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Abstract: In the present paper we study the generalized Hyers—Ulam stability of the generalized
trigonometric functional equations

flxy) +u(y)f(xo(y)) = 2f(x)g(y) +2h(y), x,y €S;

flxy) + u(y)f(xo(y)) = 2f(y)g(x) +2h(x), x,y €S,

where S is a semigroup, 0: S — Sis a involutive morphism, and y: S — C is a multiplicative
function such that p(xo(x)) = 1 for all x € S. As an application, we establish the generalized
Hyers—Ulam stability theorem on amenable monoids and when ¢ is an involutive automorphism
of S.
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1. Introduction

Let us consider S to be a semigroup (namely a set with an associative composition), y: S — C to
be a multiplicative function, and ¢: S — S to be an involutive morphism. That is, ¢ is an involutive
automorphism:

o(xy) =0(x)o(y) and o(o(x)) =x forallx,y € S

or ¢ is an involutive anti-automorphism:
o(xy) =o(y)o(x) and o(o(x)) =x forallx,y € S.

From the functional equation

flxy) +u(y)f(xo(y)) = 2f(x)g(y) +2h(y), x,y €S (1)

we can obtain several other functional equations as a special case. For example, we can deduce:
The Cauchy equation

flxy)=f(x)+f(y), x,y €S )

(¢ =1, =1,0 = I), where I denotes the identity map.
The quadratic functional equation

flxy) + f(xo(y)) = 2f(x) +2f(y), x,y €S 3)
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(g§=Lu=1f=h.

Wilson’s functional equation

flay) +pu(y)f(xo(y) = 2f(x)g(y), xy €5 (4)
(h=0).
D’Alembert’s functional equation
fay) +u(y)f(xo(y)) = 2f()f(y), x,y €S ®)
(g=f,h=0).
D’Alembert’s functional Equation (5) with ¢ = 1 is also known as the cosine functional

equation and has been studied extensively for a long period of time tracing back to d’Alembert [1].
This functional equation plays a crucial role in determining the sum of two vectors in various Euclidean
and non-Euclidean geometries. The continuous solutions f: R — C of d’Alembert’s functional
Equation (5) with y = 1 are known: A part from the trivial solution f = 0, the solutions of (5) are

fa(x) = cos(Ax), x € R

where the parameter A ranges over C (see for example [2]).

Several authors have succeeded to determine the general solution f : S — C of d”Alembert’s
functional Equation (5) in the abelian as well as non abelian case. Probably the very first result obtained
for a non abelian group was presented by Kannappan [3]. Under the condition that f is abelian:
f(zxy) = f(zyx) for all x,y,z € S, the solutions of the Equation (5) with y = 1 are of the form

flx) 1) F7(0()

5 , wherey : S — C

is multiplicative.

In recent years, the theory of d’Alembert’s functional Equation (5) with 4 = 1 has witnessed
important development. For example, for the case of non abelian groups, as shown in works by Y.
Dilian about compact groups [4-6], Stetkeer [7] for step 2-nilpotent groups, Friis [8] for results on Lie
groups and Davison [9,10] for general groups, even monoids.

In [11], Stetkeer obtained the complex valued solutions of d”Alembert’s functional Equation (5)
for the case when p is a character of the group 5. The non-zero solutions of the Equation (5) are the
normalized traces of certain representations of the group S on C?

Furthermore, in [12] Ebanks and Stetkeer presented some new results on groups regarding the
solutions of Wilson’s functional Equation (4) with u = 1. We shall now also refer to Wilson’s first
generalization of d’Alembert’s functional equation:

fx+y)+f(x—y) =2f(x)g(y), x,y €R.

The formulas constituting the solutions of this equation for the case of abelian groups are known,
cf. Aczél [2], Sections 3.2.1 and 3.2.2.

In recent work, Stetkeer ([13,14]) studied the solutions of Wilson’s functional Equation (4) and in
particular he proved that if f, g are solutions of (4) with f # 0 then g satisfies d’Alembert’s functional
Equation (5) [15]. Determining the solution formulas of f is still an open problem.

