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Abstract: Let H be a nontrivial subgroup of index d of a free group G and N be the normal closure
of H in G. The coset organization in a subgroup H of G provides a group P of permutation gates
whose common eigenstates are either stabilizer states of the Pauli group or magic states for universal
quantum computing. A subset of magic states consists of states associated to minimal informationally
complete measurements, called MIC states. It is shown that, in most cases, the existence of a MIC
state entails the two conditions (i) N = G and (ii) no geometry (a triple of cosets cannot produce equal
pairwise stabilizer subgroups) or that these conditions are both not satisfied. Our claim is verified
by defining the low dimensional MIC states from subgroups of the fundamental group G = π1(M)

of some manifolds encountered in our recent papers, e.g., the 3-manifolds attached to the trefoil
knot and the figure-eight knot, and the 4-manifolds defined by 0-surgery of them. Exceptions to the
aforementioned rule are classified in terms of geometric contextuality (which occurs when cosets on
a line of the geometry do not all mutually commute).

Keywords: quantum computing; free group theory; Coxeter-Todd algorithm; magic states;
informationally complete quantum measurementds; 3- and 4-manifolds; finite geometries
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1. Introduction

Interpreting quantum theory is a long-standing effort, and no single approach can exhaust all
facets of this fascinating subject. Quantum information owes much to the concept of a (generalized)
Pauli group for understanding quantum observables, their commutation, entanglement, contextuality,
and many other aspects, e.g., quantum computing. Quite recently, it has been shown that quantum
commutation relies on some finite geometries such as generalized polygons and polar spaces [1]. Finite
geometries connect to the classification of simple groups as understood by prominent researchers as
Jacques Tits, Cohen Thas, and many others [2,3].

In the Atlas of finite group representations [4], one starts with a free group, G, with relations, then
the finite group under investigation, P, is the permutation representation of the cosets of a subgroup
of finite index d of G (obtained thanks to the Todd–Coxeter algorithm). As a way of illustrating this
topic, one can refer to ([3], Table 3) to observe that a certain subgroup of index 15 of the symplectic
group S′4(2) corresponds to the 2QB (two-qubit) commutation of the 15 observables, in terms of the
generalized quadrangle of order two, denoted GQ(2, 2) (alias the doily). For 3QB, a subgroup of index
63 in the symplectic group S6(2) is sufficient, and the commutation relies on the symplectic polar space
W5(2) ([3], Table 7). An alternative way to approach 3QB commutation is in terms of the generalized
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hexagon GH(2, 2) (or its dual), which occurs from a subgroup of index 63 in the unitary group U3(3)
([3], Table 8). Similar geometries can be defined for multiple qudits (instead of qubits).

The straightforward relationship of quantum commutation to the appropriate symmetries and
finite groups was made possible thanks to techniques developed by the first author (and coauthors)
that we briefly summarize. This will also be useful at a later stage of the paper with the topic of
magic state quantum computing (For a relation of finite groups to anyons and universal quantum
computation, see, for instance, [5]).

The remainder of this introduction recalls how having the permutation group organize the
cosets leads to the finite geometries of quantum commutation (in Section 1.1) and how it allows the
computation of magic states of universal quantum computing (in Section 1.2). In this paper, it is shown
that magic states themselves may be classified according to their coset geometry with two simple
axioms (in Section 1.3).

1.1. Finite Geometries from Cosets

One can refer to [3,6,7] for the material of this subsection.
Let H be a subgroup of index d of a free group G with generators and relations. A coset table over

the subgroup H is built by means of a Coxeter–Todd algorithm. Given the coset table, one builds a
permutation group, P, that is the image og G given by its action on the cosets of H. In this paper, the
software Magma [8] is used to perform these operations.

One needs to define the rank r of the permutation group P. First, one asks that the d-letter group
P acts faithfully and transitively on the set Ω = {1, 2, · · · , d}. The action of P on a pair of distinct
elements of Ω is defined as (α, β)p = (αp, βp), p ∈ P, and α 6= β. The orbits of P on the product set
Ω×Ω are called orbitals. The number of orbits is called the rank r of P on Ω. Such a rank of P is at
least two, and it also known that two-transitive groups may be identified to rank two permutation
groups.

One selects a pair, (α, β) ∈ Ω×Ω, α 6= β, and one introduces the two-point stabilizer subgroup,
P(α,β) = {p ∈ P|(α, β)p = (α, β)}. There are 1 < m ≤ r such non-isomorphic (two-point stabilizer)
subgroups of P. Selecting one of them with α 6= β, one defines a point/line incidence geometry,
G, whose points are the elements of the set Ω and whose lines are defined by the subsets of Ω that
share the same two-point stabilizer subgroup. Two lines of G are distinguished by their (isomorphic)
stabilizers acting on distinct subsets of Ω. A nontrivial geometry is obtained from P as soon as the rank
of the representation P of P is r > 2, and at the same time, the number of non-isomorphic two-point
stabilizers of P is m > 2. Further, G is said to be contextual (i.e., it shows geometrical contextuality) if
at least one of its lines/edges is such that a set/pair of vertices is encoded by noncommuting cosets [7].

Figure 1 illustrates that the application of the two-point stabilizer subgroup approach, just
described for the index 15 subgroup of the symplectic group, is S′4(2) = A6 whose finite representation
is H =

〈
a, b|a2 = b4 = (ab)5 = (ab2)5 = 1

〉
. The finite geometry organizing the coset representatives

is the generalized quadrangle GQ(2, 2). The other representation is in terms of the two-qubit Pauli
operators, as first found in [1,9]. It is easy to check if lines that are not passing through the coset e contain
some mutually not commuting cosets so that the GQ(2, 2) geometry is contextual. The embedded
(3× 3)-grid shown in bold (the so-called Mermin square) allows a 2QB proof of Kochen–Specker
theorem [10].
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[1, 10]. It is easy to check that all lines not passing through the coset e con-
tains some mutually not commuting cosets so that the GQ(2, 2) geometry is
contextual. The embedded (3×3)-grid shown in bold (the so-called Mermin
square) allows a 2QB proof of Kochen-Specker theorem [8].

Figure 1. The generalized quadrangle of order two
GQ(2, 2). The picture provides a representation in terms of
the fifteen 2QB observables that are commuting by triples:
the lines of the geometry. Bold lines are for an embedded
3×3 grid (also called Mermin square) that is a basic model of
Kochen-Specker theorem (e.g. [3, Fig.1] or [8]). The second
representation is in terms of the cosets of the permutation
group arising from the index 15 subgroup of G ∼= A6 (the
6-letter alternating group).

The Kochen-Specker theorem with a Mermin square of two-qubit observables.
Let us show how to recover the geometry of the Mermin square, i.e. the
(3× 3) grid embedded in the generalized GQ(2, 2) of Figure 1. Recall that
it is the basic model of two-qubit contextuality [3, Fig. 1]-[8]. One starts
with the free group G =

〈
a, b|b2

〉
and one makes use of the mathematical

software Magma [9]. Then one derives the (unique) subgroup H of G that
is of index nine and possesses a permutation representation P isomorphic to
the finite group Z2

3×Z2
2 reflecting the symmetry of the grid. The permutation

representation is as follows:

P = 〈9|(1, 2, 4, 8, 7, 3)(5, 9, 6), (2, 5)(3, 6)(4, 7)(8, 9)〉 ,

Figure 1. The generalized quadrangle of order two GQ(2, 2). The picture provides a representation of
the fifteen 2QB observables that are commuting by triples: the lines of the geometry. Bold lines are for
an embedded 3× 3 grid (also called Mermin square), that is, a basic model of Kochen–Specker theorem
(e.g., see ([3], Figure 1) or [10]). The second representation is in terms of the cosets of the permutation
group arising from the index 15 subgroup of G ∼= A6 (the 6-letter alternating group).

The Kochen–Specker Theorem with a Mermin Square of Two-Qubit Observables

Let us show how to recover the geometry of the Mermin square, i.e., the (3× 3) grid embedded
in the generalized GQ(2, 2) of Figure 1. Recall that it is the basic model of two-qubit contextuality
([3], Figure 1; [4–7,10]). One starts with the free group G =

〈
a, b|b2〉, and one makes use of the

mathematical software Magma [8]. Then one derives the (unique) subgroup H of G that is of index
nine and possesses a permutation representation P isomorphic to the finite group Z2

3 ×Z2
2 reflecting

the symmetry of the grid. The permutation representation is as follows;

P = 〈9|(1, 2, 4, 8, 7, 3)(5, 9, 6), (2, 5)(3, 6)(4, 7)(8, 9)〉 ,

where the list [1, ..., 9] means the list of coset representatives

[e, a, a−1, a2, ab, a−1b, a−2, a3, aba].

The permutation representation P can be seen on a torus as in Figure 2a.
Next, we apply the procedure described at the top of this subsection. There are two types of

two-point stabilizer subgroups that are isomorphic either to the single element group Z1 or to the
two-element group Z2. Both define the geometry of a (3× 3) grid comprising six lines identified by
their nonidentical, but isomorphic, two-point stabilizers s1 to s6, made explicit in the caption of Figure
2. The first grid (not shown) is considered noncontextual in the sense that the cosets on a line are
commuting. The second grid, shown in Figure 2b, is contextual, in the sense that the right column does
not have all its triples of cosets mutually commuting. The noncommuting cosets on this line reflect the
contextuality that occurs when one takes two-qubit coordinates for the points of the grid; see [7] for
more details about the relationship between noncommuting cosets and geometric contextuality.
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Figure 2. The map (i) leading to Mermin’s square (j). The
two-point stabilizer subgroups of the permutation represen-
tation P corresponding to the dessin (one for each line) are
as follows: s1 = (2, 3)(4, 7)(5, 6), s2 = (1, 7)(2, 8)(6, 9), s3 =
(1, 4)(3, 8)(5, 9), s4 = (2, 6)(3, 5)(8, 9), s5 = (1, 9)(4, 5)(6, 7),
s6 = (1, 8)(2, 7)(3, 4), where the points of the square (resp.
the edges of the dessin d’enfant) are labeled as [1, .., 9] =
[e, a, a−1, a2, ab, a−1b, a−2, a3, aba].

where the list [1, ..., 9] means the list of coset representatives

[e, a, a−1, a2, ab, a−1b, a−2, a3, aba].

