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Abstract: Starting from the definition of fractional M/M/1 queue given in the reference by
Cahoy et al. in 2015 and M/M/1 queue with catastrophes given in the reference by Di Crescenzo et al.
in 2003, we define and study a fractional M/M/1 queue with catastrophes. In particular, we focus our
attention on the transient behaviour, in which the time-change plays a key role. We first specify the
conditions for the global uniqueness of solutions of the corresponding linear fractional differential
problem. Then, we provide an alternative expression for the transient distribution of the fractional
M/M/1 model, the state probabilities for the fractional queue with catastrophes, the distributions of
the busy period for fractional queues without and with catastrophes and, finally, the distribution of
the time of the first occurrence of a catastrophe.

Keywords: fractional differential-difference equations; fractional queues; fractional birth-death
processes; busy period
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1. Introduction

Stochastic models for queueing systems have a wide range of applications in computer systems,
sales points, telephone or telematic systems and also in several areas of science including biology,
medicine and many others. The well known M/M/1 queueing model [1–5] constitutes the theoretical
basis for building many other refined models for service systems.

Due to the Markov nature of its inter-arrival times of the customers and of its service times,
the model can be mathematically treated in a simple manner, and, for this reason, it is widely used in
many modeling contexts. Nevertheless, in the past few decades, the advent of fractional operators,
such as fractional derivatives and integrals (see, for instance, [6] and [7] and references therein), has
made it clear that different time scales, themselves random, that preserve memory (therefore not
Markovian), allow the construction of more realistic stochastic models.

The introduction of the fractional Caputo derivative into the system of differential-difference
equations for an M/M/1-type queue was done in [8], where, for a fractional M/M/1 queue, the state
probabilities were determined. In this kind of queue model, the inter-arrival times and service times
are characterized by Mittag–Leffler distributions [9]; in this case, the model does not have the property
of memory loss that is typical of the exponential distributed times of the classical M/M/1 model.
Indeed, a time-changed birth-death process [10,11], by means of an inverse stable subordinator [12],
solves the corresponding fractional system of differential-difference equations and fractional Poisson
processes [13] characterize the inter-arrival and service times.
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The fractional M/M/1 model in [8] is an interesting and powerful model, not only because it is
a generalization of the classical one, where the fractional order is set to 1, but also because its range of
applications is extremely wide. Its importance can be further augmented by including in the model
the occurrence of catastrophes, as it was considered in [14] for the classical M/M/1.

The catastrophe is a particular event that occurs in a random time leading to the instantaneous
emptying of the system, or to a momentary inactivation of the system, as, for example, the action
of a virus program that can make a computer system inactive [15]; other applications of models
with catastrophes can be found in population dynamics and reliability contexts (see [16] and
references therein).

Motivated by the mathematical need to enrich the fractional M/M/1 model of [8] with the
inclusion of catastrophes, we study in this paper the above model; specifically, we determine the
transient distribution, the distribution of the busy period (including that of the fractional M/M/1
queue of [8]) and the probability distribution of the time of the first occurrence of the catastrophe.

For these purposes, we need to guarantee the global uniqueness of the solution of the considered
linear fractional Cauchy problem on Banach spaces. After recalling the definitions and known results in
Section 2, we address the problem of uniqueness in Section 3. In Section 2, we also provide the transient
distribution of the fractional M/M/1 model in an alternative form to that given in [8]. In Section 4,
the distribution of the busy period for the fractional M/M/1 queue (without catastrophes) is obtained.
Here, the time-changed birth-death process plays a key role to derive the results. In Section 5, we define
the fractional queue with catastrophes; we are able to obtain the distribution of the transient state
probabilities by following a strategy similar to that in [14]. We also found the distribution of the
busy period and of the time of the first occurrence of the catastrophe starting from the empty system.
Some special operators and functions used in this paper are specified in the Appendices A and B.

2. Definition of a Fractional Process Related to M/M/1 Queues

The classical M/M/1 queue process N(t), t ≥ 0 can be described as continuous time Markov
chain whose state space is the set {0, 1, 2, . . . } and the state probabilities

pn(t) = P(N(t) = n|N(0) = 0), n = 0, 1, 2 . . . (1)

satisfy the following differential-difference equations:
Dt pn(t) = −(α + β)pn(t) + αpn−1(t) + βpn+1(t), n ≥ 1,

Dt p0(t) = −αp0(t) + βp1(t),

pn(0) = δn,0, n ≥ 0,

(2)

where δn,0 is the Kroeneker delta symbol, Dt = d
dt and α, β > 0 are the entrance and service

rates, respectively.

Let Sν(t), t ≥ 0, ν ∈ (0, 1) be the Lévy ν-stable subordinator with Laplace exponent given by:

logE e−zSν(t) = −tzν, z > 0.

Consider the inverse ν-stable subordinator

Lν(t) = inf{u ≥ 0 : Sν(u) > t}, t ≥ 0.

For 0 < ν < 1, the fractional M/M/1 queue process Nν(t), t ≥ 0 is defined by a non-Markovian
time change Lν(t) independent of N(t), t ≥ 0, i.e.,

Nν(t) = N(Lν(t)), t ≥ 0. (3)
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This process was defined in [8] and it is non-Markovian with non-stationary and non-independent
increments. For ν = 1, by definition, N1(t) = N(t), t ≥ 0. Then, for a fixed ν ∈ (0, 1], the state probabilities

pν
n(t) = P{Nν(t) = n|Nν(0) = 0}, n = 0, 1, . . . (4)

of the number of customers in the system at time t in the fractional M/M/1 queue are characterized by
arrivals and services determined by fractional Poisson processes of order ν ∈ (0, 1] [13] with parameters
α and β. They are solutions of the following system of differential-difference equations

C
0 Dν

t pν
n(t) = −(α + β)pν

n(t) + αpν
n−1(t) + βpν

n+1(t), n ≥ 1,
C
0 Dν

t pν
0(t) = −αpν

0(t) + βpν
1(t),

pν
n(0) = δn,0, n ≥ 0,

(5)

where C
0 Dν

t is the Caputo fractional derivative (see Appendix A).

Using Equation (5) and representation (3), the state probabilities are obtained in [8]:

pν
n(t) =

(
1− α

β

)(
α

β

)n

+

(
α

β

)n +∞

∑
k=0

n+k

∑
m=0

k−m
k + m

(
k + m

k

)
αk

× βm−1tν(k+m)−νEk+m
ν,ν(k+m)−ν+1(−(α + β)tν),

(6)

as well as its Laplace transform

πν
n(z) =

∫ +∞

0
e−ztpν

n(t)dt =
(

1− α

β

)(
α

β

)n 1
z
+

+

(
α

β

)n +∞

∑
k=0

n+k

∑
m=0

k−m
k + m

(
k + m

k

)
αk

× βm−1 zν−1

(zν + α + β)k+m , z > 0.

In Equation (6), the functions Eρ
ν,µ are generalized Mittag–Leffler functions (see Appendix B).

Note that pν
n(t) ≥ 0 ∀n ≥ 0 and ∑+∞

n=0 pν
n(t) = 1.

Alternatively, let hν(t, x) =
d

dx
P{Lν(t) ≤ x}, x ≥ 0, be the density of Lν(t); then it is known

(see, i.e., [17]) that ∫ +∞

0
e−sxhν(t, x)dx = Eν(−stν), s ≥ 0, (7)

and (see, i.e., [18], Proposition 4.1)

hν(t, x) =
1
π

∫ +∞

0
uν−1e−tu−xuν cos(νπ) sin (πν− xuν sin(πν))) du, x ≥ 0. (8)
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Using (7) and an analytical expression for pν
n(t) given in [19], we can write down an alternative

expression for (6) as

pν
n(t) =

(
p
q

)n ∞

∑
r=n

(α + β)r

r!
trνE(r)

ν (−(α + β)tν)

×
[ r−n

2 ]

∑
r=0

r + 1− 2k
r + 1

(
r + 1

k

)
pkqr−k,

(9)

where p =
α

α + β
, q =

β

α + β
, and E(r)

ν (−(α+ β)tν) is the r−th derivative of the function Eν(z) evaluated

at z = −(α + β)tν.
Actually, it is easy to see from (7) that

∫ +∞

0
e−sxxrhν(t, x)dx = E(r)

ν (−stν)tνr;

thus, using [19] and (3), we have

pν
n(t) =

∫ +∞

0
pn(s)hν(t, s)ds

=

(
p
q

)n ∞

∑
r=n

(α + β)r

r!

∫ +∞

0
e−(α+β)ssνhν(t, s)ds

×
[ r−n

2 ]

∑
r=0

r + 1− 2k
r + 1

(
r + 1

k

)
pkqr−k,

and formula (9) follows. On the other hand, using (8), we have

pν
n(t) =

∫ +∞

0
pn(s)hν(t, s)ds

=

(
p
q

)n ∞

∑
r=n

(α + β)r

r!