In 1940, Ulam posed the stability problem for group homomorphisms [16]. The first affirmative
answer to Ulam’s question was presented in 1941 by Hyers [17] on Banach spaces. In 1978 Rassias [18]
generalized Hyers’ theorem for linear mappings by considering an unbounded Cauchy difference for
sum of powers of norms. Rassias’ theorem has been generalized by Gavruta [19] who allowed the
Cauchy difference to be bounded by a general control function. Since that period, the corresponding
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area has become a very vibrant domain of research and stability problems for several functional
equations have been extensively investigated by a number of authors (cf. [20-39]).

The stability (superstability) of d’Alembert’s functional equation was first obtained by Baker [40].
Another generalization of Baker’s result was presented by Székelyhidi [41]. This involves an
interesting generalization of the class of bounded functions on a group or semigroup. For a series of
interesting stability and superstability results, one is also reffered to the following works [20,21,42-54]
Bouikhalene and Elqorachi [55] for general groups.

The generalized Hyers-Ulam stability of the functional equations (1) and

flxy) +u(y)f(xo(y)) = 2f(y)g(x) +2h(x), x,y €S (6)

with y = 1 was studied by Badora [42] and Akkouchi [56].

A variety of stability results regarding trigonometric functional equations and their generalizations
are obtained (cf. [27,57]).

The main purpose of the present paper is to study the stability of the functional Equations (1)
and (6). In the sequel, we obtain some properties of the stability of Equation (1) as well as Equation (6).
As an application we prove the generalized Hyers-Ulam stability of Equations (1) and (6) on amenable
monoids S and when ¢ is an involutive automorphism of S.

2. Generalized Hyers—Ulam Stability of Equation (1) on Non-Abelian Semigroups

In the present section, we obtain properties of the stability of Equation (1).

Theorem 1. Let 0: S — S be an involutive morphism of the semigroup S. Let u: S — C be a multiplicative
function such that u(xo(x)) = 1 for all x € S. Suppose that the functions f,g,h: S — C satisfy the
functional inequality

If(xy) +u(y) f(xo(y)) — 2f (x)g(y) — 2h(y)| < ¢(y) @)

forall x,y € S and for some function ¢: S — RT. Under these assumptions the following statements hold:
(1) If 0 is an involutive anti-automorphism and f is unbounded, then g is a solution of the long d’Alembert
functional equation

g(xy) +g(yx) + u(y)g(xa(y)) + u(y)g(o(y)x) = 4g(x)g(v) ®8)

forallx,y € S.
(2) If o is an involutive automorphism and f is unbounded, then g is a solution of the short d’Alembert functional
Equation (5).

Proof. (1) Let f, g, h satisfy Inequality (7) with ¢ an involutive anti-automorphism. Then for all
x,Y,z € S we have

12f(z)[g(xy) + u(y)g(xa(y)) + g(yx) + u(y)g(o(y)x) — 4g(x)g(y)l|

+u(y)2f(z)g(c(y)x) — 8f(z)g(x)g ()|
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+ [ (x) (f(zo(x)y) + u(y) f(zo(x)o(y)) — 2f(zo(x))g(y) — 2h(y))|
+ | f(zyx) + p(x) f (zyo (x) — 2f(zy)g(x) — 2h(x)|
+ W) f (zo(y)x) + p(x) f(zo(y)o(x)) — 2f (zo(y))g(x) — 2h(x)]|
+ 128 (y) [f (zx) + p(x) f(z0(x)) — 2f(2)g(x) — 2h(x)]
+128(x) [f (zy) + pu(x) f(z0(y)) — 2 (2)8(y) — 2h(y)|
+ 48 (x)h(y) + 48 (y)h(x) + 2u(y)h(x) — 2h(xy) — 2u(y)h(xo(y))

= 2h(yx) — 2u(y)h(o(y)x) + 2h(y) + 2h(x) + 2u(x)h(y)|
< ¢(xy) + (W) ¢(xo(y)) + ¢yx) + [u(y)lp(o(y)x) + ¢(y)
() |¢(y) + ¢(x) + [u(y)|¢(x) +2[g(y)|P(x) +2|g(x)[P(y)
+ [4g(x)h(y) +48(y)h(x) + 2u(y)h(x) — 2h(xy) — 2u(y)h(xo(y))
—2h(yx) — 2u(y)h(o(y)x) + 2h(y) + 2h(x) + 2p(x)h(y)|.