The permutation representation P can be seen on a torus as in Figure 2i.
Next, we apply the procedure described at the top of this subsection.

There are two types of two-point stabilizer subgroups isomorphic to the
single element group Z1 or to the two-element group Z2. Both define the
geometry of a (3 × 3) grid comprising six lines identified, by their non-
identical, but isomorphic two-point stabilizers s1 to s6, made explicit in the
caption of Figure 2. The first grid (not shown) is considered non-contextual
in the sense that the cosets on a line are commuting. The second grid,
shown in Figure 2j, is contextual in the sense that the right column does
not have all its triples of cosets mutually commuting. The non-commuting
cosets on this line reflect the contextuality that occurs when one takes two-
qubit coordinates for the points of the grid, see [7] for more details about the
relationship between non-commuting cosets and geometric contextuality.

1.2. Magic states in quantum computing. Now we recall our recent
work about the relation of coset theory to the magic states of universal quan-
tum computing. Bravyi & Kitaev introduced the principle of ‘magic state
distillation’ [11] that is, universal quantum computation (the possibility of
getting an arbitrary quantum gate) may be obtained thanks to stabilizer

(a)

(b)

(a)

(b)

Figure 2. The map (a) leading to Mermin’s square (b). The two-point stabilizer subgroups of
the permutation representation P corresponding to the dessin (one for each line) are as follows;
s1 = (2, 3)(4, 7)(5, 6), s2 = (1, 7)(2, 8)(6, 9), s3 = (1, 4)(3, 8)(5, 9), s4 = (2, 6)(3, 5)(8, 9), and
s5 = (1, 9)(4, 5)(6, 7), s6 = (1, 8)(2, 7)(3, 4), where the points of the square (resp. the edges of the
dessin d’enfant) are labeled as [1, .., 9] = [e, a, a−1, a2, ab, a−1b, a−2, a3, aba].

1.2. Magic States in Quantum Computing

Now, we recall our recent work about the relation of coset theory to the magic states of universal
quantum computing. Bravyi & Kitaev introduced the principle of “magic state distillation” [11], that
is, universal quantum computation (the possibility of getting an arbitrary quantum gate), which may
be obtained thanks to stabilizer operations (Clifford group unitaries, preparations, and measurements)
and by adding an appropriate single qubit nonstabilizer state, which is called a “magic state”. Then,
whatever the dimension of the Hilbert space where the quantum states live, a nonstabilizer pure state
has been called a magic state [12]. An improvement of this concept was carried out in [13], showing
that a magic state could correspond at the same time to a fiducial state for the construction of a minimal
informationally complete positive operator-valued measure, or MIC, under the action on it of the
Pauli group of the corresponding dimension. In this view, UQC is relevant both to magic states of
universal quantum computation and to MICs. In [13], a d-dimensional magic state is obtained from
the permutation group that organizes the cosets of a subgroup H of index d of a two-generator free
group G.

One uses the fact that a permutation may be realized as a permutation matrix/gate and that
mutually commuting matrices share eigenstates. They are either of the stabilizer type (as elements of
the Pauli group) or of the magic type. One keeps magic states that are fiducial states for a MIC, because
the other magic states may lead to an information loss during the computation. A catalog of the magic
states relevant to UQC and MICs have been obtained by selecting G as the two-letter representation of
the modular group Γ = PSL(2,Z) [14].

Building a Two-Qubit MIC from a Subgroup Γs of Index 4 of the Modular Group Γ

One provides an example of calculation of a MIC for the important case of two-qubit computation.
The reader should refer to [13,14] for details about the concepts below. This particular case is mentioned
again in Table 4 in the context of the fundamental group for the trefoil knot complement.
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The permutation group of smaller size that can be used to build a four-dimensional MIC is the

alternating group A4 = 〈v1, v2〉 with generators v1 = (1, 2)(3, 4) ≡
( 0 1 0 0

1 0 0 0
0 0 0 1
0 0 1 0

)
and v2 = (2, 3, 4) ≡

( 1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

)
, made explicit in terms of the (index 4) permutation representation and the corresponding

permutation gate. The map for this subgroup is in Figure 3a. Using Sage [15] and the table of
congruence subgroups [16], one recognizes that Γs = Γ0(3) whose fundamental domain is pictured
in Figure 3b. In this particular case, the number of elliptic points of order two and three are ν2 = 0
and ν3 = 1, respectively; the elliptic point at 1

2 (1 + i√
3
) is denoted by the symbol “*”, and the cusps

are at 0 and ∞. The subgroup Γs = Γ0(3) is generated by two transformations: SΓs : z → z−1
3z−2 and

TΓs : z→ z + 1.
The joined eigenstates of the commuting permutation matrices in A4 that can serve as fiducial

states for a MIC are of the form (0, 1,−ω6, ω6 − 1) ≡ 1√
3
(|01〉 − ω6 |10〉+ (ω6 − 1) |11〉), with ω6 =

exp( 2iπ
6 ). Taking the action of the two-qubit Pauli group on the latter type of state, one finds that

the corresponding pure projectors sum to four times the identity (thus form a POVM), and their
pairwise distinct products satisfy the dichotomic relation tr(ΠiΠj)i 6=j =

∣∣〈ψi|ψj
〉
|2i 6=j ∈ { 1

3 , 1
32 }. As

a result, the 16 projectors Πi build an asymmetric informationally complete POVM (see also [13],
Section 2). In Figure 3c, traces of triple products of projectors for the lines equal 1

9 or ± 1
27 . Instead of

labeling coordinates as projectors, one labels them with the two-qubit operators acting on the fiducial
state. The displayed picture corresponds to the generalized quadrangle of order two GQ(2, 2). It also
corresponds to the set of triples of mutually commuting two-qubit operators, that is, to the picture
already drawn in Figure 1. By restricting to triples of projectors whose trace is ± 1

27 one recovers the
standard Mermin square at the core of Figure 1.

GROUP GEOMETRICAL AXIOMS FOR MAGIC STATES OF QUANTUM COMPUTING5

operations (Clifford group unitaries, preparations and measurements) and
by adding an appropriate single qubit non-stabilizer state, which is called
a ‘magic state’. Then, whatever the dimension of the Hilbert space where
the quantum states live, a non-stabilizer pure state has been called a magic
state [12]. An improvement of this concept was carried out in [13] showing
that a magic state could correspond at the same time to a fiducial state for
the construction of a minimal informationally complete positive operator-
valued measure, or MIC, under the action on it of the Pauli group of the
corresponding dimension. In this view, UQC is relevant both to magic states
of universal quantum computation and to MICs. In [13], a d-dimensional
magic state is obtained from the permutation group that organizes the cosets
of a subgroup H of index d of a two-generator free group G.

One uses the fact that a permutation may be realized as a permutation
matrix/gate and that mutually commuting matrices share eigenstates. They
are either of the stabilizer type (as elements of the Pauli group) or of the
magic type. One keeps magic states that are fiducial states for a MIC
because the other magic states may lead to an information loss during the
computation. A catalog of the magic states relevant to UQC and MICs have
been obtained by selecting G as the two-letter representation of the modular
group Γ = PSL(2,Z) [14].

Figure 3. Representation of A4
∼= Γ0(3) as a map (a) and as

the tiling of the fundamental domain (the two thick vertical
lines have to identified) (b). The character * denotes the
unique elliptic point (of order 3). The organization of triple
products of projectors leads to the generalized quadrangle
GQ(2, 2) pictured in (c).

Building a two-qubit MIC from a subgroup Γs of index 4 of the modular group
Γ. One provides an example of calculation of a MIC for the important case
of two-qubit computation. The reader should refer to [13]-[14] for details

Figure 3. Representation of A4 ∼= Γ0(3) as a map (a) and as the tiling of the fundamental domain
(the two thick vertical lines have to identified) (b). The character * denotes the unique elliptic point
(of order 3). The organization of triple products of projectors leads to the generalized quadrangle
GQ(2, 2) pictured in panel (c).

Constructing MICs Thanks to the Fundamental Group of a Knot or a Link

The next step, developed in [17,18], is to relate the choice of the starting group G to
three-dimensional topology. More precisely, G is taken as the fundamental group π1(S3 \ L) of a
3-manifold M3 defined as the complement of a knot or link L in the 3-sphere S3. A branched covering
of degree d over the selected M3 has a fundamental group corresponding to a subgroup of index d of
π1(M3) . It may be identified to a submanifold of M3, the one leading to a MIC is a model of UQC.
The knot involved by Γ is the left-handed trefoil knot T1 = 31, as shown in [14] and ([17], Section 2).

The link L6a3 corresponds to the congruence subgroup Γ0(3) of Γ, its fundamental group π1 =〈
a, b|(a, b3)

〉
builds a two-qubit magic state for UQC of the type (0, 1,−ω6, ω6 − 1), ω6 = exp( 2iπ

6 ), as
well as a MIC with the geometry of the generalized quadrangle of order two GQ(2, 2) ([17], Figure 1b).
One can again refer to Table 4 below for this case. Figure 4a is the drawing of L6a3. There also exists a
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braid representation of the link with braid word ABCDCbaCdEdCBCDCeb as defined in ([18], Table 1),
the braid is pictured in Figure 4b.

The same two-qubit magic state and the corresponding UQC can be defined from the figure-eight
knot. One can refer to Table 2 below for this case. The figure-eight manifold is hyperbolic as well as the
submanifolds corresponding to the finite index subgroups of its fundamental group. Figure 4c is the
drawing of L10n46 and the corresponding braid abCbabbcBc is pictured in Figure 4e. The fundamental
hyperbolic polyhedron is shown on Figure 4d.