∫ +∞

0
uν−1e−tuFν,r(u)du

×
[ r−n

2 ]

∑
r=0

r + 1− 2k
r + 1

(
r + 1

k

)
pkqr−k,

where

Fν,r(u) =
1
π

∫ +∞

0
exp{−(α + β)x− xuν cos(νπ)} xr sin (πν− xuν sin(πν)) dx.

3. Linear Fractional Cauchy Problems on Banach Spaces

In order to describe the transient probabilities for our queues, we will need some uniqueness
results for solutions of linear fractional Cauchy problems defined on Banach spaces. To do that, let us
recall the following Theorem (Theorem 3.19 from [20]):

Theorem 1. Let (X, | · |) be a Banach space and J = [0, T] for some T > 0. Consider the ball BR = {x ∈ X :
|x| ≤ R}. Let ν ∈ (0, 1) and f : J× BR → X and consider the following Cauchy problem:{

C
0 Dν

t x(t) = f (t, x(t)),

x(0) = x0,
(10)

where C
0 Dν

t is the Caputo derivative operator (see Appendix A).
Suppose that:
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• f ∈ C(J× BR, X);
• There exists a constant M(R) > 0 such that

| f (t, x(t))| ≤ M(R)

for all x ∈ BR and t ∈ J and such that

R ≥ |x0|+
M(R)Tν

Γ(ν + 1)
;

• There exists a constant L > 0 such that L ≥ 2M(R)
Γ(ν+1) ;

• There exists a constant L0 > 0 such that

| f (t, x1)− f (t, x2)| ≤ L0|x1− x2|

for all x1, x2 ∈ BR and t ∈ J;
• There exist constants ν1 ∈ (0, ν) and τ > 0 such that

LA =
L0

Γ(ν)
T(1+β)(1−ν1)

(1+ β)1−ν1

(ν1

τ

)ν1
< 1,

where β = ν−1
1−ν1

.

Then, if x0 ∈ BR, the problem (10) admits a unique solution x∗ ∈ Cν(J, BR).

The previous theorem can be easily adapted to the case in which J = [t0, T + t0] and the starting
point of the derivative is t0. Since we are interested in linear (eventually non-homogeneous) equations,
let us show how the previous theorem can be adapted in such a case.

Corollary 1. Consider the system (10) and suppose f (t, x) = Ax + ξ where A : X → X is a linear and
continuous operator and ξ ∈ X. Then, there exists a R > |x0| and T > 0 such that the system admits a unique
solution x∗ ∈ Cν(J, BR).

Proof. Observe that, if |x| ≤ R, then

| f (x)| ≤ ‖A‖|x|+ |ξ| ≤ ‖A‖R + |ξ|.

Let us choose T such that the conditions of Theorem 1 are verified. To do that, consider M(R) =
‖A‖R + |ξ|. Fix R ≥ |x0| and define R̃ = R + ε for some ε > 0. Define then

T =

[
εΓ(ν + 1)

M(R̃)

] 1
ν

and observe that

|x0|+
M(R̃)Tν

Γ(ν + 1)
= |x0|+ ε ≤ R + ε = R̃.

Thus, one can fix L = 2M(R̃)
Γ(ν+1) and L0 = ‖A‖. Moreover, since for fixed ν1 ∈ (0, ν) the function

τ 7→ LA(τ) is decreasing and limτ→0 LA(τ) = 0, then one can easily find a τ > 0 such that LA(τ) < 1.
Since we are under the hypotheses of Theorem 1, then we have shown the local existence and
uniqueness of a solution x∗ ∈ Cν(J, BR̃).

However, using such corollary, we can only afford local uniqueness. Global uniqueness of the
solution of the Cauchy problem (10) can be obtained with the additional hypothesis that such solution
is uniformly bounded:
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Corollary 2. Suppose we are under the hypotheses of Corollary 1. If there exists a solution x∗ ∈ C([0,+∞[, X)

and a constant k > 0 such that for any t ≥ 0 we have |x∗(t)| ≤ k, then such solution is unique.

Proof. Observe that |x0| ≤ k and then fix R̃ = k + ε. Define

∆T =

[
εΓ(ν + 1)

M(R̃)

] 1
ν

.

Fix T1 = ∆T and observe that, by using Corollary 1, there exists a unique solution in [0, T1].
Since x∗ is a solution of such problem, we have that x∗ is unique. Suppose we have defined Tn−1 such
that x∗ is the unique solution of system (10) in [0, Tn−1]. Consider the problem{

C
Tn−1

Dν
t x(t) = f (x(t)),

x(Tn−1) = x∗(Tn−1).
(11)

Define then Tn = Tn−1 + ∆T and observe that, since |x∗(Tn−1)| ≤ k, by using Corollary 1,
there exists a unique solution in [Tn−1, Tn].

By using a change of variables, it is easy to show that

C
Tn−1

Dν
t x = C

0 Dν
t−Tn−1

x̃,

where x̃ : t 7→ x(t + Tn−1). By using such relation, we have that system (11) is equivalent to{
C
0 Dν

t x̃(t) = f (x̃(t)),

x̃(0) = x∗(Tn−1),

whose unique solution is x̃(t) = x∗(t + Tn−1) so that x(t) = x∗(t) and x∗(t) is the unique solution of
system (10) in [0, Tn]. Since Tn → +∞ as n→ +∞, we have global uniqueness of limited solutions.

4. The Fractional M/M/1 Queue

Let us consider again the fractional M/M/1 process Nν(t), t ≥ 0 defined by (3) with state
probabilites in (6).

Consider the Hilbert space (l2(R), | · |2) with the norm |x|22 = ∑+∞
k=0 x2

k and let Cν([0, T], l2(R)) be
the space of the ν-Hölder continuous functions from [0, T] to l2(R). One can rewrite the system (5) in
l2(R) as follows: {

C
0 Dν

t pν(t) = A0 pν(t),

pν(0) = (δn,0)n≥0,
(12)

where pν(t) = (pν
n(t))n≥0 ∈ C([0, T], l2(R)) and

A0 =


−α β 0 0 0 · · ·
α −(α + β) β 0 0 · · ·
0 α −(α + β) β 0 · · ·
0 0 α −(α + β) β · · ·
...

...
...

. . . . . . . . .


is an infinite tridiagonal matrix with A0 = (ai,j)i,j≥0. Let us show the following:

Lemma 1. The linear operator A0 is continuous and ‖A0‖ ≤ 2(α + β).
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Proof. To show that A0 is continuous, let us use Schur’s test (Theorem 5.2 in [21]). Observe that

+∞

∑
k=0
|ak,0| = 2α,

+∞

∑
k=0
|ak,j| = 2(α + β) for j 6= 0

so that, in general,
+∞

∑
k=0
|ak,j| ≤ 2(α + β).

Moreover,

+∞

∑
k=0
|a0,k| = α + β,

+∞

∑
k=0
|aj,k| = 2(α + β) for j 6= 0,

so that, in general,
+∞

∑
k=0
|aj,k| ≤ 2(α + β).

By Schur’s test, we have that A0 is a bounded operator on l2 and

‖A0‖ ≤ 2(α + β).

Thus, by Corollary 1, we obtain local existence and uniqueness of the solution of system (5).
Global uniqueness can be obtained a posteriori, since the solutions of such system are known.

Let us also observe that the distributions of the inter-arrival times are Mittag–Leffler distributions.
To do that, consider the system, for fixed n ≥ 0

C
0 Dν

t bν
n(t) = −αbν

n(t),
C
0 Dν

t bν
n+1(t) = αbν

n(t),

bν
n(0) = 1,

bν
n+1(0) = 0,

which are the state probabilities of a queue with null death rate, fixed birth rate, starting with n
customers and with an absorbent state n + 1. Under such assumptions, bν

n+1(t) is the probability that
a customer arrives before t. Moreover, the normalizing condition becomes

bν
n(t) + bν

n+1(t) = 1.

One can solve the first equation (see Appendix A) to obtain

bν
n(t) = Eν(−αtν),

where Eν is the one-parameter Mittag–Leffler function (see Appendix B), and then, by using the
normalizing condition, we have

bν
n+1(t) = 1− Eν(−αtν).
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In a similar way, let us show that the distributions of the service times are Mittag–Leffler
distributions. To show that, consider the system, for fixed n ≥ 0,

C
0 Dν

t dν
n(t) = βdν

n+1(t),
C
0 Dν

t dν
n+1(t) = −βdν

n+1(t),

dν
n(t) = 0,

dν
n+1(t) = 1,

which are the state probabilities of a queue with null birth rate, fixed death rate, starting with n + 1
customers with an absorbent state n. Under such assumption, dν

n(t) is the probability that a customer
is served before t. Moreover, the normalizing condition becomes

dν
n(t) + dν

n+1(t) = 1.