Since f is assumed to be unbounded, then g satisfies the functional Equation (8).
(2) If 0 is an involutive automorphism, then, by using Inequality (7), j(xo(x)) = 1 and the triangle
inequality, we obtain

)
¢(

2f(2)[8(xy) + py)g(xa(y)) — 28(x)8(w)]|
< 2f(2)8(xy) — f(zxy) — pxy) f(zo (x)o(y)) + 2h(xy)]
+ W) 2f(2)8(xa(y)) — f(zx0(y)) — u(xa(y)) f(z0(x)y) + 2h(xa(y))]]

(
+|f(zxy) + u(y) f(zxo(y)) — 2f (zx)g(y) — 2h(y)

) f (zo(x)y) + p(y) f(z0(x)o(y)) = 2f (20 (x))g(y) = 2h(y)]]
28(W)[f (zx) + p(x) f(z0(x)) = 2f(2)g(x) — 2h(x)
—2h(xy) = 2u(y)h

]

(xa(y)) +2h(y) +2u(x)h(y) +4g(y)h(x)|
< ¢o(xy) + [u(y)lp(xa(y)) + ¢ (y) + [u(x)[p(y )+2lg(y)|¢>( )
+ 2h(y) + 2pu(x)h(y) + 4g(y)h(x) — 2h(xy) — Jh(xo(y))|-

The mapping f is assumed to be unbounded, so g is a solution of the short d’Alembert functional
Equation (5). This completes the proof. [

=

Theorem 2. Let 0: S — S be an involutive automorphism of the amenable semigroup S. Let u: S — C be
a multiplicative function such that y(xo(x)) =1 forall x € S. Suppose that the functions f,g,h: S — C
satisfy the functional inequality

[f(xy) + u(y)f(xo(y)) — 2f(x)g(y) — 2h(y)| < ¢(y) ©)

forall x,y € S and for some function ¢: S — R*. Under the additionally assumption that f is unbounded,
there is a mapping H : S — C such that

H(xy) +u(y)H(xo(y)) = 2H(x)g(y) + (1 + p(x))H(y) (10)

and ,
[h(x) = H(x)| = 5¢(x) (11)

forall x,y € S.
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Proof. For each y fixed in S, the function

x — fxy) +u(y)f(xo(y)) — f(x)g(y)

is bounded. Since S is an amenable semigroup, then, from [58], there is an invariant mean on
B(S, C)—the space of the complex-valued bounded functions on S, which we denote by m. We can
now define the following mapping H : S — C by

fx + .u(x)fa(x)

H(x) = (=

—8(x)fl, x€S,

where f.(y) = f(yx), x,y € S.Forall x,y € S, we have

Hxy) + p(y) (o) = m £ EEIA000 g

+ u(y)m[fm(” * ﬂ(za(y))f[’(x)y — glxo(y))f).

From Theorem 2 (2), g is a solution of the short d’Alembert functional Equation (5), so we obtain

H(xy) + p(y)Hxo(y)) = m22 T V(xg)f o)y KW xoty -t W ag()gy)
RO o) (S D et
g [P et o
S Y IR LA LTIy
s agym P o

= H(y) +u(x)H(y) +28(y)H(x) = (1 + pu(x))H(y) +28(y)H(x).

Now, by using the definition of H, Inequality (9) and the definition of m, we obtain
1
Ih(y) = H(y)| = 5lmlfy +1(y)fe(y) = 28(y)f] = 2h(y)]

< gsupses|f(xy) + k(1) f (2o (y)) ~ 23(0)f(y) ~ 2hy)] < 29(9)

for ally € S. This completes the proof. [

Theorem 3. Let M be a monoid (a semigroup with identity element e). Let o: M — S be an involutive
automorphism of the amenable monoid M. Let y: S — C be a multiplicative function such that y(xo(x)) =1
forall x € M. Suppose that the functions f,g,h: S — C satisfy the functional inequality

|f (xy) +u(y) f(xa(y)) —2f(x)g(y) — 2h(y)| < ¢(y) (12)

forall x,y € M and for some function ¢: S — RT. Under the additionally assumption that f is unbounded,
there are mappings F, H : M — C such that

H(xy) +u(y)H(xo(y)) = 2H(x)g(y) + (1 + p(x))H(y) (13)
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F(xy) +u(y)F(xo(y)) = 2F(x)g(y) + (1 + pu(x))H(y) (14)
g(xy) +u(y)g(xa(y)) = 2g(x)g(v) (15)
()~ H(x)| < 2 6
and
|f(x) + u(x)f(o(x)) — 2F(x)| < 2¢(x) (17)

forall x,y € M.