GROUP GEOMETRICAL AXIOMS FOR MAGIC STATES OF QUANTUM COMPUTING7

Figure 4. (a) The link L6a3 defining the two-qubit MIC
from the trefoil knot and (b) the braid representation. (c)
The link L10n46 defining the two-qubit MIC from the figure-
eight knot, (d) the corresponding hyperbolic 3-manifold
otet0800002 and (e) the braid representation.

The same two-qubit magic state and the corresponding UQC can be de-
fined from the figure-eight knot. One can refer to Table 2 below for this case.
The figure-eight manifold is hyperbolic as well as the submanifolds corre-
sponding to the finite index subgroups of its fundamental group. Fig. 4c is
the drawing of L10n46 and the corresponding braid abCbabbcBc is pictured
in Fig. 4e. The fundamental hyperbolic polyhedron is shown on Fig. 4d.

1.3. Coset geometry of magic states. The goal of the paper is to classify
the magic states according to the coset geometry where they arise. We start
from a non trivial subgroup H of index d of a free group G and we denote
N the normal closure of H in G. As above, one constructs the permutation
representation P of G given by its action on the cosets of H. Then, seeing P
as a group of permutation gates, the common eigenstates are either stabilizer
states of the Pauli group or magic states for universal quantum computing.
A subset of magic states so obtained consists of MIC states associated to
minimal informationally complete measurements.

It is shown in the paper that the existence of a MIC state entails quite
often that the two conditions (i) N = G and (ii) no geometry (a triple of
cosets cannot produce equal pairwise stabilizer subgroups), or that these
conditions are both not satisfied. In the following, we check our claim by
defining the low dimensional MIC states from subgroups of the fundamental
group G = π1(M) of manifolds encountered in our recent papers, e.g. the

Figure 4. (a) The link L6a3 defining the two-qubit MIC from the trefoil knot and (b) the braid
representation. (c) The link L10n46 defining the two-qubit MIC from the figure-eight knot, (d) the
corresponding hyperbolic 3-manifold otet0800002 and (e) the braid representation.

1.3. Coset Geometry of Magic States

The goal of the paper is to classify the magic states according to the coset geometry where they
arise. We start from a nontrivial subgroup H of index d of a free group G and we denote N the normal
closure of H in G. As above, one constructs the permutation representation P of G given by its action
on the cosets of H. Then, seeing P as a group of permutation gates, the common eigenstates are either
stabilizer states of the Pauli group or magic states for universal quantum computing. A subset of magic
states so obtained consists of MIC states associated to minimal informationally complete measurements.

It is shown in the paper that the existence of a MIC state entails quite often that the two conditions
(i) N = G and (ii) no geometry (a triple of cosets cannot produce equal pairwise stabilizer subgroups),
or that these conditions are both not satisfied. In the following, we check our claim by defining the
low dimensional MIC states from subgroups of the fundamental group G = π1(M) of manifolds
encountered in our recent papers, e.g., the 3-manifolds attached to the trefoil knot and the figure-eight
knot, and the 4-manifolds defined by 0-surgery of them.

Exceptions to the aforementioned rule are classified in terms of geometric contextuality (which
occurs when cosets on a line of the geometry do not all mutually commute).

In Section 2, one deals with the case of MIC states obtained from the subgroups of the fundamental
group of figure-eight knot hyperbolic manifold and its 0-surgery. In Section 3, the MIC states produced
with the trefoil knot manifold and its 0-surgery are investigated.

2. MIC States Pertaining to the Figure-Eight Knot and Its 0-Surgery

We first investigate the relation of MIC states to the group geometrical axioms (i)–(ii) (or their
negation) in the context of the figure-eight knot K4a1 (in Section 2.2) and its 0-surgery (in Section 2.1).
The fundamental group of the complement of K4a1 in the 3-sphere G = π1(S3 \ K4a1) is isomorphic
to the braid group with three strands. Therefore this fundamental group is the central extension of the
modular group Γ. The connection of Γ to MICs is first studied in [14] and ([17], Table 2), below are new
results and corrections.
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2.1. Group Geometrical Axioms Applied to the Fundamental Group π1(Y)

The manifold Y defined by 0-surgery on the knot K4a1 is of special interest as shown in ([18],
Section 2) and references therein. The number of subgroups of index d of the fundamental group π1(Y)
is as follows

ηd[π1(Y)] = [1, 1, 1, 2, 2, 5, 1, 2, 2, 4, 3, 17, 1, 1, 2, 3, 1, 6, 3, 6, 1, 3, 1, 43, . . .],

where a bold number means that a MIC exists at the corresponding index.
In Table 1, one summarizes the check of our axioms (i) and (ii) applied to π1(Y). A triangle ∆

means that a geometry does exist (corresponding to at least a triple of cosets with equal pairwise
stabilizer subgroups), thus with (ii) is violated. According to our theory, for a MIC to exist, we should
have (i) and (ii) satisfied, or both of them violated. The former case occurs for d = 9, 11 and 19. The
latter case occurs for d = 6 where the geometry is that of the octahedron (with the 3-partite graph
K(2, 2, 2)) and d = 20, where the geometry is encoded by the the complement of the line graph of the
bipartite K(4, 5). In all of these five cases, a pp-valued MIC does exist.

For dimension 4, the bold triangle points out a violation since (i) is true and (ii) is false while the
2QB-MIC exists. In this case the geometry is the tetrahedron (with complete graph K4) but not all
cosets on a line/triangle are mutually commuting, a symptom of geometric contextuality, as shown
in Figure 5.

Table 1. Table of subgroups of the fundamental group π1[S3 \K4a1(0, 1)] with K4a1(0, 1), the 0-surgery
over the figure-eight knot. The permutation group P organizing the cosets in column 2. If (i) is true,
unless otherwise specified, the graph of cosets leading to a MIC is that of the d-simplex and/or the
condition (ii) is true: no geometry. The symbol ∆ means that (ii) fails to be satisfied. When there exists a
MIC with (i) true and (ii) false, the geometry is shown in bold characters (here, this occurs in dimension
4, see Figure 5). If it exists, the MIC is pp-valued as given in column 4. In addition, K(2, 2, 2) is the
binary tripartite graph (alias the octahedron), and L(K(4, 5)) means the complement of the line graph
of the bipartite graph K(4, 5).

d P (i) pp Geometry

4 A4 yes 2 2QB MIC, ∆

5 10 yes ∆
6 A4 no 2 6-dit MIC, K(2, 2, 2)
9 (36, 9) ∼= 32

GROUP GEOMETRICAL AXIOMS FOR MAGIC STATES OF QUANTUM COMPUTING11

d ty M3 (or P ) cp (i) pp geometry
2 cyc otet0400002, m206 1 no
3 cyc otet0600003, s961 1 no
4 irr otet0800002, L10n46, t12840 2 yes 2 2QB MIC, ∆

cyc otet0800007, t12839 1 no
5 cyc otet1000019 1 no

irr otet1000006, L8a20 3 yes ∆
irr (×2) otet1000026 2 yes 1 5-dit MIC

6 cyc otet1200013 1 no
irr otet1200039 1 no
irr (×2) otet1200038 1 yes 10 6-dit MIC
irr otet1200041 2 no
irr (×2) otet1200017 2 no
irr (×4) otet1200000 2 yes 2 6-dit MIC

7 cyc otet1400019 1 no
irr (×4) otet1400002, L14n55217 3 yes 2 7-dit MIC,∆ : Fano
irr (×4) otet1400035 1 yes 2 7-dit MIC, ∆ : Fano

8 cyc otet1600026 1 no
irr (×2) otet1600035 1 no
irr (×2) otet1600079 2 yes fd
irr (×2) otet1600016 2 yes fd
irr otet1600092 2 no
irr otet1600091 2 yes 16-cell
irr otet1600013, L14n17678 2 no

9 (36, 9) ∼= 32 ⋊ 4 yes 2 2QT MIC
(×2) (504, 156) = PSL(2, 8) yes 3 2QT MIC
(×2) (216, 153) ∼= 32 ⋊ (24, 3) yes 2 2QT MIC

10 (×6) (160, 234) ∼= 24 ⋊ 10 yes 5 10-dit MIC
(×2) (120, 34) = S5 yes 4 10-dit MIC, ∆ : [103]
(×2) (120, 34) = S5 no 7 10-dit MIC, 5-ortho

(360, 118) = A6 yes 5 10-dit MIC

Table 2. Table of 3-manifolds M3 found from subgroups of finite
index d of the fundamental group π1(S

3 \ K4a1) (alias the d-fold cov-
erings over the figure-eight knot 3-manifold). The covering type ‘ty’ in
column 2, the manifold identification ‘M3’ in column 3 and the number
of cusps ‘cp’ in column 4 are from SnapPy [19]. For d = 9 and 10,
SnapPy does not provide results so that we only identify the permuta-
tion group P =SmallGroup(o, k) (abbreviated as (o, k)), where o is the
order and k is the k-th group of order o in the standard notation (that
is used in Magma). If it exists, the MIC is ‘pp’-valued. If (i) is true,
unless otherwise specified, the graph of cosets leading to a MIC is that
of the d-simplex [and/or the condition (ii) is true: no geometry]. The
symbol ∆ means that (ii) fails to be satisfied. When there exists a MIC
with (i) true and (ii) false, the geometry is shown in bold characters.
The symbol ‘fd’ means a false detection of a MIC when (i) and (ii) are
satisfied simultaneously while a MIC does not exist. The abbreviations
‘Fano’, ‘d-ortho’ and ‘[103]’ are for the Fano plane, the d-orthoplex and
the corresponding geometric configuration.

