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Abstract: This paper introduces a new numerical approach to solving a system of fractional differential
equations (FDEs) using the Legendre wavelet operational matrix method (LWOMM). We first
formulated the operational matrix of fractional derivatives in some special conditions using some
notable characteristics of Legendre wavelets and shifted Legendre polynomials. Then, the system
of fractional differential equations was transformed into a system of algebraic equations by using
these operational matrices. At the end of this paper, several examples are presented to illustrate
the effectivity and correctness of the proposed approach. Comparing the methodology with several
recognized methods demonstrates that the advantages of the Legendre wavelet operational matrix
method are its accuracy and the understandability of the calculations.

Keywords: Legendre wavelet; operational matrix; systems of fractional order differential equations;
Liouville_Caputo sense

1. Introduction

Differential and integral operators are the basis of mathematical models, and they are also used as a
means of understanding the working principles of natural and artificial systems. Therefore, differential
and integral equations are of great importance both theoretically and practically. Such equations have
a wide range of applications, including in the physical sciences (such as in physics and engineering) as
well as in social science. Systems of differential equations, as differential equations, are often used in
issues such as theories of elasticity, dynamics, fluid mechanics, oscillation, and quantum dynamics.

Interest in differential and integral operators has led to the exploration of fractional differential
and integral operators by examining these issues further in depth. Owing to a question, the origin
of fractional calculus arose in a message from Leibniz to L’Hôpital in 1695. Fractional calculus has
received attention in recent years due to its ability to simplify numerous physical, engineering,
and economics phenomena such as the fluid dynamic traffic model, damping laws, continuum and
statistical mechanics, diffusion processes, solid mechanics, control theory, colored noise, viscoelasticity,
electrochemistry, and electromagnetism, among others.

Because a variety of solutions of fractional differential equations (FDEs) cannot be found analytically,
numerical and approximate methods are needed. There are a lot of techniques that have been studied
by many researchers in solving FDEs and the system of such equations numerically. Some of these
techniques are the Adomian decomposition method presented by Song and Wang [1], the collocation
method, the improved operational matrix method [2–4], the perturbation iteration method introduced by
Şenol and Dolapçı [5], the computational matrix method illustrated by Khader et al. [6], the differential
transform method demonstrated by Ertürk and Momani [7], the variational iteration method, the Laplace
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transform method given by Gupta et al. [8], and the fractional complex transform method studied by
Ghazanfari and Ghazanfari [9], among others. Kilbas et al. [10] inclusively examined fractional differential
and fractional integro-differential equations. In addition, numerical solutions of FDEs and the system
of such equations have been presented using the Legendre polynomial operational matrix method [11],
Bernstein operational matrix method [12], Genocchi operational matrix method [13], Jacobi operational
matrix method [14], Chebyshev wavelet operational matrix method [15], polynomial least squares method
(PLSM) [16], Legendre wavelet-like operational matrix method (LWPT) [17], and the Genocchi wavelet-like
operational matrix method [18].

This paper focuses on the numerical analysis of a system of fractional order differential equations
using the Legendre wavelet operational matrix method. The most important advantage of the proposed
method is that it presents an understandable procedure to reduce FDEs and the system of such
equations to a system of algebraic equations. First, we begin by presenting some basic definitions and
fundamental relations in Sections 2 and 3, respectively. Then, in Section 4, the operational matrix of
the fractional derivate is natively formulated to linear and nonlinear systems of fractional differential
equations. Section 5 presents five illustrative examples that were tested with the introduced method.
Finally, the last section includes the conclusions.

2. Basic Definitions

The Liouville_Caputo fractional_order derivative, shifted Legendre polynomials, and Legendre
wavelets are defined below [19,20].

Definition 1. The Liouville_Caputo fractional derivative of u is defined as [19]

Dαu(t) =
1

Γ(n− α)

t∫
0

u(n)(ξ)

(t− ξ)α+1−n dξ, n− 1 < α ≤ n, n ∈ N. (1)

Some characteristics of the Liouville_Caputo fractional derivative are as follows:

DαC = 0, (2)

where C is a constant. In addition, there is

Dαtβ =

 0, β ∈ N0 and β < dαe
Γ(β+1)

Γ(β+1−α)
xβ−α, β ∈ N0 and β ≥ dαe or β /∈ N and β > bαc

, (3)

in which bαc and dαe respectively imply that the largest integer is less than or equal to α, and the
smallest integer is greater than or equal to α.