Proof. From Theorem 2, there is an H: M — C such that

H(xy) + p(y)H(xe (y)) = 2H(x)g(y) + (1 + u(x)) H(y)
and
() — H() < 2
for all x,y € M. By replacing x by e in Inequality (12), we obtain
f () +u()f(o(y)) =2f(e)g(y) = 2h(y)| < ¢(y)

forally € M. If weset F = f(e)g + H, we obtain
[f(x) + p(x)f(e(x)) = 2F(x)| < [f(x) + u(x) f(o(x)) = 2f(e)g(x) = 2h(x)[ + [2h(x) — 2H(x)]

< ¢(x) +¢(x) = 2¢(x)

for all x € M.
On the other hand, we have

F(xy) +u(y)F(xo(y)) = colg(xy) + u(y)g(xa(y))] + [H(xy) + u(y)H(xo(y))

= 2f(e)g(x)g(y) +2H(x)g(y) + (1 +p(x))H(y) = 2(F(x)g(y) + (1 + u(x)H(y)
for all x,y € M. This completes the proof. O

3. Generalized Hyers—Ulam Stability of Equation (6) on Non-Abelian Semigroups

In this section, we obtain the stability of Equation (6) on an amenable monoid.

Theorem 4. Let 0: S — S be an involutive automorphism of the semigroup S. Let p: S — C be a bounded
multiplicative function such that y(xo(x)) = 1 for all x € S. Suppose that the functions f,g,h: S — C
satisfy the functional inequality

If(xy) + u(y) f(xa(y)) — 2f(y)g(x) — 2h(x)| < ¢(x) (18)

forall x,y € S and for some function ¢: S — RT. Under the additionally assumption that f is unbounded,
g is a solution of the short d’Alembert functional Equation (5).

Proof. By using Inequality (18), u(xo(x)) = 1, and ¢ an involutive automorphism, we obtain

2f(2)[8(xy) + p(y)g(xo(y)) — 28(x)8 ()]l

< [2f(z)g(xy) — f(xyz) — u(z) f(xyo(z)) + 2h(xy)]
+ (W) [2f(z)g(xa(y)) — f(xo(y)z) — u(z) f(xa(y)o(z)) + 2h(xco(y))]|
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+|f(xyz) + u(yz) f(xo(yz)) — 2f (yz)g(x) — 2h(x)
+u(2)[f (xyo(2)) + ulyo(z) f(xo(y)z) — 2f (yo(z))g(x) — 2h(x)]
+[28(x) [f (vz) + p(2) f (yo(2)) — 2f(2)8(y) — 2h(y)]
= 2u(y)h(xc(y)) + 2h(x) + 2p(2)h(x) + 4g(x)h(y) — 2h(xy)|
< ¢(xy) + ¢(x) + [u(2)|[p(x) + [u(y)[P(xo(y)) + 2|8 (x)|P(y)
+ | = 2h(xy) — 2u(y)h(xo(y)) + 2h(x) + 2u(z)h(x) + 4g(x)h(y)|

forall x,y,z € S. The mapping f is assumed to be unbounded and y is bounded, so g is a solution of
the short d’Alembert functional Equation (5). This completes the proof. O

(z
(z

Theorem 5. Let 0: S — S be an involutive automorphism of the amenable semigroup S. Let u: S — C
be a bounded multiplicative function such that u(xo(x)) = 1 for all x € S. Suppose that the functions
f,8,h + S — C satisfy the functional inequality

[f(xy) + u(y)f(xo(y)) — 2f(x)g(y) — 2h(y)| < ¢(y) (19)

forall x,y € S and for some function ¢: S — R*. Under the additionally assumption that f is unbounded,
there is a mapping H : S — C such that