One can solve the second equation to obtain

dν
n+1(t) = Eν(−βtν), t ≥ 0

and then, by using the normalizing condition, we have

dν
n(t) = 1− Eν(−βtν), t ≥ 0.

Moreover, since we know that ∀t ≥ 0 pν
n(t) ≥ 0 and ∑∞

n=0 pν
n(t) = 1, by the continuous inclusion

l1(R) ⊆ l2(R) (see [22]), (pn(t))n≥0 is uniformly bounded in l2(R) and then, by Corollary 2, it is the
(global) unique solution of system (5).

Distribution of the Busy Period

We want to determine the probability distribution Kν(t) of the busy period Kν of a fractional
M/M/1 queue. To do this, we will follow the lines of the proof given in [1] and [4].

Theorem 2. Let Kν be the random variable describing the duration of the busy period of a fractional M/M/1
queue Nν(t) and consider Kν(t) = P(Kν ≤ t). Then,

Kν(t) = 1−
+∞

∑
n=1

+∞

∑
m=0

Cn,mtν(n+2m−1)En+2m
ν,ν(n+2m−1)+1(−(α + β)tν), (13)

where

Cn,m =

(
n + 2m

m

)
n

n + 2m
αn+m−1βm. (14)

Proof. Let us first define a queue Nν
(t) such that P(Nν

(0) = 1) = 1 and Nν
(t) behaves like Nν(t)

except for the state 0 being an absorbent state. Thus, state probability functions are solution of the
following system 

C
0 Dν

t pν
0 = βpν

1(t),
C
0 Dν

t pν
1 = −(α + β)pν

1(t) + βpν
2(t),

C
0 Dν

t pν
n = −(α + β)pν

n(t) + αpν
n−1(t) + βpν

n+1(t), n ≥ 2,

pν
n(0) = δn,1, n ≥ 0.

(15)
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First, we want to show that, if we consider Lν(t), the inverse of a ν-stable subordinator that is

independent from N1
(t), then Nν

(t) d
= N1

(Lν(t)). To do that, consider the probability generating
function Gν(z, t) of Nν

(t) defined as

Gν(z, t) =
+∞

∑
k=0

zk pν
k(t). (16)

From system (15), we know that Gν(z, t) solves the following fractional Cauchy problem:{
zC

0 Dν
t Gν(z, t) = [αz2 − (α + β)z + β][Gν(z, t)− pν

0(t)],

Gν(z, 0) = z,
(17)

which, for ν = 1, becomes{
z d

dt G1(z, t) = [αz2 − (α + β)z + β][G1(z, t)− p1
0(t)],

G1(z, 0) = z.
(18)

Taking the Laplace transform in Equation (17) and using Equation (A1), we have

z[sνG̃ν(z, s)− zsν−1] = [αz2 − (α + β)z + β][G̃ν(z, s)− πν
0(s)], (19)

where G̃ν(z, s) and πν
0(s) are Laplace transforms of Gν(z, t) and pν

0(t).

We know that Nν
(t) d

= N1
(Lν(t)) if and only if

pν
n(t) = P(Nν

(t) = n) = P(N1
(Lν(t)) = n) =

∫ +∞

0
p1

n(y)P(Lν(t) ∈ dy) (20)

and then if and only if, by Equation (16),

Gν(z, t) =
∫ +∞

0
G1(z, y)P(Lν(t) ∈ dy). (21)

Taking the Laplace transform in Equations (20) and (21) for n = 0 and by using (see, i.e.,
Equation (10) in [12])

L[P(Lν(t) ∈ dy)](s) = sν−1e−ysdy, (22)

we know we have to show that

πν
0(s) =

∫ +∞

0
p1

n(y)s
ν−1e−ysν

dy (23)

and
G̃ν(z, s) =

∫ +∞

0
G1(z, y)sν−1e−ysν

dy. (24)

Since Equation (17) admits a unique solution, then we only need to show that the right-hand sides
of Equations (23) and (24) solve Equation (19), that is to say that we have to verify

z
[

sν
∫ +∞

0
G1(z, y)e−ysν

dy− z
]

= [αz2 − (α + β)z + β]

[∫ +∞

0
G1(z, y)e−ysν

dy−
∫ +∞

0
p1

0(y)e
−ysν

dy
]

. (25)
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To do that, consider the right-hand side of the previous equation and, recalling that G1(z, t) is
solution of Equation (18):

∫ +∞

0
[αz2 − (α + β)z + β][G1(z, y)− p1

0(y)]e
−ysν

dy =
∫ +∞

0

(
d

dy
G1(z, y)

)
e−ysν

dy

and then, by integrating by parts, we have Equation (25).
Now remark that pν

0(t) = Bν(t). Thus, we want to determine pν
0(t). To do that, let us recall,

from [1,4] that
p1

n(t) = nt−1α
n
2−1β−

n
2 e−(α+β)t In(2

√
αβt) for n ≥ 1

from which, explicitly writing In(2
√

αβt), we have

p1
n(t) =

+∞

∑
m=0

(
n + 2m

m

)
n

n + 2m
1

(n + 2m− 1)!
αn+m−1βmtn+2m−1e−(α+β)t for n ≥ 1.

Posing Cn,m = (n+2m
m ) n

n+2m αn+m−1βm, we have

p1
n(t) =

+∞

∑
m=0

Cn,m

(n + 2m− 1)!
tn+2m−1e−(α+β)t for n ≥ 1

and then

p1
0(t) = 1−

+∞

∑
n=1

+∞

∑
m=0

Cn,m

(n + 2m− 1)!
tn+2m−1e−(α+β)t. (26)

Since Nν
(t) = N1

(Lν(t)), we have

pν
0(t) =

∫ +∞

0
p1

0(y)P(Lν(t) ∈ dy)

and then, using Equation (26), we have

pν
0(t) = 1−

+∞

∑
n=1

+∞

∑
m=0

Cn,m

(n + 2m− 1)!

∫ +∞

0
yn+2m−1e−(α+β)y P(Lν(t) ∈ dy). (27)

Taking the Laplace transform in Equation (27), using Equation (22), we have

πν
0(s) =

1
s
−

+∞

∑
n=1

+∞

∑
m=0

Cn,m

(n + 2m− 1)!
sν−1

∫ +∞

0
yn+2m−1e−(α+β+sν)ydy

and then integrating

πν
0(s) =

1
s
−

+∞

∑
n=1

+∞

∑
m=0

Cn,m
sν−1

(α + β + sν)n+2m .

Finally, using formula (A2), we have

pν
0(s) = 1−

+∞

∑
n=1

+∞

∑
m=0

Cn,mtν(n+2m−1)En+2m
ν,ν(n+2m−1)+1(−(α + β)tν)

Remark 1. As ν→ 1 we obtain, by using

En+2m
1,n+2m(−(α + β)t) =

e−(α+β)t

(n + 2m− 1)!
,
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that pν
0(t)→ p1

0(t) and then Kν(t)→ K1(t).

5. The Fractional M/M/1 Queue with Catastrophes

Let us consider a classical M/M/1 queue with FIFO discipline and subject to catastrophes whose
effect is to instantaneously empty the queue [14] and let N1

ξ (t) be the number of customers in the
system at time t with state probabilities

p1,ξ
n (t) = P(N1

ξ (t) = n|N1
ξ (0) = 0), n = 0, 1, . . .

Then, the function p1,ξ
n satisfy the following differential-difference equations:

Dt p1,ξ
0 (t) = −(α + ξ)p1,ξ

0 (t) + βp1,ξ
1 (t) + ξ,

Dt p1,ξ
n (t) = −(α + β + ξ)p1,ξ

n (t) + αp1,ξ
n−1(t) + βp1,ξ

n+1(t), n ≥ 1,

p1,ξ
n (0) = δn,0, n ≥ 0,

(28)

where δn,0 is the Kroeneker delta symbol, Dt = d
dt , α, β > 0 are the entrance and service rates,

respectively, and ξ > 0 is the rate of the catastrophes when the system is not empty.

For ν ∈ (0, 1), we define the fractional M/M/1 queue process with catastrophes as

Nν
ξ (t) = N1

ξ (Lν(t)), t ≥ 0,

where Lν is an inverse ν-stable subordinator that is independent of N1
ξ (t), t ≥ 0 (see Section 2).