The Liouville_Caputo fractional order derivative is a linear operation of the integer order derivative

Dα(ηu(t) + ζv(t)) = ηDαu(t) + ζDαv(t), (4)

where η and ζ are constant.

Definition 2. Let a and b respectively be the parameters of dilation and translation of a single function
called the mother wavelet. If a and b change continuously, then we obtain the following family of continuous
wavelets [21,22]:

ψab(t) = |a|−1/2ψ

(
t− b

a

)
, a, b ∈ R, a 6= 0. (5)
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Definition 3. Let Pm(t) imply the shifted Legendre polynomials of order m. Then Pm(t) can be formulated
as [21]

Pm(t) =
m

∑
k=0

(−1)m+k (m + k)!
(m− k)!

tk

(k!)2 , (6)

and the orthogonality condition is

1∫
0

Pm(t)Pn(t)dt =

{
1

2m+1 , f or m = n

0, f or m 6= n
. (7)

Definition 4. Let n and k be any positive integer, m be the order of shifted Legendre polynomials, and t be
the normalized time. Then the Legendre wavelets ψnm(t) = ψ(k, n, m, t) are defined on the interval [0, 1]
by [21,22].

ψnm(t) =

2
k+1

2

√
m + 1

2 Pm

(
2kt− n

)
, n

2k ≤ t ≤ n+1
2k

0, otherwise
, (8)

where m = 0, 1, . . . , M; n = 0, 1, . . . , (2k − 1). The coefficient
√

m+1
2 is for orthonormality.

Definition 5. Let u(t) and v(t) be functions defined over [0, 1] and then expanded in the terms of the Legendre
wavelet as [21,22]

u(t) =
∞

∑
n=0

∞

∑
m=0

cnmψnm(t), (9)

where cnm = (u(t), ψnm(t)), in which (., .) implies the inner product. If the infinite series in Equation (9) is
truncated, then it can be expressed as

u(t) ∼=
2k−1

∑
n=0

M

∑
m=0

cnmψnm(t) = CTψ(t), (10)

where C and ψ(t) are matrices, as presented by

C =
[
c0,0, c0,1, . . . , c0,M, . . . , c2,M, . . . , c2k−1,0, c2k−1,1, . . . , c2k−1,M

]T

ψ =
[
ψ0,0, ψ0,1, . . . , ψ0,M, . . . , ψ2,M, . . . , ψ2k−1,0, ψ2k−1,1, . . . , ψ2k−1,M

]T . (11)

3. Fundamental Relations

Saadatmandi and Dehghan [11] derived the operational matrix of a fractional derivative by
using shifted Legendre polynomials. In this section, we show how we derived the Legendre wavelet
operational matrix of fractional derivatives in some special conditions by drawing from Saadatmandi
and Dehghan [11]. Additionally, the theorem and corollary related to the Legendre wavelet operational
matrix of derivatives illustrated by Mohammadi [21] are cited here as follows.

Theorem 1. Let ψ(t) be the Legendre wavelet vector introduced in Equation (8). Then ψ(t) is expressed
as [21,22]

dψ(t)
dt

= Dψ(t), (12)
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where D is the 2k(M + 1) operational matrix of the derivative, which can be stated as

D =


U O · · · O
O U · · · O
...

...
. . .

...
O O · · · U

, (13)

where U is an (M + 1)(M + 1) matrix and its (r, s)th element is written as

Ur,s =

{
2k+1

√
(2r− 1)(2s− 1), r = 2, . . . , (M + 1), s = 1, . . . , r− 1 and (r + s) odd

0, otherwise
. (14)

Corollary 1. Using Equation (12), the operational matrix for the nth derivative can be stated as [21]

dnψ(t)
dtn = Dnψ(t), (15)

where Dn is the nth power of matrix D.