3. MIC states pertaining to the Trefoil knot and its 0-surgery

We now investigate the relation of MIC states to the group geometrical axioms
(i)-(ii) (or their negation) in the context of the trefoil knot 31 (in Sec. 3.2) and

4 yes 2 2QT MIC
11 (55, 1) = 11

GROUP GEOMETRICAL AXIOMS FOR MAGIC STATES OF QUANTUM COMPUTING11

d ty M3 (or P ) cp (i) pp geometry
2 cyc otet0400002, m206 1 no
3 cyc otet0600003, s961 1 no
4 irr otet0800002, L10n46, t12840 2 yes 2 2QB MIC, ∆

cyc otet0800007, t12839 1 no
5 cyc otet1000019 1 no

irr otet1000006, L8a20 3 yes ∆
irr (×2) otet1000026 2 yes 1 5-dit MIC

6 cyc otet1200013 1 no
irr otet1200039 1 no
irr (×2) otet1200038 1 yes 10 6-dit MIC
irr otet1200041 2 no
irr (×2) otet1200017 2 no
irr (×4) otet1200000 2 yes 2 6-dit MIC

7 cyc otet1400019 1 no
irr (×4) otet1400002, L14n55217 3 yes 2 7-dit MIC,∆ : Fano
irr (×4) otet1400035 1 yes 2 7-dit MIC, ∆ : Fano

8 cyc otet1600026 1 no
irr (×2) otet1600035 1 no
irr (×2) otet1600079 2 yes fd
irr (×2) otet1600016 2 yes fd
irr otet1600092 2 no
irr otet1600091 2 yes 16-cell
irr otet1600013, L14n17678 2 no

9 (36, 9) ∼= 32 ⋊ 4 yes 2 2QT MIC
(×2) (504, 156) = PSL(2, 8) yes 3 2QT MIC
(×2) (216, 153) ∼= 32 ⋊ (24, 3) yes 2 2QT MIC

10 (×6) (160, 234) ∼= 24 ⋊ 10 yes 5 10-dit MIC
(×2) (120, 34) = S5 yes 4 10-dit MIC, ∆ : [103]
(×2) (120, 34) = S5 no 7 10-dit MIC, 5-ortho

(360, 118) = A6 yes 5 10-dit MIC

Table 2. Table of 3-manifolds M3 found from subgroups of finite
index d of the fundamental group π1(S

3 \ K4a1) (alias the d-fold cov-
erings over the figure-eight knot 3-manifold). The covering type ‘ty’ in
column 2, the manifold identification ‘M3’ in column 3 and the number
of cusps ‘cp’ in column 4 are from SnapPy [19]. For d = 9 and 10,
SnapPy does not provide results so that we only identify the permuta-
tion group P =SmallGroup(o, k) (abbreviated as (o, k)), where o is the
order and k is the k-th group of order o in the standard notation (that
is used in Magma). If it exists, the MIC is ‘pp’-valued. If (i) is true,
unless otherwise specified, the graph of cosets leading to a MIC is that
of the d-simplex [and/or the condition (ii) is true: no geometry]. The
symbol ∆ means that (ii) fails to be satisfied. When there exists a MIC
with (i) true and (ii) false, the geometry is shown in bold characters.
The symbol ‘fd’ means a false detection of a MIC when (i) and (ii) are
satisfied simultaneously while a MIC does not exist. The abbreviations
‘Fano’, ‘d-ortho’ and ‘[103]’ are for the Fano plane, the d-orthoplex and
the corresponding geometric configuration.

3. MIC states pertaining to the Trefoil knot and its 0-surgery

We now investigate the relation of MIC states to the group geometrical axioms
(i)-(ii) (or their negation) in the context of the trefoil knot 31 (in Sec. 3.2) and

5, (×2) yes 3 11-dit MIC
16 (48, 3) ∼= 4

GROUP GEOMETRICAL AXIOMS FOR MAGIC STATES OF QUANTUM COMPUTING11

d ty M3 (or P ) cp (i) pp geometry
2 cyc otet0400002, m206 1 no
3 cyc otet0600003, s961 1 no
4 irr otet0800002, L10n46, t12840 2 yes 2 2QB MIC, ∆

cyc otet0800007, t12839 1 no
5 cyc otet1000019 1 no

irr otet1000006, L8a20 3 yes ∆
irr (×2) otet1000026 2 yes 1 5-dit MIC

6 cyc otet1200013 1 no
irr otet1200039 1 no
irr (×2) otet1200038 1 yes 10 6-dit MIC
irr otet1200041 2 no
irr (×2) otet1200017 2 no
irr (×4) otet1200000 2 yes 2 6-dit MIC

7 cyc otet1400019 1 no
irr (×4) otet1400002, L14n55217 3 yes 2 7-dit MIC,∆ : Fano
irr (×4) otet1400035 1 yes 2 7-dit MIC, ∆ : Fano

8 cyc otet1600026 1 no
irr (×2) otet1600035 1 no
irr (×2) otet1600079 2 yes fd
irr (×2) otet1600016 2 yes fd
irr otet1600092 2 no
irr otet1600091 2 yes 16-cell
irr otet1600013, L14n17678 2 no

9 (36, 9) ∼= 32 ⋊ 4 yes 2 2QT MIC
(×2) (504, 156) = PSL(2, 8) yes 3 2QT MIC
(×2) (216, 153) ∼= 32 ⋊ (24, 3) yes 2 2QT MIC

10 (×6) (160, 234) ∼= 24 ⋊ 10 yes 5 10-dit MIC
(×2) (120, 34) = S5 yes 4 10-dit MIC, ∆ : [103]
(×2) (120, 34) = S5 no 7 10-dit MIC, 5-ortho

(360, 118) = A6 yes 5 10-dit MIC

Table 2. Table of 3-manifolds M3 found from subgroups of finite
index d of the fundamental group π1(S

3 \ K4a1) (alias the d-fold cov-
erings over the figure-eight knot 3-manifold). The covering type ‘ty’ in
column 2, the manifold identification ‘M3’ in column 3 and the number
of cusps ‘cp’ in column 4 are from SnapPy [19]. For d = 9 and 10,
SnapPy does not provide results so that we only identify the permuta-
tion group P =SmallGroup(o, k) (abbreviated as (o, k)), where o is the
order and k is the k-th group of order o in the standard notation (that
is used in Magma). If it exists, the MIC is ‘pp’-valued. If (i) is true,
unless otherwise specified, the graph of cosets leading to a MIC is that
of the d-simplex [and/or the condition (ii) is true: no geometry]. The
symbol ∆ means that (ii) fails to be satisfied. When there exists a MIC
with (i) true and (ii) false, the geometry is shown in bold characters.
The symbol ‘fd’ means a false detection of a MIC when (i) and (ii) are
satisfied simultaneously while a MIC does not exist. The abbreviations
‘Fano’, ‘d-ortho’ and ‘[103]’ are for the Fano plane, the d-orthoplex and
the corresponding geometric configuration.

3. MIC states pertaining to the Trefoil knot and its 0-surgery

We now investigate the relation of MIC states to the group geometrical axioms
(i)-(ii) (or their negation) in the context of the trefoil knot 31 (in Sec. 3.2) and

A4 yes ∆
19 (171, 3) ∼= 19

GROUP GEOMETRICAL AXIOMS FOR MAGIC STATES OF QUANTUM COMPUTING11

d ty M3 (or P ) cp (i) pp geometry
2 cyc otet0400002, m206 1 no
3 cyc otet0600003, s961 1 no
4 irr otet0800002, L10n46, t12840 2 yes 2 2QB MIC, ∆

cyc otet0800007, t12839 1 no
5 cyc otet1000019 1 no

irr otet1000006, L8a20 3 yes ∆
irr (×2) otet1000026 2 yes 1 5-dit MIC

6 cyc otet1200013 1 no
irr otet1200039 1 no
irr (×2) otet1200038 1 yes 10 6-dit MIC
irr otet1200041 2 no
irr (×2) otet1200017 2 no
irr (×4) otet1200000 2 yes 2 6-dit MIC

7 cyc otet1400019 1 no
irr (×4) otet1400002, L14n55217 3 yes 2 7-dit MIC,∆ : Fano
irr (×4) otet1400035 1 yes 2 7-dit MIC, ∆ : Fano

8 cyc otet1600026 1 no
irr (×2) otet1600035 1 no
irr (×2) otet1600079 2 yes fd
irr (×2) otet1600016 2 yes fd
irr otet1600092 2 no
irr otet1600091 2 yes 16-cell
irr otet1600013, L14n17678 2 no

9 (36, 9) ∼= 32 ⋊ 4 yes 2 2QT MIC
(×2) (504, 156) = PSL(2, 8) yes 3 2QT MIC
(×2) (216, 153) ∼= 32 ⋊ (24, 3) yes 2 2QT MIC

10 (×6) (160, 234) ∼= 24 ⋊ 10 yes 5 10-dit MIC
(×2) (120, 34) = S5 yes 4 10-dit MIC, ∆ : [103]
(×2) (120, 34) = S5 no 7 10-dit MIC, 5-ortho

(360, 118) = A6 yes 5 10-dit MIC

Table 2. Table of 3-manifolds M3 found from subgroups of finite
index d of the fundamental group π1(S

3 \ K4a1) (alias the d-fold cov-
erings over the figure-eight knot 3-manifold). The covering type ‘ty’ in
column 2, the manifold identification ‘M3’ in column 3 and the number
of cusps ‘cp’ in column 4 are from SnapPy [19]. For d = 9 and 10,
SnapPy does not provide results so that we only identify the permuta-
tion group P =SmallGroup(o, k) (abbreviated as (o, k)), where o is the
order and k is the k-th group of order o in the standard notation (that
is used in Magma). If it exists, the MIC is ‘pp’-valued. If (i) is true,
unless otherwise specified, the graph of cosets leading to a MIC is that
of the d-simplex [and/or the condition (ii) is true: no geometry]. The
symbol ∆ means that (ii) fails to be satisfied. When there exists a MIC
with (i) true and (ii) false, the geometry is shown in bold characters.
The symbol ‘fd’ means a false detection of a MIC when (i) and (ii) are
satisfied simultaneously while a MIC does not exist. The abbreviations
‘Fano’, ‘d-ortho’ and ‘[103]’ are for the Fano plane, the d-orthoplex and
the corresponding geometric configuration.