We will show that the state probabilities

pν,ξ
n := P(Nν

ξ (t) = n|Nν
ξ (0) = 0)

satisfy the following differential-difference fractional equations:
C
0 Dν

t pν,ξ
0 (t) = −(α + ξ)pν,ξ

0 (t) + βpν,ξ
1 (t) + ξ,

C
0 Dν

t pν,ξ
n (t) = −(α + β + ξ)pν,ξ

n (t) + αpν,ξ
n−1(t) + βpν,ξ

n+1(t), n ≥ 1,

pν,ξ
n (0) = δn,0, n ≥ 0,

(29)

where C
0 Dν

t is the Caputo fractional derivative (see Appendix A).
In the classical case, catastrophes occur according to a Poisson process with rate ξ if the system is

not empty. In our case, consider for a fixed n > 0,

C
0 Dν

t cν
0(t) = ξ(1− cν

0(t)),
C
0 Dν

t cν
n(t) = −ξcν

n(t),

cν
0(0) = 0,

cν
n(0) = 1,

which describes the state probabilities of an initially non empty system with null birth and death rate
but positive catastrophe rate. In such case, cν

0(t) is the probability a catastrophe occurs before time t.
Moreover, the normalization property becomes

cν
0(t) + cν

n(t) = 1.
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In such case, we can solve the second equation to obtain

cν
n(t) = Eν(−ξtν), t ≥ 0.

Using the normalization property, we finally obtain

cν
0(t) = 1− Eν(−ξtν), t ≥ 0 (30)

and then the distributions of the inter-occurrence of the catastrophes are Mittag–Leffler distributions.
We can conclude that, in the fractional case, catastrophes occur according to a fractional Poisson
process ([10,11,13]) with rate ξ if the system is not empty. Since the operators C

0 Dν
t are Caputo

fractional derivatives, we expect the stationary behaviour of the queue to be the same as the classic
one. Denoting with N1

ξ the number of customers in the system at the steady state of a classical M/M/1
with catastrophes and defining the state probabilities

qn = P(N1
ξ = n), n ≥ 0,

we can use the results obtained in [15] to observe that

qn =

(
1− 1

z1

)(
1
z1

)n
, n ≥ 0, (31)

where z1 is the solution of
αz2 − (α + β + ξ)z + β = 0 (32)

such that z1 > 1. Let us call z2 the other solution of Equation (32) and observe that 0 < z2 < 1 < z1.
Some properties coming from such equations that will be useful hereafter are

α + β + ξ = αzi +
β

zi
(33)

and
αz2

i = (α + β + ξ)zi − β (34)

with i = 1, 2.

5.1. Alternative Representation of the Fractional M/M/1 Queue with Catastrophes

We want to obtain an alternative representation of the fractional M/M/1 queue with catastrophes
in a way which is similar to Lemma 2.1 in [14]. To do that, we firstly need to assure that system (29)
admits a unique uniformly bounded solution. To do that, let us write system (29) in the form{

C
0 Dν

t pν,ξ(t) = f (pν,ξ(t)),

pν,ξ(t) = (δn,0)n≥0,
(35)

where pν,ξ(t) = (pν,ξ
n (t))n≥0 ∈ C([0, T], l2(R)), f (x) = Aξ x + ξ, ξ = (ξ, 0, . . . , 0, . . . ) and

Aξ =


−(α + ξ) β 0 0 0 · · ·

α −(α + β + ξ) β 0 0 · · ·
0 α −(α + β + ξ) β 0 · · ·
0 0 α −(α + β + ξ) β · · ·
...

...
...

. . . . . . . . .


is an infinite tridiagonal matrix with Aξ = (ai,j)i,j≥0. We need to show the following:



Mathematics 2018, 6, 159 13 of 26

Lemma 2. The linear operator Aξ is continuous and ‖Aξ‖ ≤ 2(α + β) + ξ.

Proof. To obtain an estimate of the norm of Aξ , let us use Schur’s test. Observe that

+∞

∑
k=0
|ak,0| = 2α + ξ,

+∞

∑
k=0
|ak,j| = 2α + 2β + ξ with j 6= 0,

so that, in general,
+∞

∑
k=0
|ak,j| ≤ 2α + 2β + ξ.

Moreover,

+∞

∑
k=0
|a0,k| = α + β + ξ,

+∞

∑
k=0
|aj,k| = 2α + 2β + ξ for j 6= 0

so that, in general,
+∞

∑
k=0
|aj,k| ≤ 2α + 2β + ξ.

By Schur’s test, we have that Aξ is a bounded operator on l2 and

‖Aξ‖ ≤ 2(α + β) + ξ.

Observe that, if ξ = 0, the operator A0 is the same of system (12). Let us also observe that by
Corollary 1 there locally exists a unique solution. Moreover, if we show that a solution is uniformly
bounded, such solution is unique. Now, we are ready to adapt Lemma 2.1 of [14] to the fractional case.

Theorem 3. Let Ñν(t) be the number of customers in a fractional M/M/1 queue with arrival rate αz1 and
service rate β

z1
such that P(Ñν(0) = 0) = 1 and consider N a random variable independent from Ñν(t) whose

state probabilities qn are defined in Equation (31). Define

Mν(t) := min{Ñν(t), N}, t ≥ 0.

Then, the state probabilities of Mν(t) are the unique solutions of (29).

Moreover, Mν(t) d
= Nν

ξ (t), where d
= is the equality in distribution, and then pν,ξ

n (t), n = 0, 1, . . . are the
unique solutions of (29).

Proof. Define p∗,νn (t) = P(Mν(t) = n) and p̃ν
n(t) = P(Ñν(t) = n). Since Ñν(t) and N are independent, then

p∗,νn (t) = P(N = n)P(Ñν(t) ≥ n) +P(Ñν(t) = n)P(N > n),

which, by using the definitions of p̃ν
n(t) and qn, becomes

p∗,νn (t) = qn

+∞

∑
k=n

p̃ν
k(t) +

(
+∞

∑
k=n+1

qn

)
p̃ν

n(t). (36)

Moreover, by using Equation (31), we have

+∞

∑
k=n+1

qn =

(
1− 1

z1

) +∞

∑
k=n+1

(
1
z1

)k
=

(
1− 1

z1

)(
1
z1

)n+1 +∞

∑
k=0

(
1
z1

)k
=

(
1
z1

)n+1
(37)
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and then, substituting Equation (37) in (36), we obtain

p∗,νn (t) = qn

+∞

∑
k=n

p̃ν
k(t) +

(
1
z1

)n+1
p̃ν

n(t). (38)

We want to show that Mν(t) = Nν(t). Since, by definition, p∗,νn (t) are non-negative and
∑+∞

n=0 p∗,νn (t) = 1, they are uniformly bounded in l2(R). Thus, we only need to show that p∗,ν(t) =

(p∗,νn (t))n≥0 solves system (35).
The initial conditions are easily verified, so we only need to verify the differential relations. Observe that

p∗,ν0 (t) = q0 +
1
z1

p̃ν
0(t)

and then, applying the Caputo derivative operator, we obtain

C
0 Dν

t p∗,ν0 (t) =
1
z1

C
0 Dν

t p̃ν
0(t).

Since p̃ν
0(t) is a solution of system (5) with rates αz1 and β

z1
, we have

C
0 Dν

t p∗,ν0 (t) = −α p̃ν
0(t) +

β

z2
1

p̃ν
1(t).

Observe also that

p∗,ν1 (t) = q1(1− p̃ν
0(t)) +

(
1
z1

)2
p̃ν

1(t)

so we have

− (α + ξ)p∗,ν0 (t) + βp∗,ν1 (t) + ξ

= −(α + ξ)

(
q0 +

(
1
z1

)
p̃ν

0(t)
)
+ β

[
q1(1− p̃ν

0(t)) +
(

1
z1

)2
p̃ν

1(t)

]
+ ξ.

After some calculations, we obtain

−(α + ξ)p∗,ν0 (t) + βp∗,ν1 (t) + ξ = −(α + ξ)q0 −
α + ξ

z1
p̃ν

0(t) + βq1 − βq1 p̃ν
0(t) +

β

z2
1

p̃ν
1(t) + ξ.

Let us remark that

q0 = 1− 1
z1

, q1 =

(
1− 1

z1

)(
1
z1

)
,

so we have

− (α + ξ)p∗,ν0 (t) + βp∗,ν1 (t) + ξ

=
−αz2

1 + (α + β + ξ)z1 − β

z2
1

+
(−(α + β + ξ)z1 + β) p̃ν

0(t)
z2

1
+

β

z2
1

p̃ν
1(t).

By using Equations (32) and (34), we obtain

−(α + ξ)p∗,ν0 (t) + βp∗,ν1 (t) + ξ = −α p̃ν
0(t) +

β

z2
1

p̃ν
1(t) =

C
0 Dν

t p∗,ν0 (t).
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Rewrite now Equation (38) in the form

p∗,νn (t) = qn

(
1−

+∞

∑
k=0

p̃ν
k(t)

)
+

(
1
z1

)n+1
p̃ν

n(t) (39)

and then apply a Caputo derivative operator to obtain

C
0 Dν

t p∗,νn (t) = −qn

+∞

∑
k=1

C
0 Dν

t p̃ν
k(t)− qn

C
0 Dν

t p̃ν
0(t) +

(
1
z1

)n+1
C
0 Dν

t p̃ν
n(t).