Lemma 1. Let ψ(t) be the Legendre wavelets vector introduced in Equation (8). Assuming that k = 0, then

Dαψr(t) = 0, r = 0, 1, . . . , dαe − 1, α > 0. (16)

Proof. The desired result can be obtained by using Equations (2) and (4) in Equation (8). �

Theorem 2. Let ψ(t) be the Legendre wavelets vector introduced in Equation (8). Supposing that k = 0 and
α > 0, then

Dαψ(t) ∼= D(α)ψ(t), (17)

where D(α) is the (M + 1)x(M + 1) operational matrix of the fractional derivative of the order α > 0, N− 1 <

α ≤ N in the Liouville_Caputo sense and can be stated as

D(α) =



0 0 · · · 0
...

... · · ·
...

0 0 · · · 0
dαe
∑

h=dαe
ξdαe,0,h

dαe
∑

h=dαe
ξdαe,1,h · · ·

dαe
∑

h=dαe
ξdαe,m,h

...
... · · ·

...
r
∑

h=dαe
ξr,0,h

r
∑

h=dαe
ξr,1,h · · ·

r
∑

h=dαe
ξr,m,h

...
... · · ·

...
m
∑

h=dαe
ξm,0,h

m
∑

h=dαe
ξm,1,h · · ·

m
∑

h=dαe
ξm,m,h



, (18)

where ξr,s,h is written as

ξr,s,h =
√

2r + 1
√

2s + 1
s

∑
l=0

(−1)r+s+h+l(r + h)!(s + l)!

(r− h)!h!Γ(h− α + 1)(s− l)!(l!)2(h + l − α + 1)
. (19)

Consider in D(α) that the first dαe rows are all zero.
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Proof. Presume that ψr(t) is the rth element of the vector ψ(t) introduced in Equation (11), where
r = nM + (m + 1), m = 0, 1, . . . , M, n = 0, 1, . . . , (2k − 1). Then ψr(t) can be stated as

ψr(t) = 2
k+1

2

√
r +

1
2

Pr(2kt− n)χ[ n
2k , n+1

2k ]. (20)

Accepting that k = 0, and by using the shifted Legendre polynomial, we obtain

ψr(t) =
√

2

√
r +

1
2

r

∑
h=0

(−1)r+h(r + h)!

(r− h)!(h!)2 thχ[0,1]. (21)

If we use Equations (3), (4), and (21), then we have

D(α)ψr(t) =
√

2
√

r + 1
2

r
∑

h=0

(−1)r+h(r+h)!
(r−h)!(h!)2 Dα(th)χ[0,1]

=
√

2r + 1
r
∑

h=dαe

(−1)r+h(r+h)!
(r−h)!(h!)Γ(h−α+1) th−αχ[0,1], r = dαe, . . . , m.

(22)

Approximating th−α by (m + 1) terms of the Legendre wavelets, then we obtain

th−α ∼=
m

∑
s

bh,sψs(t), (23)

where

bh,s =
1∫

0
th−αψs(t)dt =

√
2
√

s + 1
2

s
∑

l=0

(−1)s+l(s+l)!
(s−l)!(l!)2

1∫
0

th+l−αdt

=
√

2s + 1
s
∑

l=0

(−1)s+l(s+l)!
(s−l)!(l!)2(h+l−α+1)

. (24)

Utilizing Equations (22) and (24), we get

Dαψr(t) ∼=
√

2r + 1
r
∑

h=dαe

m
∑

s=0

(−1)r+h(r+h)!
(r−h)!(h!)Γ(h−α+1) bh,sψs(t)χ[0,1]

=
m
∑

s=0

(
r
∑

h=dαe
ξr,s,h

)
ψs(t)χ[0,1], r = dαe, . . . , m

, (25)

in which ξr,s,h is presented in Equation (19). In addition, if we use Lemma 1, then we can write

Dαψr(t) = 0, r = 0, 1, . . . , dαe − 1, α > 0. (26)

Combining Equations (25) and (27), the result can be obtained. �

4. Solving Systems of Fractional Order Differential Equations

In this section, the Legendre wavelet operational matrix method was implemented to obtain
the numerical solution of the system of fractional order differential equations. Consider a system of
fractional differential equations as follows:

