, A3 � A1 �
A4 and A3 � A2 � A4, respectively. Thus, by combining these orderings, we get A3 � A1 � A2 � A4,
which is similar to the original problem. Thus, the approach is true under this test, as well.

5.3. Comparative Study

In order to check the performance of the proposed approach with existing ones, firstly based on
the given information, we take the weight matrix for each expert and each criterion from Step 3 and
Step 5 of the proposed approach. The computed weight vector for each decision-maker with respect to
each attribute is summarized as:

w =

D(1) D(2) D(3)


G1 0.4867 0.3042 0.2091
G2 0.5676 0.2661 0.1663
G3 0.4937 0.3240 0.1823
G4 0.4313 0.3639 0.2047

while the weight decision matrix for each attribute is summarized as:

ω =

G1 G1 G1 G1


A1 0.4492 0.2669 0.1734 0.1105
A2 0.4599 0.2745 0.1736 0.0921
A3 0.4159 0.2675 0.1969 0.1197
A4 0.4847 0.3140 0.1235 0.0778

Based on these matrices, we compare the proposed results with some of the existing methods’
results under LIVIFS [36] and LIFS environment [23–25,27,29,30,40]. Since under the LIFS environment,
each linguistic term has one intuitionistic fuzzy membership, we convert our LIVIFS into LIFS by
considering s(τ+η)/2 and s(θ+υ)/2 as the linguistic membership degrees. Based on this information
and the given preferences, we perform some of the existing approaches [23–25,27,29,30,40] on this
considered data, and then the final scores of the alternatives Ak(k = 1, 2, 3, 4) are computed and
summarized in Table 8. From this table, we can get similar ranking results as the proposed method.
However, the computational procedure of the proposed approach is entirely different from the
existing ones.

Table 8. Comparison with existing approaches.

Author Rating Values Ranking
A1 A2 A3 A4

Zhang [23] 5.0484 4.7612 5.3255 4.7123 A3 � A1 � A2 � A4
Chen et al. [24] 2.6685 2.3250 3.5830 1.7842 A3 � A1 � A2 � A4
Garg and Kumar [27] 4.4910 4.3547 4.6060 4.2208 A3 � A1 � A2 � A4
Liu and Qin [40] −6.8114 −7.0609 −6.7229 −7.0373 A3 � A1 � A4 � A2
Liu and Wang [25] 1.8488 0.8771 2.5409 1.1646 A3 � A1 � A4 � A2
Liu and Liu [29] 3.6675 3.0294 3.8132 3.0307 A3 � A1 � A4 � A2
Garg and Kumar [30] 0.2524 0.2140 0.3078 0.2258 A3 � A1 � A4 � A2
Garg and Kumar [36] 1.6218 1.1837 1.8719 0.9893 A3 � A1 � A4 � A2
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5.4. Further Discussion

In the following, we give some characteristic comparisons of our proposed method and the
aforementioned methods [10,11,14,23–25,27,29,30,36,40], which are listed in Table 9.

Table 9. The characteristic comparisons of different methods.

Methods Properties
Whether Describes Whether Describes Whether Considers Considers Priority
Information Using Information by More Than One Relations Between

Linguistic Information Interval-Valued Numbers Decision-Maker Input Arguments

Xu and Yager [14] × × × ×
Xu and Chen [10] × X × ×
Xu [11] × X × ×
Zhang [23] X × X ×
Chen et al. [24] X × X ×
Garg and Kumar [27] X × X ×
Liu and Qin [40] X × X ×
Liu and Wang [25] X × X ×
Liu and Liu [29] X × X ×
Garg and Kumar [30] X × X ×
Garg and Kumar [36] X X X ×
The proposed method X X X X

The method proposed by [14] adopts IFNs to aggregate the uncertain information using geometric
operators only in a quantitative manner. On the other hand, the method described by the author
in [10,11] represents a wider range of information in terms of the interval-valued membership degrees.
However, that approach is also limited to only quantitative aspects and does not apply the linguistic
information. Apart from this, the method proposed by Zhang [23], Chen et al. [24] adopted LIFNs to
describe the uncertainties in the data as a crisp number. In Garg and Kumar [27], the authors analyzed
the problem by using the linguistic connection number of the set pair analysis theory under the LIFS
environment. In [25,29,40], the authors studied the LIFS environment by proposing AOs using the
Bonferroni mean, Maclaurin symmetric mean and some improved aggregation operators. In [30],
the authors aggregated the preferences by using Einstein-based AOs under the LIFS environment only.
In [36], the authors presented a possibility degree measure to rank the different LIVIFNs. However,
in the present study, we proposed aggregation operators for the collection of LIVIFNs to describe the
uncertainties in terms of linguistic interval pairs of the membership degrees, which can easily express
the information in a more semantic and concise way, hence being able to reduce the information loss.

In addition, LIVIFNs used in the new method can model the uncertain and fuzzy information
with more flexibility by its linguistic interval-valued intuitionistic fuzzy numbers during the evaluation
process, which can reflect the inherent thoughts of decision-makers more accurately. Further, it has been
analyzed that the set defined by the author in [23] can be considered as a special case of the proposed
set by setting the lower and upper bound of membership degrees as equal. Thus, the proposed method
is more generalized and captures more information during the analysis.

6. Conclusions

In real-world problems, the decision-makers give their preferences in terms of qualitative values
rather than crisp numbers. To handle this decision, IVIFS theory is a more efficient tool to deal
with imprecise data, while the linguistic approach expresses the uncertainty in the qualitative aspect.
By taking advantage of both, in this paper, LIVIFS is considered, which is the generalization of
LIFS in which membership and non-membership degrees are represented by the interval-valued
linguistic terms in order to better deal with fuzzy information under the qualitative aspect. Afterward,
based on the basic operational laws on LIVIFNs, we developed some prioritized averaging and
geometric aggregation operators, namely LIVIFPWA, LIVIFPOWA, LIVIFPWG, and LIVIFPOWG.
The main advantage of these operators is that they consider the prioritized relationship between the
input arguments. Various desirable properties have also been discussed in detail. To demonstrate
the applicability of the proposed operators to the MAGDM process, we present an algorithm for
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solving the MAGDM problems based on the proposed operator. A real-life numerical example
is given to demonstrate the approach, and comparative studies with some existing approaches
demonstrate the feasibility and reliability of the proposed operators. The superiority of the proposed
work has been justified with a validity test. Further, the impact of the different AOs on the DM
process—optimistic and pessimistic—is analyzed in the study. Based on the computed results
and methodologies, a decision-maker can see the influence of his/her various choices towards the
aggregation process, and hence based on this, he/she can choose the desirable alternative(s). From
the study, we conclude that the proposed approach presents a better and easier way to solve the
uncertainties of real-life problems. Future research will focus on introducing the various aggregation
operators to address some more complicated problems involving the Pythagorean FS [41,42] and other
uncertain environments [43–47].
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