Since p̃ν
n(t) is a solution of system (5) with birth rate αz1 and death rate β

z1
, then we have

C
0 Dν

t p∗,νn (t) = qn

(
αz1 +

β

z1

) n−1

∑
k=1

p̃ν
k − qnαz1

n−2

∑
k=0

p̃ν
k(t)−

β

z1
qn

n

∑
k=2

p̃ν
k(t)

+ αz1qn p̃0(t)−
β

z1
qn p̃ν

1 −
(

1
z1

)n+1 (
αz1 +

β

z1

)
p̃ν

n(t)

+ α

(
1
z1

)n
p̃ν

n−1(t) + β

(
1
z1

)n+2
p̃ν

n+1(t).

Remark that, by using Equation (39),

−(α + β + ξ)p∗,νn (t) + αp∗,νn−1(t) + βp∗,νn+1(t) =

− (α + β + ξ)

(
qn

(
1−

n−1

∑
k=0

p̃ν
k(t)

)
+

(
1
z1

)n+1
p̃ν

n(t)

)

+ α

(
qn−1

(
1−

n−2

∑
k=0

p̃ν
k(t)

)
+

(
1
z1

)n
p̃ν

n−1(t)

)

+ β

(
qn+1

(
1−

n

∑
k=0

p̃ν
k(t)

)
+

(
1
z1

)n+2
p̃ν

n+1(t)

)
.

Then, recalling that by definition qn−1 = z1qn and qn+1 = qn
z1

and doing some calculations,
we have

−(α + β + ξ)p∗,νn (t) + αp∗,νn−1(t) + βp∗,νn+1(t) =

(α + β + ξ)qn

n−1

∑
k=1

p̃ν
k(t)− αz1qn

n−2

∑
k=0

p̃ν
k(t)−

β

z1
qn

n

∑
k=2

p̃ν
k(t)

+
(α + β + ξ)z1 − β

z1
qn p̃ν

0(t)−
β

z1
qn p̃ν

1(t)− (α + β + ξ)

(
1
z1

)n+1
p̃ν

n(t)

+ α

(
1
z1

)n
p̃ν

n−1(t) + β

(
1
z1

)n+2
p̃ν

n+1(t) +
αz2

1 − (α + β + ξ)z1 + β

z1
qn.
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Finally, by using Equations (32), (33) and (34), we have

−(α + β + ξ)p∗,νn (t) + αp∗,νn−1(t) + βp∗,νn+1(t) =(
αz1 +

β

z1

)
qn

n−1

∑
k=1

p̃ν
k(t)− αz1qn

n−2

∑
k=0

p̃ν
k(t)−

β

z1
qn

n

∑
k=2

p̃ν
k(t)

+ αz1qn p̃ν
0(t)−

β

z1
qn p̃ν

1(t)−
(

αz1 +
β

z1

)(
1
z1

)n+1
p̃ν

n(t)

+ α

(
1
z1

)n
p̃ν

n−1(t) + β

(
1
z1

)n+2
p̃ν

n+1(t) =
C
0 Dν

t p∗,νn (t).

We have shown that the state probabilities p∗,νn (t) of Mν(t) are the unique solutions of system (29).

Now, we need to show that Mν(t) d
= Nν

ξ (t). To do this, consider Ñ1(t) a classical M/M/1 queue with

arrival rate αz1 and service rate β
z1

, N a random variable independent from Ñν(t) and Ñ1(t) with
probability masses qn and finally Lν(t) the inverse of a ν-stable subordinator which is independent from

N and Ñ1(t). Define also M1(t) = min{Ñ1(t), N}. By Lemma 2.1 of [14], we know that M1(t) d
= N1

ξ (t),

so M1(Lν(t))
d
= N1

ξ (Lν(t))
d
= Nν

ξ (t). However, by definition, we know that Ñ1(Lν(t))
d
= Ñν(t),

thus finally

Mν(t) d
= M1(Lν(t))

d
= N1

ξ (Lν(t))
d
= Nν

ξ (t).

5.2. State Probabilities for the Fractional M/M/1 with Catastrophes

Since we have defined Nν
ξ (t)

d
= N1

ξ (Lν(t)), where Lν(t) is the inverse of a ν-stable subordinator,
which is independent from N1

ξ (t), we can use such definition and Theorem 3 with the results obtained
in [14] to study the state probabilities of Nν

ξ (t). In particular, we refer to the formula

p1,ξ
n (t) = qn +

+∞

∑
m=0

m+n

∑
r=0

C1
n,m,r

(m + r− 1)!
tm+r−1e−(α+β+ξ)t

+
+∞

∑
m=0

+∞

∑
r=m+n+1

C2
n,m,r

(m + r− 1)!
tm+r−1e−(α+β+ξ)t,

(40)

where

C1
n,m,r =

z1 − 1
(z1 − z2)zn+m+1−r

1

(
m + r

r

)
m− r
m + r

βmαr−1,

C2
n,m,r =

1− z2

(z1 − z2)zn+m+1−r
2

(
m + r

r

)
r−m
r + m

βmαr−1.
(41)

By using such formula, we can show the following:

Theorem 4. For any t > 0 and n = 0, 1, . . . , we have

pν,ξ
n (t) = qn +

+∞

∑
m=0

m+n

∑
r=0

C1
n,m,rtν(m+r−1)Em+r

ν,ν(m+r−1)+1(−(α + β + ξ)tν)

+
+∞

∑
m=0

+∞

∑
r=m+n+1

C2
n,m,rtν(m+r−1)Em+r

ν,ν(m+r−1)+1(−(α + β + ξ)tν),

(42)

where Ci
n,m,r are defined in (41).
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Proof. From Nν
ξ (t)

d
= N1

ξ (Lν(t)), we have

pν,ξ
n (t) =

∫ +∞

0
p1,ξ

n (y)P(Lν(t) ∈ dy)

and then, by using formula (40),

pν,ξ
n (t) = qn +

+∞

∑
m=0

m+n

∑
r=0

C1
n,m,r

(m + r− 1)!

∫ +∞

0
ym+r−1e−(α+β+ξ)y P(Lν(t) ∈ dy)

+
+∞

∑
m=0

+∞

∑
r=m+n+1

C2
n,m,r

(m + r− 1)!

∫ +∞

0
ym+r−1e−(α+β+ξ)y P(Lν(t) ∈ dy).

Taking the Laplace transform and using Equation (22), we obtain

π
ν,ξ
n (s) = qn +

+∞

∑
m=0

m+n

∑
r=0

C1
n,m,r

(m + r− 1)!
sν−1

∫ +∞

0
ym+r−1e−(α+β+ξ+sν)ydy

+
+∞

∑
m=0

+∞

∑
r=m+n+1

C2
n,m,r

(m + r− 1)!
sν−1

∫ +∞

0
ym+r−1e−(α+β+ξ+sν)ydy

and then, integrating

π
ν,ξ
n (s) = qn +

+∞

∑
m=0

m+n

∑
r=0

C1
n,m,r

sν−1

(α + β + ξ + sν)m+r

+
+∞

∑
m=0

+∞

∑
r=m+n+1

C2
n,m,r

sν−1

(α + β + ξ + sν)m+r .

Finally, by using Equation (A2), we obtain

pν,ξ
n (t) = qn +

+∞

∑
m=0

m+n

∑
r=0

C1
n,m,rtν(m+r−1)Em+r

ν,ν(m+r−1)+1(−(α + β + ξ)tν)

+
+∞

∑
m=0

+∞

∑
r=m+n+1

C2
n,m,rtν(m+r−1)Em+r

ν,ν(m+r−1)+1(−(α + β + ξ)tν).

Remark 2. From formula (42), we can easily see that limt→+∞ pν,ξ
n (t) = qn so, as we expected, the steady-state

probabilities are the same as the classical ones. For such reason, we can say that the fractional behaviour is
influential only in the transient state of the queue.

Remark 3. As ν→ 1, by using

Em+r
1,m+r(−(α + β + ξ)t) =

e−(α+β+ξ)t

(m + r− 1)!
,

we obtain that limν→1 pν,ξ
n (t) = p1,ξ

n (t).