Dη1 u1(t) = U1(t, u1, u2, . . . , um),
Dη2 u2(t) = U2(t, u1, u2, . . . , um),

...
Dηn um(t) = Um(t, u1, u2, . . . , um),

(27)
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where Ui is a linear/nonlinear function of t, u1, u2, . . . , um, Dηi is the derivative of ui with the order of
ηi in the Liouville–Caputo sense and N − 1 ≤ ηi < N, and they are subjected to the initial conditions

u1(t0) = u10, du1
dt (t0) = u11, d2u1

dt2 (t0) = u12, . . . , dn−1u1
dtn−1 (t0) = u1(n−1)

u2(t0) = u20, du2
dt (t0) = u21, d2u2

dt2 (t0) = u22, . . . , dn−1u2
dtn−1 (t0) = u2(n−1)

...
...

...
...

um(t0) = um0, dum
dt (t0) = um1, d2um

dt2 (t0) = um2, . . . , dn−1um
dtn−1 (t0) = um(n−1)

. (28)

First of all, approximating u1(t), u2(t), . . . , um(t) and Dη1 u1(t), Dη2 u2(t), . . . , Dηn um(t), we obtain

u1(t) ≈
2k−1
∑

n=0

M
∑

m=0
c1n,mψn,m = C1

Tψ(t)

u2(t) ≈
2k−1
∑

n=0

M
∑

m=0
c2n,mψn,m = C2

Tψ(t)

...

um(t) ≈
2k−1
∑

n=0

M
∑

m=0
cnn,mψn,m = Cm

Tψ(t)

, (29)

where Ci, i = 1, 2, . . . , m is an unknown vector and ψ(t) is the vector introduced in Equation (8). If we
utilize Equation (17), then we have

Dη1 u1(t) ≈ C1
T D(η1)ψ(t)

Dη2 u2(t) ≈ C2
T D(η2)ψ(t)

...
Dηn um(t) ≈ Cm

T D(ηn)ψ(t)

. (30)

Substituting Equations (29) and (30) into Equation (27), we obtain

R1(t) = C1
T D(η1)ψ(t)−U1(t, C1

Tψ(t), C2
Tψ(t), . . . , Cm

Tψ(t))
R2(t) = C2

T D(η2)ψ(t)−U2(t, C1
Tψ(t), C2

Tψ(t), . . . , Cm
Tψ(t))

...
Rm(t) = Cm

T D(ηn)ψ(t)−Um(t, C1
Tψ(t), C2

Tψ(t), . . . , Cm
Tψ(t))

(31)

If Ui is a linear function of t, u1, u2, . . . , um, then we produce 2k(M + 1)− mn linear equations
by implementing

1∫
0

ψj(t)Ri(t)dt = 0, j = 1, . . . , 2k(M + 1)−mn, i = 1, 2, . . . , m. (32)

Also, by substituting the initial conditions in Equation (28) into Equation (30), then we obtain

u1(t0) ≈ C1
Tψ(t0) = u10, du1

dt (t0) ≈ C1
T Dψ(t0) = u11, . . . , dn−1u1

dtn−1 (t0) ≈ C1
T Dn−1ψ(t0) = u1(n−1)

u2(t0) ≈ C2
Tψ(t0) = u20, du2

dt (t0) ≈ C2
T Dψ(t0) = u21, . . . , dn−1u2

dtn−1 (t0) ≈ C2
T Dn−1ψ(t0) = u2(n−1)

...
...

...
...

...
...

um(t0) ≈ Cm
Tψ(t0) = um0, dum

dt (t0) ≈ Cm
T Dψ(t0) = um1, . . . , dn−1um

dtn−1 (t0) ≈ Cm
T Dn−1ψ(t0) = um(n−1)

. (33)

A 2k(M + 1) set of linear equations is generated by combining Equations (32) and (33). The solution
of these linear equations can be obtained for unknown coefficients of the vector C. Consequently,
u1(t), u2(t), . . . , um(t), introduced in Equation (27), can be computed.
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If Ui is a nonlinear function of t, u1, u2, . . . , um, then we first compute R1(t), R2(t), . . . , Rm(t) at
2k(M + 1)−mn points and, for a better result, use the first 2k(M + 1)−mn roots of shifted Legendre
P2k(M+1)(t). Then these equations, collectively with Equation (33), produce 2k(M + 1) nonlinear
equations. The solution of these nonlinear equations can be obtained by employing Newton’s iterative
method. Consequently, u1(t), u2(t), . . . , um(t), introduced in Equation (27), can be computed.