3. MIC states pertaining to the Trefoil knot and its 0-surgery

We now investigate the relation of MIC states to the group geometrical axioms
(i)-(ii) (or their negation) in the context of the trefoil knot 31 (in Sec. 3.2) and

9 yes 3 19-dit MIC
20 (120, 39) ∼= 4

GROUP GEOMETRICAL AXIOMS FOR MAGIC STATES OF QUANTUM COMPUTING11

d ty M3 (or P ) cp (i) pp geometry
2 cyc otet0400002, m206 1 no
3 cyc otet0600003, s961 1 no
4 irr otet0800002, L10n46, t12840 2 yes 2 2QB MIC, ∆

cyc otet0800007, t12839 1 no
5 cyc otet1000019 1 no

irr otet1000006, L8a20 3 yes ∆
irr (×2) otet1000026 2 yes 1 5-dit MIC

6 cyc otet1200013 1 no
irr otet1200039 1 no
irr (×2) otet1200038 1 yes 10 6-dit MIC
irr otet1200041 2 no
irr (×2) otet1200017 2 no
irr (×4) otet1200000 2 yes 2 6-dit MIC

7 cyc otet1400019 1 no
irr (×4) otet1400002, L14n55217 3 yes 2 7-dit MIC,∆ : Fano
irr (×4) otet1400035 1 yes 2 7-dit MIC, ∆ : Fano

8 cyc otet1600026 1 no
irr (×2) otet1600035 1 no
irr (×2) otet1600079 2 yes fd
irr (×2) otet1600016 2 yes fd
irr otet1600092 2 no
irr otet1600091 2 yes 16-cell
irr otet1600013, L14n17678 2 no

9 (36, 9) ∼= 32 ⋊ 4 yes 2 2QT MIC
(×2) (504, 156) = PSL(2, 8) yes 3 2QT MIC
(×2) (216, 153) ∼= 32 ⋊ (24, 3) yes 2 2QT MIC

10 (×6) (160, 234) ∼= 24 ⋊ 10 yes 5 10-dit MIC
(×2) (120, 34) = S5 yes 4 10-dit MIC, ∆ : [103]
(×2) (120, 34) = S5 no 7 10-dit MIC, 5-ortho

(360, 118) = A6 yes 5 10-dit MIC

Table 2. Table of 3-manifolds M3 found from subgroups of finite
index d of the fundamental group π1(S

3 \ K4a1) (alias the d-fold cov-
erings over the figure-eight knot 3-manifold). The covering type ‘ty’ in
column 2, the manifold identification ‘M3’ in column 3 and the number
of cusps ‘cp’ in column 4 are from SnapPy [19]. For d = 9 and 10,
SnapPy does not provide results so that we only identify the permuta-
tion group P =SmallGroup(o, k) (abbreviated as (o, k)), where o is the
order and k is the k-th group of order o in the standard notation (that
is used in Magma). If it exists, the MIC is ‘pp’-valued. If (i) is true,
unless otherwise specified, the graph of cosets leading to a MIC is that
of the d-simplex [and/or the condition (ii) is true: no geometry]. The
symbol ∆ means that (ii) fails to be satisfied. When there exists a MIC
with (i) true and (ii) false, the geometry is shown in bold characters.
The symbol ‘fd’ means a false detection of a MIC when (i) and (ii) are
satisfied simultaneously while a MIC does not exist. The abbreviations
‘Fano’, ‘d-ortho’ and ‘[103]’ are for the Fano plane, the d-orthoplex and
the corresponding geometric configuration.

3. MIC states pertaining to the Trefoil knot and its 0-surgery

We now investigate the relation of MIC states to the group geometrical axioms
(i)-(ii) (or their negation) in the context of the trefoil knot 31 (in Sec. 3.2) and

(5

GROUP GEOMETRICAL AXIOMS FOR MAGIC STATES OF QUANTUM COMPUTING11

d ty M3 (or P ) cp (i) pp geometry
2 cyc otet0400002, m206 1 no
3 cyc otet0600003, s961 1 no
4 irr otet0800002, L10n46, t12840 2 yes 2 2QB MIC, ∆

cyc otet0800007, t12839 1 no
5 cyc otet1000019 1 no

irr otet1000006, L8a20 3 yes ∆
irr (×2) otet1000026 2 yes 1 5-dit MIC

6 cyc otet1200013 1 no
irr otet1200039 1 no
irr (×2) otet1200038 1 yes 10 6-dit MIC
irr otet1200041 2 no
irr (×2) otet1200017 2 no
irr (×4) otet1200000 2 yes 2 6-dit MIC

7 cyc otet1400019 1 no
irr (×4) otet1400002, L14n55217 3 yes 2 7-dit MIC,∆ : Fano
irr (×4) otet1400035 1 yes 2 7-dit MIC, ∆ : Fano

8 cyc otet1600026 1 no
irr (×2) otet1600035 1 no
irr (×2) otet1600079 2 yes fd
irr (×2) otet1600016 2 yes fd
irr otet1600092 2 no
irr otet1600091 2 yes 16-cell
irr otet1600013, L14n17678 2 no

9 (36, 9) ∼= 32 ⋊ 4 yes 2 2QT MIC
(×2) (504, 156) = PSL(2, 8) yes 3 2QT MIC
(×2) (216, 153) ∼= 32 ⋊ (24, 3) yes 2 2QT MIC

10 (×6) (160, 234) ∼= 24 ⋊ 10 yes 5 10-dit MIC
(×2) (120, 34) = S5 yes 4 10-dit MIC, ∆ : [103]
(×2) (120, 34) = S5 no 7 10-dit MIC, 5-ortho

(360, 118) = A6 yes 5 10-dit MIC

Table 2. Table of 3-manifolds M3 found from subgroups of finite
index d of the fundamental group π1(S

3 \ K4a1) (alias the d-fold cov-
erings over the figure-eight knot 3-manifold). The covering type ‘ty’ in
column 2, the manifold identification ‘M3’ in column 3 and the number
of cusps ‘cp’ in column 4 are from SnapPy [19]. For d = 9 and 10,
SnapPy does not provide results so that we only identify the permuta-
tion group P =SmallGroup(o, k) (abbreviated as (o, k)), where o is the
order and k is the k-th group of order o in the standard notation (that
is used in Magma). If it exists, the MIC is ‘pp’-valued. If (i) is true,
unless otherwise specified, the graph of cosets leading to a MIC is that
of the d-simplex [and/or the condition (ii) is true: no geometry]. The
symbol ∆ means that (ii) fails to be satisfied. When there exists a MIC
with (i) true and (ii) false, the geometry is shown in bold characters.
The symbol ‘fd’ means a false detection of a MIC when (i) and (ii) are
satisfied simultaneously while a MIC does not exist. The abbreviations
‘Fano’, ‘d-ortho’ and ‘[103]’ are for the Fano plane, the d-orthoplex and
the corresponding geometric configuration.

3. MIC states pertaining to the Trefoil knot and its 0-surgery

We now investigate the relation of MIC states to the group geometrical axioms
(i)-(ii) (or their negation) in the context of the trefoil knot 31 (in Sec. 3.2) and

(6, 2)) yes L(K(4, 5))
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Figure 5. The contextual geometry associated to the 2QB-
MIC and permutation group P = A4 in Table 1. The
line/triangle {a, ab, ab−1} is not made of mutually commut-
ing cosets, thus geometric contextuality occurs.

d P (i) pp geometry
4 A4 yes 2 2QB MIC, ∆
5 10 yes ∆
6 A4 no 2 6-dit MIC, K(2, 2, 2)
9 (36, 9) ∼= 32 ⋊ 4 yes 2 2QT MIC
11 (55, 1) = 11⋊ 5, (×2) yes 3 11-dit MIC
16 (48, 3) ∼= 4⋊A4 yes ∆
19 (171, 3) ∼= 19⋊ 9 yes 3 19-dit MIC

20 (120, 39) ∼= 4⋊ (5⋊ (6, 2)) yes L(K(4, 5))

Table 1. Table of subgroups of the fundamental group
π1[S

3 \ K4a1(0, 1)] [with K4a1(0, 1) the 0-surgery over the
figure-eight knot]. The permutation group P organizing the
cosets in column 2. If (i) is true, unless otherwise specified,
the graph of cosets leading to a MIC is that of the d-simplex
[ and/or the condition (ii) is true: no geometry]. The symbol
∆ means that (ii) fails to be satisfied. When there exists a
MIC with (i) true and (ii) false, the geometry is shown in
bold characters (here this occurs in dimension 4, see Fig. 5).
If it exists, the MIC is pp-valued as given in column 4. In
addition, K(2, 2, 2) is the binary tripartite graph (alias the

octahedron) and L(K(4, 5)) means the complement of the
line graph of the bipartite graph K(4, 5).

There are three exceptions where (i) is true and a geometry does exist
(when (ii) fails to be satisfied). This first occurs in dimension 4 with a
2QB MIC arising from the 3-manifold otet0800002, in this case geometric
contextuality occurs in the cosets as in Fig. 5 of the previous subsection.
Then, it occurs in dimension 7 (corresponding to 3-manifolds otet1400002 and

Figure 5. The contextual geometry associated to the 2QB-MIC and permutation group P = A4 in
Table 1. The line/triangle {a, ab, ab−1} is not made of mutually commuting cosets, thus geometric
contextuality occurs.
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2.2. Group Geometrical Axioms Applied to the Fundamental Group π1(S3 \ K4a1)

The submanifolds obtained from the subgroups of index d of the fundamental group π1(S3 \K4a1)
for the figure-eight knot complement are given in Table 2 (column 3) as identified in SnapPy [19].

As for the subsection above, when axioms (i) and (ii) are simultaneously satisfied (or both are not
satisfied), a MIC is created; otherwise, no MIC exist in the corresponding dimension, as expected.

There are three exceptions where (i) is true and a geometry does exist (when (ii) fails to be
satisfied). This first occurs in dimension 4 with a 2QB MIC arising from the 3-manifold otet0800002;
in this case, geometric contextuality occurs in the cosets as in Figure 5 of the previous subsection. Then,
it occurs in dimension 7 (corresponding to 3-manifolds otet1400002 and otet1400035) when the geometry
of cosets is that of the Fano plane shown in Figure 6a. Finally, it occurs in dimension 10 when the
geometry of cosets is that of a [103] configuration shown in Figure 6b ([20], p. 74). This configuration
turns out to be the familiar Desargues configuration.