Remark 4. If α < β and ξ = 0, then z1 = β
α and z2 = 1. For such reason, qn =

(
1− α

β

) (
α
β

)n
,

C1
n,m,r =

(
α
β

)n m−r
m+r (

m+r
m )αmβr−1 and C2

n,m,r = 0. Then, we have that pν,ξ
n (t) of Equation (42) has the form of

Equation (6).
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If α > β and ξ → 0 then z1 = 1 and z2 = β
α . In such case, qn = 0, C1

n,m,r = 0 and C2
n,m,r =

αn+mβr−n−1(m+r
m ) r−m

m+r . For such case, we have

lim
ξ→0

pν,ξ
n (t) =

(
α

β

)n +∞

∑
m=0

+∞

∑
r=m+n+1

αmβr−1
(

m + r
m

)
r−m
m + r

tν(m+r−1)Em+r
ν,ν(m+r−1)+1,

which is not recognizable as a previously obtained formula. This is due to the fact that the formula

lim
ξ→0

p1,ξ
n (t) =

e−(α+β)t

βt

(
α

β

)n +∞

∑
r=n+1

r
(

β

α

) r
2

Ir(2
√

αβt) (43)

(which is the one that is obtained from (42) as ν = 1 and α > β, as done in [14]) has no known equivalent in
the fractional case. It is also interesting to observe that in [8] another representation of the Laplace transform
of pν

n(t) is given in formula 2.40, which is not easily invertible, but has been obtained by using (43) instead of
Sharma’s representation of p1

n(t) ([2])

p1
n(t) =

(
1− α

β

)(
α

β

)n
+ e−(α+β)t

(
α

β

)n +∞

∑
r=0

(αt)r

r!

k+r

∑
m=0

(r−m)
(βt)m−1

m!
.

5.3. Distribution of the Busy Period

Let Bν denote the duration of the busy period and Bν(t) = P(Bν ≤ t) be its probability distribution
function. Let us observe that, if we pose Nν(0) = 1, then the queue empties within t if and only if
a catastrophe occurs within t or otherwise the queue empties without catastrophes within t. Let us
remark that, if there is no occurrence of catastrophes, the queue behaves as a fractional M/M/1. Let us
define Kν as the duration of a busy period for a fractional M/M/1 queue without catastrophes, Ξν

the time of first occurrence of a catastrophe for a non empty queue and Kν(t) = P(Kν ≤ t) and
Ξν(t) = P(Ξν ≤ t) their probability distribution functions. Thus, we have

Bν(t) = Ξν(t) + (1− Ξν(t))Kν(t). (44)

Remark 5. If we denote with bν(t), ξν(t) and kν(t) the probability density functions of Bν, Ξν and Kν, we have,
by deriving formula (44),

bν(t) = ξν(t)(1− Kν(t)) + (1− Ξν(t))kν(t),

which, for ν = 1, is formula (17) of [14].

By using formula (44), we can finally show:

Theorem 5. Let Bν be the duration of the busy period of a fractional M/M/1 queue with catastrophes and
Bν(t) = P(Bν ≤ t). Then,

Bν(t) = 1− Eν(−ξtν)
+∞

∑
n=1

+∞

∑
m=0

Cn,mtν(n+2m−1)En+2m
ν,ν(n+2m−1)+1(−(α + β)tν), (45)

where Cn,m is given in (14).

Proof. Observe that, by formula (30), we have

Ξν(t) = cν
0(t) = 1− Eν(−ξtν)

and by formula (13) we also have a closed form of Kν(t). Thus, by using formula (44), we obtain
Equation (45).
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5.4. Distribution of the Time of the First Occurrence of a Catastrophe

We already know that if the queue starts from a non-empty state, then the occurrence of the
catastrophes is a Mittag–Leffler distribution. However, we are interested in such distribution as the
queue starts being empty. To do that, we will need some auxiliary discrete processes.

Theorem 6. Let Dν be the time of first occurrence of a catastrophe as P(Nν(0) = 0) = 1 and let Dν(t) =
P(Dν ≤ t). Then,

Dν(t) = 1−
+∞

∑
j=1

+∞

∑
m=0

Cm,jtν(2m+j−1)E2m+j
ν,ν(2m+j−1)+1[−(α + β + ξ)tν], (46)

where

Cm,j =
j

2m + j
(β + ξ)j − αj

β + ξ − α

(
2m + j

m

)
(αβ)m.

Proof. Following the lines of [14], let us consider the process Nν
(t) with state space {−1, 0, 1, 2, . . . }

such that P(Nν
(t) = 0) = 1 and posing rn(t) = P(Nν

(t) = n), n ≥ −1 as its state probability, we have

C
0 Dν

t rν
−1(t) = ξ[1− rν

−1(t)− rν
0(t)],

C
0 Dν

t rν
0(t) = −αrν

0(t) + βrν
1(t),

C
0 Dν

t rν
n(t) = −(α + β + ξ)rν

n(t) + αrν
n−1(t) + βrν

n+1(t), n ≥ 1,

rν
n(0) = δn,0, n ≥ −1.

(47)

Let us remark that such process represents our queue until a catastrophe occurs: in such case,
instead of emptying the queue, the state of the process becomes −1, which is an absorbent state.
With such interpretation, we can easily observe that Dν(t) = rν

−1(t).

In order to determine rν
n(t), we will first show that Nν

(t) d
= N1

(Lν(t)) where Lν(t) is the inverse
of a ν-stable subordinator which is independent from N1. To do that, let us consider Nν

(t) + 1 instead
of Nν

(t). Let us remark that P(Nν
(t) + 1 = n) = rν

n−1(t). Let Gν(z, t) = ∑+∞
n=0 znrν

n−1(t) be the
probability generating function of Nν

(t) + 1. Multiplying the third sequence of equations in (47) with
zn+1 and then, summing all these equations, we have

C
0 Dν

t

(
+∞

∑
n=2

znrν
n−1(t)

)
= −(α + β + ξ)

+∞

∑
n=2

znrν
n−1(t) + α

+∞

∑
n=2

znrν
n−2(t) + β

+∞

∑
n=2

znrν
n(t). (48)

Now observe that

+∞

∑
n=2

znrν
n−1(t) =

+∞

∑
n=0

znrν
n−1(t)− rν

−1(t)− zrν
0(t) = Gν(z, t)− rν

−1(t)− zrν
0(t); (49)

moreover,

+∞

∑
n=2

znrν
n−2(t) =

+∞

∑
n=1

zn+1rν
n−1(t) = z

+∞

∑
n=1

znrν
n−1(t)

= z[Gν(z, t)− rν
−1(t)] = z[Gν(z, t)− rν

−1(t)− zrν
0(t)] + z2rν

0(t); (50)



Mathematics 2018, 6, 159 20 of 26

finally,

+∞

∑
n=2

znrν
n(t) =

+∞

∑
n=3

zn−1rν
n−1(t) =

1
z

+∞

∑
n=3

znrν
n−1(t)

=
1
z
[Gν(z, t)− rν

−1(t)− zrν
0(t)− z2rν

1(t)]

=
1
z
[Gν(z, t)− rν

−1(t)− zrν
0(t)]− zrν

1(t). (51)

Using Equations (49),(50) and (51) in Equation (48), we obtain

C
0 Dν

t [G
ν(z, t)− rν

−1(t)− zrν
0(t)]

=

[
αz− (α + β + ξ) +

β

z

]
[Gν(z, t)− rν

−1(t)− zrν
0(t)]

+ αz2rν
0(t)− βzrν

1(t). (52)

Finally, by using the first and the second equation of Equation (47) in Equation (52), we obtain

C
0 Dν

t Gν(z, t) =
[

αz− (α + β + ξ) +
β

z

]
[Gν(z, t)− rν

−1(t)− zrν
0(t)]

+ αz(z− 1)rν
0(t) + ξ[1− rν

−1(t)− rν
0(t)].

We have obtained that the probability generating function Gν(z, t) of Nν
(t) + 1 solves the

Cauchy problem
zC

0 Dν
t Gν(z, t) =

[
αz2 − (α + β + ξ)z + β

]
[Gν(z, t)− rν

−1(t)− zrν
0(t)]

+αz2(z− 1)rν
0(t) + ξz[1− rν

−1(t)− rν
0(t)],

Gν(z, 0) = z,

(53)

that, for ν = 1, becomes
z

d
dt

G1(z, t) =
[
αz2 − (α + β + ξ)z + β

]
[G1(z, t)− r1

−1(t)− zr1
0(t)]

+αz2(z− 1)r1
0(t) + ξz[1− r1

−1(t)− r1
0(t)],

G1(z, 0) = z.