5. Illustrative Examples

In this section, to show the applicability and powerfulness of the introduced method, we present
the solutions to five linear and nonlinear systems of fractional order differential equations.

Example 1. We first considered the following linear system of fractional differential equations [7,8]:

Dαu(t) = u(t) + v(t)
Dαv(t) = −u(t) + v(t)

,

subject to
u(0) = 0, v(0) = 1.

The exact solution of this system when α = 1 is known to be

u(t) = et sin t, v(t) = et cos t.

This example was examined for M = 2, k = 0, and α = 0.9, 0.7, 0.5. When the obtained results
were matched against the exact solution when α = 1, as demonstrated in Figure 1, we can clearly
observe that when α approached 1, our results approached the exact solution. We also solved this
problem by using Legendre polynomial operational matrix method (LPOMM), and we compared the
results with the LWOMM. The numerical computations for u(t) and v(t) when α = 0.9 are revealed in
Tables 1 and 2.

Table 1. Numerical solutions of u(t) when α = 0.9 attained by the introduced method and the LPOMM
for Example 1.

t uLWOMM uLPOMM Absolute Error

0.0 0.3 × 10−9 0.0000000000 0.3 × 10−9

0.1 0.1483784330 0.1483784325 0.12 × 10−9

0.2 0.3217645283 0.3217645277 0.633 × 10−9

0.3 0.5201582862 0.5201582855 0.65 × 10−9

0.4 0.7435597067 0.7435597059 0.83 × 10−9

0.5 0.9919687898 0.9919687890 0.8 × 10−9

0.6 1.265385536 1.265385535 0.53 × 10−9

0.7 1.563809944 1.563809943 0.95 × 10−9

0.8 1.887242014 1.887242014 0.733 × 10−9

0.9 2.235681748 2.235681748 0.62 × 10−9

1.0 2.609129144 2.609129144 0.3 × 10−9
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Table 2. Numerical solutions of v(t) when α = 0.9 attained by the introduced method and the LPOMM
for Example 1.

t vLWOMM vLPOMM Absolute Error

0.0 1.000000000 1.000000000 0.2 × 10−9

0.1 1.152270899 1.152270900 −0.5 × 10−9

0.2 1.274801858 1.274801858 0.599 × 10−9

0.3 1.367592877 1.367592878 −0.67 × 10−9

0.4 1.430643956 1.430643957 −0.13 × 10−8

0.5 1.463955094 1.463955094 −0.1 × 10−8

0.6 1.467526291 1.467526293 −0.13 × 10−8

0.7 1.441357549 1.441357551 −0.171 × 10−8

0.8 1.385448866 1.385448868 −0.1461 × 10−8

0.9 1.299800244 1.299800245 −0.15 × 10−8

1.0 1.184411680 1.184411682 −0.18 × 10−8
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Figure 1. Comparison of our solutions and the exact solution when α = 0.9, 0.7, 0.5 in Example 1:
(a) Our solution u(t); and (b) Our solution v(t).

Example 2. We considered the following nonlinear system of fractional differential equations [13]:

D
3
2 u(t) = −8u(t) + v2(t)− 4t6 + 4t3 + 8t

3
2√
π
− 1

D
1
2 v(t) = t2Du(t) + v(t)− 3t4 − 2t3 + 32t

5
2

5
√

π
− 1

u(0) = 0, v(0) = 1, u(1) = 1, v(1) = 3, u′(0) = 0, u′(1) = 3.