In addition to the latter cases, false detection of a MIC may occur (this is denoted as “fd”) in
dimension 8 as shown in Table 2.

Table 2. Table of 3-manifolds M3 found from subgroups of finite index d of the fundamental group π1(S3 \ K4a1)
(alias the d-fold coverings over the figure-eight knot 3-manifold). The covering type “ty” in column 2, the manifold
identification “M3” in column 3 and the number of cusps, “cp” in column 4, are from SnapPy [19]. For d = 9 and 10,
SnapPy does not provide results so that we only identify the permutation group P =SmallGroup(o, k) (abbreviated
as (o, k)), where o is the order and k is the k-th group of order o in the standard notation (that is used in Magma). If
it exists, the MIC is “pp”-valued. If (i) is true, unless otherwise specified, the graph of cosets leading to a MIC is that
of the d-simplex [and/or the condition (ii) is true: no geometry]. The symbol ∆ means that (ii) fails to be satisfied.
When there exists a MIC with (i) true and (ii) false, the geometry is shown in bold characters. The symbol “fd” means
a false detection of a MIC when (i) and (ii) are satisfied simultaneously while a MIC does not exist. The abbreviations
“Fano”, “d-ortho”, and “[103]” are for the Fano plane, the d-orthoplex, and the Desargues configuration.

d ty M3 (or P) cp (i) pp Geometry

2 cyc otet0400002, m206 1 no

3 cyc otet0600003, s961 1 no

4 irr otet0800002, L10n46, t12840 2 yes 2 2QB MIC, ∆

cyc otet0800007, t12839 1 no

5 cyc otet1000019 1 no
irr otet1000006, L8a20 3 yes ∆
irr (×2) otet1000026 2 yes 1 5-dit MIC

6 cyc otet1200013 1 no
irr otet1200039 1 no
irr (×2) otet1200038 1 yes 10 6-dit MIC
irr otet1200041 2 no
irr (×2) otet1200017 2 no
irr (×4) otet1200000 2 yes 2 6-dit MIC

7 cyc otet1400019 1 no
irr (×4) otet1400002, L14n55217 3 yes 2 7-dit MIC, ∆ : Fano
irr (×4) otet1400035 1 yes 2 7-dit MIC, ∆ : Fano

8 cyc otet1600026 1 no
irr (×2) otet1600035 1 no
irr (×2) otet1600079 2 yes fd
irr (×2) otet1600016 2 yes fd
irr otet1600092 2 no
irr otet1600091 2 yes 16-cell
irr otet1600013, L14n17678 2 no

9 (36, 9) ∼= 32
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d ty M3 (or P ) cp (i) pp geometry
2 cyc otet0400002, m206 1 no
3 cyc otet0600003, s961 1 no
4 irr otet0800002, L10n46, t12840 2 yes 2 2QB MIC, ∆

cyc otet0800007, t12839 1 no
5 cyc otet1000019 1 no

irr otet1000006, L8a20 3 yes ∆
irr (×2) otet1000026 2 yes 1 5-dit MIC

6 cyc otet1200013 1 no
irr otet1200039 1 no
irr (×2) otet1200038 1 yes 10 6-dit MIC
irr otet1200041 2 no
irr (×2) otet1200017 2 no
irr (×4) otet1200000 2 yes 2 6-dit MIC

7 cyc otet1400019 1 no
irr (×4) otet1400002, L14n55217 3 yes 2 7-dit MIC,∆ : Fano
irr (×4) otet1400035 1 yes 2 7-dit MIC, ∆ : Fano

8 cyc otet1600026 1 no
irr (×2) otet1600035 1 no
irr (×2) otet1600079 2 yes fd
irr (×2) otet1600016 2 yes fd
irr otet1600092 2 no
irr otet1600091 2 yes 16-cell
irr otet1600013, L14n17678 2 no

9 (36, 9) ∼= 32 ⋊ 4 yes 2 2QT MIC
(×2) (504, 156) = PSL(2, 8) yes 3 2QT MIC
(×2) (216, 153) ∼= 32 ⋊ (24, 3) yes 2 2QT MIC

10 (×6) (160, 234) ∼= 24 ⋊ 10 yes 5 10-dit MIC
(×2) (120, 34) = S5 yes 4 10-dit MIC, ∆ : [103]
(×2) (120, 34) = S5 no 7 10-dit MIC, 5-ortho

(360, 118) = A6 yes 5 10-dit MIC

Table 2. Table of 3-manifolds M3 found from subgroups of finite
index d of the fundamental group π1(S

3 \ K4a1) (alias the d-fold cov-
erings over the figure-eight knot 3-manifold). The covering type ‘ty’ in
column 2, the manifold identification ‘M3’ in column 3 and the number
of cusps ‘cp’ in column 4 are from SnapPy [19]. For d = 9 and 10,
SnapPy does not provide results so that we only identify the permuta-
tion group P =SmallGroup(o, k) (abbreviated as (o, k)), where o is the
order and k is the k-th group of order o in the standard notation (that
is used in Magma). If it exists, the MIC is ‘pp’-valued. If (i) is true,
unless otherwise specified, the graph of cosets leading to a MIC is that
of the d-simplex [and/or the condition (ii) is true: no geometry]. The
symbol ∆ means that (ii) fails to be satisfied. When there exists a MIC
with (i) true and (ii) false, the geometry is shown in bold characters.
The symbol ‘fd’ means a false detection of a MIC when (i) and (ii) are
satisfied simultaneously while a MIC does not exist. The abbreviations
‘Fano’, ‘d-ortho’ and ‘[103]’ are for the Fano plane, the d-orthoplex and
the corresponding geometric configuration.

3. MIC states pertaining to the Trefoil knot and its 0-surgery

We now investigate the relation of MIC states to the group geometrical axioms
(i)-(ii) (or their negation) in the context of the trefoil knot 31 (in Sec. 3.2) and

4 yes 2 2QT MIC
(×2) (504, 156) = PSL(2, 8) yes 3 2QT MIC
(×2) (216, 153) ∼= 32
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d ty M3 (or P ) cp (i) pp geometry
2 cyc otet0400002, m206 1 no
3 cyc otet0600003, s961 1 no
4 irr otet0800002, L10n46, t12840 2 yes 2 2QB MIC, ∆

cyc otet0800007, t12839 1 no
5 cyc otet1000019 1 no

irr otet1000006, L8a20 3 yes ∆
irr (×2) otet1000026 2 yes 1 5-dit MIC

6 cyc otet1200013 1 no
irr otet1200039 1 no
irr (×2) otet1200038 1 yes 10 6-dit MIC
irr otet1200041 2 no
irr (×2) otet1200017 2 no
irr (×4) otet1200000 2 yes 2 6-dit MIC

7 cyc otet1400019 1 no
irr (×4) otet1400002, L14n55217 3 yes 2 7-dit MIC,∆ : Fano
irr (×4) otet1400035 1 yes 2 7-dit MIC, ∆ : Fano

8 cyc otet1600026 1 no
irr (×2) otet1600035 1 no
irr (×2) otet1600079 2 yes fd
irr (×2) otet1600016 2 yes fd
irr otet1600092 2 no
irr otet1600091 2 yes 16-cell
irr otet1600013, L14n17678 2 no

9 (36, 9) ∼= 32 ⋊ 4 yes 2 2QT MIC
(×2) (504, 156) = PSL(2, 8) yes 3 2QT MIC
(×2) (216, 153) ∼= 32 ⋊ (24, 3) yes 2 2QT MIC

10 (×6) (160, 234) ∼= 24 ⋊ 10 yes 5 10-dit MIC
(×2) (120, 34) = S5 yes 4 10-dit MIC, ∆ : [103]
(×2) (120, 34) = S5 no 7 10-dit MIC, 5-ortho

(360, 118) = A6 yes 5 10-dit MIC

Table 2. Table of 3-manifolds M3 found from subgroups of finite
index d of the fundamental group π1(S

3 \ K4a1) (alias the d-fold cov-
erings over the figure-eight knot 3-manifold). The covering type ‘ty’ in
column 2, the manifold identification ‘M3’ in column 3 and the number
of cusps ‘cp’ in column 4 are from SnapPy [19]. For d = 9 and 10,
SnapPy does not provide results so that we only identify the permuta-
tion group P =SmallGroup(o, k) (abbreviated as (o, k)), where o is the
order and k is the k-th group of order o in the standard notation (that
is used in Magma). If it exists, the MIC is ‘pp’-valued. If (i) is true,
unless otherwise specified, the graph of cosets leading to a MIC is that
of the d-simplex [and/or the condition (ii) is true: no geometry]. The
symbol ∆ means that (ii) fails to be satisfied. When there exists a MIC
with (i) true and (ii) false, the geometry is shown in bold characters.
The symbol ‘fd’ means a false detection of a MIC when (i) and (ii) are
satisfied simultaneously while a MIC does not exist. The abbreviations
‘Fano’, ‘d-ortho’ and ‘[103]’ are for the Fano plane, the d-orthoplex and
the corresponding geometric configuration.