H(xy) + p(y)H(xe (y)) = 2H(y)g(x) +2H(x) (20)
and .
[h(x) = H(x)| = 5¢(x) (21)
forall x,y € S.
Proof. For a mapping I: S — C, we define the new functions ! and I* by ,I(y) = I(xy) and

IM(x) = p(x)l(o(x)) forall x,y € S.
From Inequality (19) for each fixed x in S, the function

ST fe(a)

is bounded. Since, S is amenable semigroup, then there is an invariant mean m on B(S, C). By replacing
m by M with M(I) = m(I"), we can choose m such that m(I*) = m(I) foralll € B(S,C).
The following mapping

A = g, xes

is well defined on S.
On the other hand, we obtain

#W) o N (2) = pW) () o) f(0(2)

= u(y)u(z)f(xa(y)o(z)) = ulyz)f(xo(yz)) = u(yz)«f(o(yz))
= () yz) = (y(:)F)(2),

which implies that

‘Z/l(]/) (xa(y)f)ﬂ —y (Xfyl
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forall x,y € S.
() (z) = p(2)xyf(0(2)) = u(2) f(xyo(2)) = u(z)y (xf) (@ (2)) -
Therefore, we have (xyf)* = (y(xf))" forall x,y € S.
1Y) G M (2) = p)u(2) f(xo(y)o(2))

= p2)f(xo(yz)) = u(yz)«f(o(yz)) = (f)¥(2).

Therefore, we have y(y) (o) f)" =y (xf)* forall x,y € S.
By using the definition of H, we obtain

H(xy) + () Hexo(y) = m2L 0oy

M
sulym2f eI,

From Theorem 4, g is a solution of the short d’Alembert functional Equation (5). Since m is
additive, by using the above relations, we obtain

Hxy) + () H(xo(y) = m2 0 oe0)p
= Oy et GOy
(MWt EOGIE gy gD gy
BN NI ) e LA
s 2gem LI gy

Since m is invariant and m(I*) = m(1) for all bounded functions ! on S, then we obtain
H(xy) + pu(y)H(xo(y)) = 2H(y)g(x) + 2H(x)

forall x,y € S.
Finally, from Inequality (19) and the definition of H, we have

[h(y) — H(y)| = %IM[nyr (v =28 (y)f] - 2h(y)|

< Jsupses|fyx) + p(0)f (o (x)) 28 F(x) ~ 2h(y)] < 29(9)

for ally € S. This completes the proof. [

Theorem 6. Let M be a monoid. Let o: M — S be an involutive automorphism of the amenable monoid M.
Let y: S — C be a bounded multiplicative function such that u(xo(x)) = 1 for all x € M. Suppose that the
functions f,g,h: S — C satisfy the functional inequality

[f(xy) + u(y)f(xo(y)) — 2 (y)g(x) — 2h(x)[ < ¢(x) (22)
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forall x,y € M and for some function ¢: S — RT. Under the additional assumption that f is unbounded,
there are mappings F, H : M — C such that

H(xy) + p(y)H(xo(y)) = 2H(y)g(x) + 2H(x) (23)
F(xy) +p(y)F(xo(y)) = 2F(y)g(x) +2H(x) (24)
8(xy) + u(y)g(xo(y)) = 28(x)8(y) (25)
h(x) — H(o)| < 2 20
and
[f(x) = F(x)| < ¢(x) (27)

forall x,y € M.

Proof. From Theorem 4, there is a mapping H: M — C such that

H(xy) + pu(y)H(xo(y)) = 2H(y)g(x) +2H(x)
and

n(x) ~ Hx)| < 2

for all x,y € M. By setting y = e in Inequality (22), we obtain

2 (x) = 2f(e)g(x) — 2h(x)| < ¢p(x).

Let F = f(e)g+ H. For all x € M, we have

On the other hand, we have
F(xy) +u(y)F(xo(y)) = f(e)olg(xy) + u(y)g(xo(y))] + [H(xy) + u(y)H(xo(y))

= 2f(e)g(x)g(y) +2H(y)g(x) +2H(x) = 2F(y)g(x) +2H(x)
for all x,y € M. This completes the proof. [
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