The exact solution of this system is known to be

u(t) = t3, v(t) = 2t3 + 1

Using the parameters M = 3 and k = 0, we applied both the proposed method and the LPOMM
to solve this problem and show that our approach is more efficient and useful. Our numerical results
supported the idea that our solution approaches the exact solution more than the approximate solution
LPOMM. Comparisons of the approximate and exact solutions are presented in Tables 3 and 4.
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Table 3. The numerical results attained by using the introduced method in comparison to the approximate
solution LPOMM and the exact solution u(t) in Example 2.

t Exact Solution uLWOMM uLPOMM

0.0 0.000 −0.12 × 10−9 0.000000000000
0.1 0.001 0.01000000005 0.001000000000
0.2 0.008 0.02000000016 0.008000000000
0.3 0.027 0.03750000021 0.027000000000
0.4 0.064 0.07000000020 0.064000000000
0.5 0.125 0.12500000001 0.125000000000
0.6 0.216 0.21000000000 0.216000000000
0.7 0.343 0.33249999998 0.343000000000
0.8 0.512 0.49999999996 0.512000000000
0.9 0.729 0.71999999993 0.729000000000
1.0 1.000 0.99999999989 1.000000000000

Table 4. The numerical results attained by using the introduced method in comparison with the
approximate solution LPOMM and exact solution v(t) in Example 2.

t Exact Solution vLWOMM vLPOMM

0.0 1.000 1.000000000 0.9999999998
0.1 1.002 1.034841367 1.165803114
0.2 1.016 1.057587628 1.283854751
0.3 1.054 1.086537668 1.374911456
0.4 1.128 1.139990370 1.459729770
0.5 1.250 1.236244618 1.559066242
0.6 1.432 1.393599296 1.693677414
0.7 1.686 1.630353290 1.884319831
0.8 2.024 1.964805482 2.151750038
0.9 2.458 2.415254758 2.516724579
1.0 3.000 3.000000000 3.000000000

Example 3. We considered the following nonlinear system of fractional differential equations with the initial
conditions [8]

Dαu(t) = u(t)
2

Dαv(t) = u2(t) + v(t)
,

u(0) = 1, v(0) = 0.

The exact solution of this system when α = 1 is known to be

u(t) = e(
t
2 ), v(t) = tet.

The parameters M = 2, k = 0, and α = 0.5, 0.7, 0.9 were utilized. A comparison of our results and
the exact solution when α = 1 is displayed in Figure 2. The figures support that when α approximated
1, our results approximated the exact solution. We also solved this problem by using the LPOMM,
and compared the results to the LWOMM. Finally, we present the numerical computations for u(t) and
v(t) when α = 0.9 in Tables 5 and 6.
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Table 5. Our solutions u(t) when α = 0.9 attained by the presented method and the LPOMM for
Example 3.

t uLWOMM uLPOMM Absolute Error

0.0 1.000000000 1.000000000 −0.37 × 10−10

0.1 1.064816320 1.064816320 −0.132 × 10−9

0.2 1.130248588 1.130248589 −0.1375 × 10−9

0.3 1.196296807 1.196296807 0.44 × 10−10

0.4 1.262960974 1.262960975 −0.808 × 10−9

0.5 1.330241090 1.330241091 −0.532 × 10−9

0.6 1.398137156 1.398137156 −0.168 × 10−9

0.7 1.466649171 1.466649171 −0.756 × 10−9

0.8 1.535777134 1.535777134 −0.1375 × 10−9

0.9 1.605521046 1.605521046 0.468 × 10−9

1.0 1.675880908 1.675880908 0.163 × 10−9

Mathematics 2018, 6, x 12 of 17 

 

Table 5. Our solutions u(t) when 0.9α =  attained by the presented method and the LPOMM for 
Example 3. 

t  LWOMMu  LPOMMu  Absolute Error  

0.0 1.000000000 1.000000000 −0.37 × 1010−  
0.1 1.064816320 1.064816320 −0.132 × 910−  
0.2 1.130248588 1.130248589 −0.1375 × 910−  
0.3 1.196296807 1.196296807 0.44 × 1010−  
0.4 1.262960974 1.262960975 −0.808 × 910−  
0.5 1.330241090 1.330241091 −0.532 × 910−  
0.6 1.398137156 1.398137156 −0.168 × 910−  
0.7 1.466649171 1.466649171 −0.756 × 910−  
0.8 1.535777134 1.535777134 −0.1375 × 910−  
0.9 1.605521046 1.605521046 0.468 × 910−  
1.0 1.675880908 1.675880908 0.163 × 910−  

 

  
(a) (b) 

Figure 2. Comparison of our solutions to the exact solution when 0.9, 0.7, 0.5α =  for Example 

3: (a) Our solution u(t); and (b) Our solution v(t). 