3. MIC states pertaining to the Trefoil knot and its 0-surgery

We now investigate the relation of MIC states to the group geometrical axioms
(i)-(ii) (or their negation) in the context of the trefoil knot 31 (in Sec. 3.2) and

(24, 3) yes 2 2QT MIC

10 (×6) (160, 234) ∼= 24
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d ty M3 (or P ) cp (i) pp geometry
2 cyc otet0400002, m206 1 no
3 cyc otet0600003, s961 1 no
4 irr otet0800002, L10n46, t12840 2 yes 2 2QB MIC, ∆

cyc otet0800007, t12839 1 no
5 cyc otet1000019 1 no

irr otet1000006, L8a20 3 yes ∆
irr (×2) otet1000026 2 yes 1 5-dit MIC

6 cyc otet1200013 1 no
irr otet1200039 1 no
irr (×2) otet1200038 1 yes 10 6-dit MIC
irr otet1200041 2 no
irr (×2) otet1200017 2 no
irr (×4) otet1200000 2 yes 2 6-dit MIC

7 cyc otet1400019 1 no
irr (×4) otet1400002, L14n55217 3 yes 2 7-dit MIC,∆ : Fano
irr (×4) otet1400035 1 yes 2 7-dit MIC, ∆ : Fano

8 cyc otet1600026 1 no
irr (×2) otet1600035 1 no
irr (×2) otet1600079 2 yes fd
irr (×2) otet1600016 2 yes fd
irr otet1600092 2 no
irr otet1600091 2 yes 16-cell
irr otet1600013, L14n17678 2 no

9 (36, 9) ∼= 32 ⋊ 4 yes 2 2QT MIC
(×2) (504, 156) = PSL(2, 8) yes 3 2QT MIC
(×2) (216, 153) ∼= 32 ⋊ (24, 3) yes 2 2QT MIC

10 (×6) (160, 234) ∼= 24 ⋊ 10 yes 5 10-dit MIC
(×2) (120, 34) = S5 yes 4 10-dit MIC, ∆ : [103]
(×2) (120, 34) = S5 no 7 10-dit MIC, 5-ortho

(360, 118) = A6 yes 5 10-dit MIC

Table 2. Table of 3-manifolds M3 found from subgroups of finite
index d of the fundamental group π1(S

3 \ K4a1) (alias the d-fold cov-
erings over the figure-eight knot 3-manifold). The covering type ‘ty’ in
column 2, the manifold identification ‘M3’ in column 3 and the number
of cusps ‘cp’ in column 4 are from SnapPy [19]. For d = 9 and 10,
SnapPy does not provide results so that we only identify the permuta-
tion group P =SmallGroup(o, k) (abbreviated as (o, k)), where o is the
order and k is the k-th group of order o in the standard notation (that
is used in Magma). If it exists, the MIC is ‘pp’-valued. If (i) is true,
unless otherwise specified, the graph of cosets leading to a MIC is that
of the d-simplex [and/or the condition (ii) is true: no geometry]. The
symbol ∆ means that (ii) fails to be satisfied. When there exists a MIC
with (i) true and (ii) false, the geometry is shown in bold characters.
The symbol ‘fd’ means a false detection of a MIC when (i) and (ii) are
satisfied simultaneously while a MIC does not exist. The abbreviations
‘Fano’, ‘d-ortho’ and ‘[103]’ are for the Fano plane, the d-orthoplex and
the corresponding geometric configuration.

3. MIC states pertaining to the Trefoil knot and its 0-surgery

We now investigate the relation of MIC states to the group geometrical axioms
(i)-(ii) (or their negation) in the context of the trefoil knot 31 (in Sec. 3.2) and

10 yes 5 10-dit MIC
(×2) (120, 34) = S5 yes 4 10-dit MIC, ∆ : [103]
(×2) (120, 34) = S5 no 7 10-dit MIC, 5-ortho

(360, 118) = A6 yes 5 10-dit MIC
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otet1400035) when the geometry of cosets is that of the Fano plane shown in
Fig. 6a. Finally it occurs in dimension 10 when the geometry of cosets is
that of a [103] configuration shown in Fig. 6b [20, p 74]. This configuration
turns out to be the familiar Desargues configuration.

In addition to the latter cases, false detection of a MIC may occur (this
is denoted ‘fd’) in dimension 8 as shown in Table 2.

Figure 6. Contextual geometries associated to ‘(i) true and
(ii) false’ for the MICs of the figure-eight knot K4a1 listed
in Table 1: (a) the Fano plane related to the manifold
otet1400002 at index 7, (b) the Desargues configuration [103]
at index 10. The bold lines are for cosets that are not all
mutually commuting. Each line corresponds to pair of cosets
with the same stabilizer subgroup isomorphic to Z2

2.

Figure 6. Contextual geometries associated to (i) true and (ii) false for the MICs of the figure-eight
knot K4a1 listed in Table 1. (a) The Fano plane related to the manifold otet1400002 at index 7, and (b)
the Desargues configuration [103] at index 10. The bold lines are for cosets that are not all mutually
commuting. Each line corresponds to pair of cosets with the same stabilizer subgroup isomorphic to Z2

2.

3. MIC States Pertaining to the Trefoil Knot and Its 0-Surgery

We now investigate the relation of MIC states to the group geometrical axioms (i–ii) (or their
negation) in the context of the trefoil knot 31 (in Section 3.2) and its 0-sugery (in Section 3.1). The
fundamental group of the complement of 31 in the 3-sphere G = π1(S3 \ 31), as well as its connection
to MICs, is studied in [14] ([17], Table 1) and below.

3.1. Group Geometrical Axioms Applied to the Fundamental Group π1(Ẽ8)

The manifold Ẽ8 is defined by 0-surgery on the trefoil knot 31 and is of special interest as shown
in ([18], Section 3) and references therein. The number of subgroups of index d of the fundamental
group π1(Y) is as follows.

ηd[Ẽ8] = [1, 1, 2, 2, 1, 5, 3, 2, 4, 1, 1, 12, 3, 3, 4, 3, 1, 17, 3, 2, 8, 1, 1, 27, 2, . . .]

where a bold number means that a MIC exists at the corresponding index.
Such cases are summarized in Table 3. As expected, this occurs when axioms (i) and (ii) are

both true or both false. The latter case occurs at index 6 with geometry of the octahedron (and graph
K(2, 2, 2)) and at index 15 with a geometry of graph K(5, 5, 5).

Table 3. Table of subgroups of the fundamental group π1[S3 \ 31(0, 1)], with 31(0, 1) the 0-surgery over
the trefoil knot, when the condition (i) is satisfied or when a MIC is missed. See the captions of Tables 1
and 2 for the meaning of abbreviations.

d P (i) pp Geometry

3 6 yes 1 Hesse SIC, ∆

4 A4 yes 2 2QB MIC, ∆

6 A4 no 2 6-dit MIC, K(2, 2, 2)
7 (42, 1) ∼= 7

GROUP GEOMETRICAL AXIOMS FOR MAGIC STATES OF QUANTUM COMPUTING11

d ty M3 (or P ) cp (i) pp geometry
2 cyc otet0400002, m206 1 no
3 cyc otet0600003, s961 1 no
4 irr otet0800002, L10n46, t12840 2 yes 2 2QB MIC, ∆

cyc otet0800007, t12839 1 no
5 cyc otet1000019 1 no

irr otet1000006, L8a20 3 yes ∆
irr (×2) otet1000026 2 yes 1 5-dit MIC

6 cyc otet1200013 1 no
irr otet1200039 1 no
irr (×2) otet1200038 1 yes 10 6-dit MIC
irr otet1200041 2 no
irr (×2) otet1200017 2 no
irr (×4) otet1200000 2 yes 2 6-dit MIC

7 cyc otet1400019 1 no
irr (×4) otet1400002, L14n55217 3 yes 2 7-dit MIC,∆ : Fano
irr (×4) otet1400035 1 yes 2 7-dit MIC, ∆ : Fano

8 cyc otet1600026 1 no
irr (×2) otet1600035 1 no
irr (×2) otet1600079 2 yes fd
irr (×2) otet1600016 2 yes fd
irr otet1600092 2 no
irr otet1600091 2 yes 16-cell
irr otet1600013, L14n17678 2 no

9 (36, 9) ∼= 32 ⋊ 4 yes 2 2QT MIC
(×2) (504, 156) = PSL(2, 8) yes 3 2QT MIC
(×2) (216, 153) ∼= 32 ⋊ (24, 3) yes 2 2QT MIC

10 (×6) (160, 234) ∼= 24 ⋊ 10 yes 5 10-dit MIC
(×2) (120, 34) = S5 yes 4 10-dit MIC, ∆ : [103]
(×2) (120, 34) = S5 no 7 10-dit MIC, 5-ortho

(360, 118) = A6 yes 5 10-dit MIC

Table 2. Table of 3-manifolds M3 found from subgroups of finite
index d of the fundamental group π1(S

3 \ K4a1) (alias the d-fold cov-
erings over the figure-eight knot 3-manifold). The covering type ‘ty’ in
column 2, the manifold identification ‘M3’ in column 3 and the number
of cusps ‘cp’ in column 4 are from SnapPy [19]. For d = 9 and 10,
SnapPy does not provide results so that we only identify the permuta-
tion group P =SmallGroup(o, k) (abbreviated as (o, k)), where o is the
order and k is the k-th group of order o in the standard notation (that
is used in Magma). If it exists, the MIC is ‘pp’-valued. If (i) is true,
unless otherwise specified, the graph of cosets leading to a MIC is that
of the d-simplex [and/or the condition (ii) is true: no geometry]. The
symbol ∆ means that (ii) fails to be satisfied. When there exists a MIC
with (i) true and (ii) false, the geometry is shown in bold characters.
The symbol ‘fd’ means a false detection of a MIC when (i) and (ii) are
satisfied simultaneously while a MIC does not exist. The abbreviations
‘Fano’, ‘d-ortho’ and ‘[103]’ are for the Fano plane, the d-orthoplex and
the corresponding geometric configuration.