(54)

Let G̃ν(z, s), r̃ν
0(s) and r̃ν

−1(s) be the Laplace transforms of Gν(z, t), rν
0(t) and rν

−1(t) and let us
take the Laplace transform in Equation (53) to obtain

z[sνG̃ν(z, s)− sν−1z] =
[
αz2 − (α + β + ξ)z + β

]
[G̃ν(z, s)− r̃ν

−1(s)− zr̃ν
0(s)]

+αz2(z− 1)r̃ν
0(s) + ξz

[
1
s
− r̃ν
−1(s)− r̃ν

0(s)
]

.
(55)

Now, let us remark that Nν
(t) + 1 d

= N1
(Lν(t)) + 1 if and only if for all n ≥ 0:

rν
n−1(t) =

∫ +∞

0
r1

n−1(y)P(Lν(t) ∈ dy) (56)

that is to say if and only if

Gν(z, t) =
∫ +∞

0
G1(z, y)P(Lν(t) ∈ dy).
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Taking Laplace transform and using Equation (22), we obtain

G̃ν(z, s) = sν−1
∫ +∞

0
G1(z, y)e−ysν

dy,

r̃ν
−1(s) = sν−1

∫ +∞

0
r1
−1(y)e

−ysν
dy,

r̃ν
0(s) = sν−1

∫ +∞

0
r1

0(y)e
−ysν

dy.

(57)

Thus, by substituting the formulas (57) in (55), we obtain

z
[

sνsν−1
∫ +∞

0
G1(z, y)e−ysν

dy− sν−1z
]
= [αz2 − (α + β + ξ)z + β]

×
[

sν−1
∫ +∞

0
G1(z, y)e−ysν

dy− sν−1
∫ +∞

0
r1
−1(y)e

−ysν
dy− zsν−1

∫ +∞

0
r1

0(y)e
−ysν

dy
]

+ αz2(z− 1)sν−1
∫ +∞

0
r1

0(y)e
−ysν

dy

+ ξz
[

1
s
− sν−1

∫ +∞

0
r1
−1(y)e

−ysν
dy− sν−1

∫ +∞

0
r1

0(y)e
−ysν

dy
]

.

Finally, multiplying with 1
sν−1 , we have

z
[

sν
∫ +∞

0
G1(z, y)e−ysν

dy− z
]
= [αz2 − (α + β + ξ)z + β]

×
[∫ +∞

0
G1(z, y)e−ysν

dy−
∫ +∞

0
r1
−1(y)e

−ysν
dy− z

∫ +∞

0
r1

0(y)e
−ysν

dy
]

+ αz2(z− 1)
∫ +∞

0
r1

0(y)e
−ysν

dy

+ ξz
[

1
sν
−
∫ +∞

0
r1
−1(y)e

−ysν
dy−

∫ +∞

0
r1

0(y)e
−ysν

dy
]

.

(58)

Now we know that Nν
(t) d

= N1
(Lν(t)) if and only if Equation (58) is verified. For this reason,

we only need to show such equation. To do that, remarking that
∫ +∞

0 e−ysν
dy = 1

sν , consider the
right-hand side of Equation (58) and observe that

[αz2 − (α + β + ξ)z + β]

[∫ +∞

0
G1(z, y)e−ysν

dy−
∫ +∞

0
r1
−1(y)e

−ysν
dy− z

∫ +∞

0
r1

0(y)e
−ysν

dy
]

+ αz2(z− 1)
∫ +∞

0
r1

0(y)e
−ysν

dy + ξz
[

1
sν
−
∫ +∞

0
r1
−1(y)e

−ysν
dy−

∫ +∞

0
r1

0(y)e
−ysν

dy
]

=
∫ +∞

0
([αz2 − (α + β + ξ)z + β][G1(z, y)− r1

−1(y)− zr1
0(y)]

+ αz2(z− 1)r1
0(y) + ξz[1− r1

−1(y)− r1
0(y)])e

−ysν
dy.
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Thus, by using Equation (54), we have

[αz2 − (α + β + ξ)z + β]

[∫ +∞

0
G1(z, y)e−ysν

dy−
∫ +∞

0
r1
−1(y)e

−ysν
dy− z

∫ +∞

0
r1

0(y)e
−ysν

dy
]

+ αz2(z− 1)
∫ +∞

0
r1

0(y)e
−ysν

dy + ξz
[

1
sν
−
∫ +∞

0
r1
−1(y)e

−ysν
dy−

∫ +∞

0
r1

0(y)e
−ysν

dy
]

= z
∫ +∞

0

(
d
dt

G1(z, y)
)

e−ysν
dy

= z
[∫ +∞

0
G1(z, y)e−ysν

dy− z
]

,

concluding the proof of our first claim.

From Theorem 3.1 of [14], we know that

r1
−1(t) = 1−

+∞

∑
j=1

+∞

∑
m=0

Cm,j

(2m + j− 1)!
t2m+j−1e−(α+β+ξ)t (59)

and, since we know that Nν
(t) d

= N1
(Lν(t)), we can use (59) in (56) with n = 0 to obtain:

rν
−1(t) = 1−

+∞

∑
j=1

+∞

∑
m=0

Cm,j

(2m + j− 1)!

∫ +∞

0
y2m+j−1e−(α+β+ξ)y P(Lν(t) ∈ dy). (60)

Taking the Laplace transform in (60) and using formula (22), we obtain

r̃ν
−1(s) =

1
s
−

+∞

∑
j=1

+∞

∑
m=0

Cm,j

(2m + j− 1)!
sν−1

∫ +∞

0
y2m+j−1e−(α+β+ξ+sν)ydy

and then integrate

r̃ν
−1(s) =

1
s
−

+∞

∑
j=1

+∞

∑
m=0

Cm,j
sν−1

(α + β + ξ + sν)2m+j . (61)

Finally, applying the inverse Laplace transform on Equation (61) and using formula (A2), we
complete the proof.

6. Conclusions

Our work focused on the transient behaviour of a fractional M/M/1 queue with catastrophes,
deriving formulas for the state probabilities, the distribution of the busy period and the distribution of
the time of the first occurrence of a catastrophe. This is a non-Markov generalization of the classical
M/M/1 queue with catastrophes, obtained through a time-change. The introduction of fractional
dynamics in the equations that master the behaviour of the queue led to a sort of transformation
of the time scale. Fractional derivatives are global operators, so the state probabilities preserve
memory of their past, eventually slowing down the entire dynamics. Indeed, we can see how
Mittag–Leffler functions take place where in the classical case we expected to see exponentials.
However, such fractional dynamic seems to affect only the transient behaviour, since we have shown
in Remark 2 that the limit behaviour is the same.

The main difficulty that is linked with fractional queues (or in general time-changed queues)
is the fact that one has to deal with non-local derivative operators, such as the Caputo derivative,
losing Markov property. However, fractional dynamics and fractional processes are gaining attention,
due to their wide range of applicability, from physics to finance, from computer science to biology.
Moreover, time-changed processes have formed a thriving field of application in mathematical finance.
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Future works will focus on an extension of such results to Ek/M/1 and M/Ek/1 queues, or even to a
generalization of fractional M/M/1 queue to a time-changed M/M/1 queue by using the inverse of
any subordinator.
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Appendix A. Fractional Integrals and Derivatives

Let us recall the definition of fractional integral [7]. Given a function x : [t0, t1] ⊆ R → R,
its fractional integral of order ν > 0 in [t0, t] for t0 ≤ t ≤ t1 is given by:

t0 I
ν
t x =

1
Γ(ν)

∫ t

t0

(t− τ)ν−1x(τ)dτ.

The Riemann–Liouville fractional derivative operator is defined as:

RL
t0

Dν
t =

dm

dtm t0 I
m−ν
t

while the Caputo fractional derivative operator is defined as:

C
t0

Dν
t = t0 I

m−ν
t

dm

dtm

whenever m− 1 < ν < m. Obviously, such operators are linear. It is interesting to remark that

RL
0 Dν

t 1 =
t−ν

Γ(1− ν)
, C

0 Dν
t 1 = 0.

Note that, for a function x(t), t ≥ 0 and ν ∈ (0, 1), the Caputo fractional derivative is defined as:

C
0 Dν

t x =
1

Γ(1− ν)

∫ t

0

d
dt

x(t− s)
ds
sν

=RL
0 Dν

t x− x(0)
Γ(1− ν)tν

,

where
RL
0 Dν

t x =
1

Γ(1− ν)

d
dt

∫ t

0
x(t− s)

ds
sν

,

and for its Laplace transform, denoting by x̃(z) the Laplace transform of x,

L[C0 Dν
t x](z) = zν x̃(z)− zν−1x(0). (A1)

Moreover, for ν ∈ (0, 1), a well-posed fractional Cauchy problem with Riemann–Liouville
derivatives is given in the form 

RL
t0

Dν
t x = f (t, x(t)),[

t0 I1−ν
t x

]
|t=t0

= x0,
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in which the initial condition is given in terms of fractional integrals, while if we use Caputo derivatives
we have: {

C
t0

Dν
t x = f (t, x(t)),

x(t0) = x0,

in which the initial condition is related only with the initial value of the function. For such reason, we
will prefer adopting Caputo derivatives as fractional derivatives in this paper.