Table 6. Our solutions v(t) when 0.9α =  attained by the presented method and the LPOMM for 
Example 3. 

t  LWOMMv  LPOMMv  Absolute Error  

0.0 -0.1 910−  0.0000000000 −0.1 × 910−  
0.1 0.1381762603 0.1381762609 −0.7 × 910−  
0.2 0.3133603361 0.3133603363 −0.2 × 910−  
0.3 0.5255522259 0.5255522263 −0.37 × 910−  
0.4 0.7747519304 0.7747519309 −0.5 × 910−  
0.5 1.060959450 1.060959450 −0.5 × 910−  
0.6 1.384174783 1.384174784 −0.8 × 910−  
0.7 1.744397932 1.744397932 −0.47 × 910−  

Figure 2. Comparison of our solutions to the exact solution when α = 0.9, 0.7, 0.5 for Example 3: (a) Our
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Table 6. Our solutions v(t) when α = 0.9 attained by the presented method and the LPOMM for
Example 3.

t vLWOMM vLPOMM Absolute Error

0.0 −0.1 × 10−9 0.0000000000 −0.1 × 10−9

0.1 0.1381762603 0.1381762609 −0.7 × 10−9

0.2 0.3133603361 0.3133603363 −0.2 × 10−9

0.3 0.5255522259 0.5255522263 −0.37 × 10−9

0.4 0.7747519304 0.7747519309 −0.5 × 10−9

0.5 1.060959450 1.060959450 −0.5 × 10−9

0.6 1.384174783 1.384174784 −0.8 × 10−9

0.7 1.744397932 1.744397932 −0.47 × 10−9

0.8 2.141628894 2.141628895 −0.7 × 10−9

0.9 2.575867672 2.575867672 0.3 × 10−9

1.0 3.047114264 3.047114264 −0.1 × 10−9
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Example 4. We considered the following nonlinear system of FDEs with initial conditions [13]

Dαu(t) = −1002u(t) + 1000v2(t)
Dαv(t) = u(t)− v(t)− v2(t)

u(0) = 1, v(0) = 1

The exact solution of this system when α = 1 is known to be

u(t) = e−2t, v(t) = e−t

This example was analyzed for M = 3, k = 0, and α = 0.9, 0.7, 0.5. When the obtained results were
matched against the exact solution when α = 1, as demonstrated in Figure 3, we can clearly observe
that when α approached 1, our results approached the exact solution. We also solved this problem by
using the LPOMM, and compared the results with the LWOMM. The numerical computations for u(t)
and v(t) when α = 0.99 are also revealed in Tables 7 and 8.

Table 7. Numerical solutions of u(t) when α = 0.99 for Example 4.

t uLWOMM uLPOMM Absolute Error

0.0 1.000000000 1.000000000 −0.4 × 10−10

0.1 0.8144351529 0.8144351528 −0.21 × 10−10

0.2 0.6639425233 0.6639425233 −0.15 × 10−9

0.3 0.5429947229 0.5429947230 −0.34 × 10−9

0.4 0.4460643636 0.4460643636 −0.42 × 10−9

0.5 0.3676240568 0.3676240568 0
0.6 0.3021464142 0.3021464147 −0.68 × 10−9

0.7 0.2441040487 0.2441040481 −0.24 × 10−9

0.8 0.1879695699 0.1879695690 0.53 × 10−9

0.9 0.1282155920 0.1282155905 0.461 × 10−9

1.0 0.0593147248 0.0593147222 0.144 × 10−8

Table 8. Numerical solutions of v(t) when α = 0.99 for Example 4.