Finally, let us remark that the definition of fractional integral and derivative can be also considered
for functions x : [t0, t1] ⊆ R→ B where B is a Banach space and all the involved integrals are Bochner
integrals ([23]).

Appendix B. Some Special Functions

We recall the definitions of some special functions we use in such text.

Gamma funcion

The Gamma function is defined as:

Γ(z) :=
∫ ∞

0
tz−1e−tdt.

In particular, we have Γ(z + 1) = zΓ(z) and, for z = n ∈ N, Γ(n + 1) = n!.
The modified Bessel function ([24]) of the first kind can be defined by its power series expansion as:

Ir(x) =
+∞

∑
m=0

( x
2
)2m+r

m!Γ(m + r + 1)
.

One-parameter Mittag–Leffler functions ([6]) are defined by their power series expansion as:

Eν(z) =
∞

∑
k=0

zk

Γ(νk + 1)
, ν > 0, z ∈ C.

Two-parameters Mittag–Leffler functions are also defined by their power series expansion as:

Eν,µ(z) =
∞

∑
k=0

zk

Γ(νk + µ)
, ν > 0, µ > 0, z ∈ C.

Remark that Eν,1(t) = Eν(t).

Generalized Mittag–Leffler functions are defined by their power series expansion as:

Eρ
ν,µ(z) =

+∞

∑
k=0

(ρ)k
Γ(νk + µ)

zk

k!
, ν > 0, µ > 0, ρ > 0, z ∈ C,

where (ρ)k is the Pochhammer symbol

(ρ)k = ρ(ρ + 1)(ρ + 2) · · · (ρ + k− 1).

An alternative way to define the Generalized Mittag–Leffler function is:

Eρ
α,β(z) =

+∞

∑
k=0

zkΓ(ρ + k)
k!Γ(αk + β)Γ(ρ)

, z ∈ C.
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Remark also that E1
α,β = Eα,β. Functions with similar series expansions are also involved in

the study of the asymptotic behaviour of some integrals, which arise from a Feynman path integral
approach to some financial problems (see, i.e., [25] Section 4).
Recall also the following Laplace transform formula [9]

L[zγ−1Eδ
ν,γ(wzν)](s) =

sνδ−γ

(sν − w)δ
, γ, ν, δ, w ∈ C, <(γ),<(ν),<(δ) > 0, s ∈ C, |wsν| < 1. (A2)

Finally let us remark, for ν ∈ (0, 1) that the Cauchy problem{
C
0 Dν

t x = λx,

x(0) = x0,

admits as unique solution x(t) = x0Eν(λtν) ([6], p. 295).

References

1. Conolly, B.W. Lecture Notes on Queueing Systems; E. Horwood Limited: Ann Arbor, MI, USA, 1975;
ISBN 0470168579, 9780470168578.

2. Conolly, B.W.; Langaris, C. On a new formula for the transient state probabilities for M/M/1 queues and
computational implications. J. Appl. Probab. 1993, 30, 237–246. [CrossRef]

3. Kleinrock, L. Queueing Systems: Theory; Wiley: Hoboken, NJ, USA, 1975; ISBN 0471491101.
4. Lakatos, L.; Szeidl, L.; Telek, M. Introduction to Queueing Systems with Telecommunication Applications; Springer

Science & Business Media: Berlin, Germany, 2012; ISBN 978-1-4614-5316-1.
5. Parthasarathy, P.R. A transient solution to an M/M/1 queue: A simple approach. Adv. Appl. Probab. 1987, 19,

997–998, doi:10.2307/1427113. [CrossRef]
6. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations.

North-Holland Math. Stud. 2006, 204, 7–10.
7. Li, C.; Qian, D.; Chen, Y.Q. On Riemann-Liouville and Caputo derivatives. Discrete Dyn. Nat. Soc. 2011, 2011.

[CrossRef]
8. Cahoy, D.O.; Polito, F.; Phoha,V. Transient behavior of fractional queues and related processes.

Methodol. Comput. Appl. 2015, 17, 739–759. [CrossRef]
9. Haubold, H.J.; Mathai, A.M.; Saxena, R.K. Mittag–Leffler functions and their applications. J. Appl. Math.

2011, 2011. [CrossRef]
10. Meerschaert, M.M.; Nane, E.; Vellaisamy, P. The fractional Poisson process and the inverse stable subordinator.

Electron. J. Probab. 2011, 16, 1600–1620. [CrossRef]
11. Laskin, N. Fractional Poisson process. Commun. Nonlinear Sci. 2003, 8, 201–213. [CrossRef]
12. Meerschaert, M.M.; Straka, P. Inverse stable subordinators. Math. Model. Nat. Phenom. 2013, 8, 1–16.

[CrossRef] [PubMed]
13. Aletti, G.; Leonenko, N.; Merzbach, E. Fractional Poisson fields and martingales. J. Stat. Phys. 2018, 170,

700–730. [CrossRef]
14. Di Crescenzo, A.; Giorno, V.; NobileL, A.; Ricciardi, G.M. On the M/M/1 queue with catastrophes and its

continuous approximation. Queueing Syst. 2003, 43, 329–347.:1023261830362. [CrossRef]
15. Krishna Kumar, B.; Arivudainambi, D. Transient solution of an M/M/1 queue with catastrophes. Comput.

Math. Appl. 2000, 40, 1233–1240. [CrossRef]
16. Giorno, V.; Nobile, A.; Pirozzi, E. A state-dependent queueing system with asymptotic logarithmic

distribution. J. Math. Anal. Appl. 2018, 458, 949–966. [CrossRef]
17. Bingham, N.H. Limit theorems for occupation times of Markov processes. Zeitschrift für

Wahrscheinlichkeitstheorie und Verwandte Gebiete 1971, 17, 1–22. [CrossRef]
18. Kataria, K.K.; Vellaisamy, P. On densities of the product, quotient and power of independent subordinators.

J. Math. Anal. Appl. 2018, 462, 1627–1643. [CrossRef]
19. Leguesdron, P.; Pellaumail, J.; Sericola, B. Transient analysis of the M/M/1 queue. Adv. Appl. Probab. 1993,

25, 702–713. [CrossRef]

http://dx.doi.org/10.2307/3214635
http://dx.doi.org/10.2307/1427113
http://dx.doi.org/10.1155/2011/562494
http://dx.doi.org/10.1007/s11009-013-9391-2
http://dx.doi.org/10.1155/2011/298628
http://dx.doi.org/10.1214/EJP.v16-920
http://dx.doi.org/10.1016/S1007-5704(03)00037-6
http://dx.doi.org/10.1051/mmnp/20138201
http://www.ncbi.nlm.nih.gov/pubmed/25045216
http://dx.doi.org/10.1007/s10955-018-1951-y
http://dx.doi.org/10.1023/A:1023261830362
http://dx.doi.org/10.1016/S0898-1221(00)00234-0
http://dx.doi.org/10.1016/j.jmaa.2017.10.004
http://dx.doi.org/10.1007/BF00538470
http://dx.doi.org/10.1016/j.jmaa.2018.02.059
http://dx.doi.org/10.2307/1427531


Mathematics 2018, 6, 159 26 of 26

20. Zhou, Y. Basic Theory of Fractional Differential Equations; World Scientific: Singapore, 2014; ISBN 978-981-3148-16-1.
21. Halmos, P.R.; Sunder, V.S. Bounded Integral Operators on L2 Spaces; Springer Science & Business Media: Berlin,

Germany, 2012; ISBN:978-3-642-67018-3.
22. Villani, A. Another note on the inclusion Lp(µ) ⊂ Lq(µ). Am. Math. Mon. 1985, 92, 485–C76. [CrossRef]
23. Yosida, K. Functional Analysis; Springer: Berlin, Germany, 1978; ISBN 978-3-642-61859-8.
24. Korenev, B.G. Bessel Functions and Their Applications; CRC Press: Boca raton, FL, USA, 2003; ISBN 9780415281300.
25. Issaka, A.; SenGupta, I. Feynman path integrals and asymptotic expansions for transition probability

densities of some Lévy driven financial markets. J. Appl. Math. Comput. 2017, 54, 159–182. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1080/00029890.1985.11971657
http://dx.doi.org/10.1007/s12190-016-1002-2
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Definition of a Fractional Process Related to M/M/1 Queues
	Linear Fractional Cauchy Problems on Banach Spaces 
	The Fractional M/M/1 Queue 
	The Fractional M/M/1 Queue with Catastrophes 
	Alternative Representation of the Fractional M/M/1 Queue with Catastrophes
	State Probabilities for the Fractional M/M/1 with Catastrophes
	Distribution of the Busy Period
	Distribution of the Time of the First Occurrence of a Catastrophe

	Conclusions 
	Fractional Integrals and Derivatives
	Some Special Functions
	References