t vLWOMM vLPOMM Absolute Error

0.0 1.000000000 0.9999999999 0.79 × 10−10

0.1 0.9025601837 0.9025601837 0.1498 × 10−9

0.2 0.8152646487 0.8152646488 −0.119 × 10−9

0.3 0.7371116577 0.7371116578 −0.8 × 10−10

0.4 0.6670994737 0.6670994739 −0.11 × 10−9

0.5 0.6042263597 0.6042263600 −0.24 × 10−9

0.6 0.5474905785 0.5474905788 −0.19 × 10−9

0.7 0.4958903932 0.4958903935 −0.26 × 10−9

0.8 0.4484240664 0.4484240670 −0.443 × 10−9

0.9 0.4040898614 0.4040898620 −0.5898 × 10−9

1.0 0.3618860408 0.3618860417 −0.719 × 10−9
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Example 5. We considered the following fractional order Brusselator system [16,17]:

Dαu(t) = −2u(t) + u2(t)v(t)
Dαv(t) = u(t)− u2(t)v(t)

u(0) = 1, v(0) = 1.

The approximate solutions of this system when α = 1 and α = 0.98 were presented by Chang and
Isah using the LWPT [17] and by Bota and Caruntu using the PLSM [16]. These solutions when α = 98
are given by

uLWPT(t) = 1− 1.0791t + 0.2711t2 − 0.0638t3, vLWPT(t) = 1 + 0.0151t + 0.4185t2 − 0.2624t3

uPLSM(t) = 1− 1.08655t + 0.311138t2 + 0.0243682t3, vPLSM(t) = 1 + 0.0349127t + 0.333424t2 − 0.184414t3 .

The parameters M = 2, k = 0, and α = 0.98 were used. A comparison of our results to the
approximate solutions introduced by Bota and Caruntu [16] and Chang and Isah [17] when α = 0.98
is displayed in Figure 4. Finally, we also present the numerical computations for u(t) and v(t) when
α = 0.98 in Tables 9 and 10.

Table 9. Numerical solutions of u(t) when α = 0.98 obtained by the introduced method, the LWPT,
and the PLSM for Example 5.

t uLWOMM uLWPT uPLSM

0.0 1.000000000 1.0000000 1.0000000000
0.1 0.8942024826 0.8947372 0.8944807482
0.2 0.7950696916 0.7945136 0.7953304656
0.3 0.7026016268 0.6989464 0.7026953614
0.4 0.6167982883 0.6076528 0.6167216448
0.5 0.5376596761 0.5202500 0.5375555250
0.6 0.4651857902 0.4363552 0.4653432112
0.7 0.3993766306 0.3555856 0.4002309126
0.8 0.3402321973 0.2775584 0.3423648384
0.9 0.2877524902 0.2018908 0.2918911978
1.0 0.2419375095 0.1282000 0.2489562000
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Table 10. Numerical solutions of v(t) when α = 0.98 obtained by the introduced method, the LWPT,
and the PLSM for Example 5.

t vLWOMM vLWPT vPLSM

0.0 1.000000000 1.0000000 1.000000000
0.1 1.008069307 1.0054326 1.006641096
0.2 1.019479961 1.0176608 1.018844188
0.3 1.034231959 1.0351102 1.035502792
0.4 1.052325304 1.0562064 1.055510424
0.5 1.073759995 1.0793750 1.077760600
0.6 1.098536032 1.1030416 1.101146836
0.7 1.126653415 1.1256318 1.124562648
0.8 1.158112143 1.1455712 1.146901552
0.9 1.192912217 1.1612854 1.167057064
1.0 1.231053638 1.1712000 1.183922700
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6. Conclusions

In this paper, a system of fractional_order differential equations was examined by drawing
from a new operational matrix of the fractional derivative in some special conditions. We also
systematized a very operational algorithm in order to attain the solution of the linear and nonlinear
systems of fractional differential equations in Maple. All numerical results and graphical presentations
generated by Maple affirmed that the Legendre wavelet operational matrix method is very effective
and applicable. As the next step, the method introduced in this paper can be applied to fractional
partial differential equations and the system of such equations, fractional integral equations and the
system of such equations, and fractional integro-differential equations. These equations are at least
as important as fractional differential equations and they are very significant in science, engineering,
and technology.
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