3. MIC states pertaining to the Trefoil knot and its 0-surgery

We now investigate the relation of MIC states to the group geometrical axioms
(i)-(ii) (or their negation) in the context of the trefoil knot 31 (in Sec. 3.2) and

(6, 2) yes 2 7-dit MIC
9 (54, 5) ∼= 32

GROUP GEOMETRICAL AXIOMS FOR MAGIC STATES OF QUANTUM COMPUTING11

d ty M3 (or P ) cp (i) pp geometry
2 cyc otet0400002, m206 1 no
3 cyc otet0600003, s961 1 no
4 irr otet0800002, L10n46, t12840 2 yes 2 2QB MIC, ∆

cyc otet0800007, t12839 1 no
5 cyc otet1000019 1 no

irr otet1000006, L8a20 3 yes ∆
irr (×2) otet1000026 2 yes 1 5-dit MIC

6 cyc otet1200013 1 no
irr otet1200039 1 no
irr (×2) otet1200038 1 yes 10 6-dit MIC
irr otet1200041 2 no
irr (×2) otet1200017 2 no
irr (×4) otet1200000 2 yes 2 6-dit MIC

7 cyc otet1400019 1 no
irr (×4) otet1400002, L14n55217 3 yes 2 7-dit MIC,∆ : Fano
irr (×4) otet1400035 1 yes 2 7-dit MIC, ∆ : Fano

8 cyc otet1600026 1 no
irr (×2) otet1600035 1 no
irr (×2) otet1600079 2 yes fd
irr (×2) otet1600016 2 yes fd
irr otet1600092 2 no
irr otet1600091 2 yes 16-cell
irr otet1600013, L14n17678 2 no

9 (36, 9) ∼= 32 ⋊ 4 yes 2 2QT MIC
(×2) (504, 156) = PSL(2, 8) yes 3 2QT MIC
(×2) (216, 153) ∼= 32 ⋊ (24, 3) yes 2 2QT MIC

10 (×6) (160, 234) ∼= 24 ⋊ 10 yes 5 10-dit MIC
(×2) (120, 34) = S5 yes 4 10-dit MIC, ∆ : [103]
(×2) (120, 34) = S5 no 7 10-dit MIC, 5-ortho

(360, 118) = A6 yes 5 10-dit MIC

Table 2. Table of 3-manifolds M3 found from subgroups of finite
index d of the fundamental group π1(S

3 \ K4a1) (alias the d-fold cov-
erings over the figure-eight knot 3-manifold). The covering type ‘ty’ in
column 2, the manifold identification ‘M3’ in column 3 and the number
of cusps ‘cp’ in column 4 are from SnapPy [19]. For d = 9 and 10,
SnapPy does not provide results so that we only identify the permuta-
tion group P =SmallGroup(o, k) (abbreviated as (o, k)), where o is the
order and k is the k-th group of order o in the standard notation (that
is used in Magma). If it exists, the MIC is ‘pp’-valued. If (i) is true,
unless otherwise specified, the graph of cosets leading to a MIC is that
of the d-simplex [and/or the condition (ii) is true: no geometry]. The
symbol ∆ means that (ii) fails to be satisfied. When there exists a MIC
with (i) true and (ii) false, the geometry is shown in bold characters.
The symbol ‘fd’ means a false detection of a MIC when (i) and (ii) are
satisfied simultaneously while a MIC does not exist. The abbreviations
‘Fano’, ‘d-ortho’ and ‘[103]’ are for the Fano plane, the d-orthoplex and
the corresponding geometric configuration.

3. MIC states pertaining to the Trefoil knot and its 0-surgery

We now investigate the relation of MIC states to the group geometrical axioms
(i)-(ii) (or their negation) in the context of the trefoil knot 31 (in Sec. 3.2) and

(18, 3), (×2) yes K(3, 3, 3)
12 (72, 44) ∼= 22

GROUP GEOMETRICAL AXIOMS FOR MAGIC STATES OF QUANTUM COMPUTING11

d ty M3 (or P ) cp (i) pp geometry
2 cyc otet0400002, m206 1 no
3 cyc otet0600003, s961 1 no
4 irr otet0800002, L10n46, t12840 2 yes 2 2QB MIC, ∆

cyc otet0800007, t12839 1 no
5 cyc otet1000019 1 no

irr otet1000006, L8a20 3 yes ∆
irr (×2) otet1000026 2 yes 1 5-dit MIC

6 cyc otet1200013 1 no
irr otet1200039 1 no
irr (×2) otet1200038 1 yes 10 6-dit MIC
irr otet1200041 2 no
irr (×2) otet1200017 2 no
irr (×4) otet1200000 2 yes 2 6-dit MIC

7 cyc otet1400019 1 no
irr (×4) otet1400002, L14n55217 3 yes 2 7-dit MIC,∆ : Fano
irr (×4) otet1400035 1 yes 2 7-dit MIC, ∆ : Fano

8 cyc otet1600026 1 no
irr (×2) otet1600035 1 no
irr (×2) otet1600079 2 yes fd
irr (×2) otet1600016 2 yes fd
irr otet1600092 2 no
irr otet1600091 2 yes 16-cell
irr otet1600013, L14n17678 2 no

9 (36, 9) ∼= 32 ⋊ 4 yes 2 2QT MIC
(×2) (504, 156) = PSL(2, 8) yes 3 2QT MIC
(×2) (216, 153) ∼= 32 ⋊ (24, 3) yes 2 2QT MIC

10 (×6) (160, 234) ∼= 24 ⋊ 10 yes 5 10-dit MIC
(×2) (120, 34) = S5 yes 4 10-dit MIC, ∆ : [103]
(×2) (120, 34) = S5 no 7 10-dit MIC, 5-ortho

(360, 118) = A6 yes 5 10-dit MIC

Table 2. Table of 3-manifolds M3 found from subgroups of finite
index d of the fundamental group π1(S

3 \ K4a1) (alias the d-fold cov-
erings over the figure-eight knot 3-manifold). The covering type ‘ty’ in
column 2, the manifold identification ‘M3’ in column 3 and the number
of cusps ‘cp’ in column 4 are from SnapPy [19]. For d = 9 and 10,
SnapPy does not provide results so that we only identify the permuta-
tion group P =SmallGroup(o, k) (abbreviated as (o, k)), where o is the
order and k is the k-th group of order o in the standard notation (that
is used in Magma). If it exists, the MIC is ‘pp’-valued. If (i) is true,
unless otherwise specified, the graph of cosets leading to a MIC is that
of the d-simplex [and/or the condition (ii) is true: no geometry]. The
symbol ∆ means that (ii) fails to be satisfied. When there exists a MIC
with (i) true and (ii) false, the geometry is shown in bold characters.
The symbol ‘fd’ means a false detection of a MIC when (i) and (ii) are
satisfied simultaneously while a MIC does not exist. The abbreviations
‘Fano’, ‘d-ortho’ and ‘[103]’ are for the Fano plane, the d-orthoplex and
the corresponding geometric configuration.

3. MIC states pertaining to the Trefoil knot and its 0-surgery

We now investigate the relation of MIC states to the group geometrical axioms
(i)-(ii) (or their negation) in the context of the trefoil knot 31 (in Sec. 3.2) and

(18, 3) yes L(K(3, 4))
13 (78, 1) ∼= 13

GROUP GEOMETRICAL AXIOMS FOR MAGIC STATES OF QUANTUM COMPUTING11

d ty M3 (or P ) cp (i) pp geometry
2 cyc otet0400002, m206 1 no
3 cyc otet0600003, s961 1 no
4 irr otet0800002, L10n46, t12840 2 yes 2 2QB MIC, ∆

cyc otet0800007, t12839 1 no
5 cyc otet1000019 1 no

irr otet1000006, L8a20 3 yes ∆
irr (×2) otet1000026 2 yes 1 5-dit MIC

6 cyc otet1200013 1 no
irr otet1200039 1 no
irr (×2) otet1200038 1 yes 10 6-dit MIC
irr otet1200041 2 no
irr (×2) otet1200017 2 no
irr (×4) otet1200000 2 yes 2 6-dit MIC

7 cyc otet1400019 1 no
irr (×4) otet1400002, L14n55217 3 yes 2 7-dit MIC,∆ : Fano
irr (×4) otet1400035 1 yes 2 7-dit MIC, ∆ : Fano

8 cyc otet1600026 1 no
irr (×2) otet1600035 1 no
irr (×2) otet1600079 2 yes fd
irr (×2) otet1600016 2 yes fd
irr otet1600092 2 no
irr otet1600091 2 yes 16-cell
irr otet1600013, L14n17678 2 no

9 (36, 9) ∼= 32 ⋊ 4 yes 2 2QT MIC
(×2) (504, 156) = PSL(2, 8) yes 3 2QT MIC
(×2) (216, 153) ∼= 32 ⋊ (24, 3) yes 2 2QT MIC

10 (×6) (160, 234) ∼= 24 ⋊ 10 yes 5 10-dit MIC
(×2) (120, 34) = S5 yes 4 10-dit MIC, ∆ : [103]
(×2) (120, 34) = S5 no 7 10-dit MIC, 5-ortho

(360, 118) = A6 yes 5 10-dit MIC

Table 2. Table of 3-manifolds M3 found from subgroups of finite
index d of the fundamental group π1(S

3 \ K4a1) (alias the d-fold cov-
erings over the figure-eight knot 3-manifold). The covering type ‘ty’ in
column 2, the manifold identification ‘M3’ in column 3 and the number
of cusps ‘cp’ in column 4 are from SnapPy [19]. For d = 9 and 10,
SnapPy does not provide results so that we only identify the permuta-
tion group P =SmallGroup(o, k) (abbreviated as (o, k)), where o is the
order and k is the k-th group of order o in the standard notation (that
is used in Magma). If it exists, the MIC is ‘pp’-valued. If (i) is true,
unless otherwise specified, the graph of cosets leading to a MIC is that
of the d-simplex [and/or the condition (ii) is true: no geometry]. The
symbol ∆ means that (ii) fails to be satisfied. When there exists a MIC
with (i) true and (ii) false, the geometry is shown in bold characters.
The symbol ‘fd’ means a false detection of a MIC when (i) and (ii) are
satisfied simultaneously while a MIC does not exist. The abbreviations
‘Fano’, ‘d-ortho’ and ‘[103]’ are for the Fano plane, the d-orthoplex and
the corresponding geometric configuration.

3. MIC states pertaining to the Trefoil knot and its 0-surgery

We now investigate the relation of MIC states to the group geometrical axioms
(i)-(ii) (or their negation) in the context of the trefoil knot 31 (in Sec. 3.2) and

(6, 2), (×2) yes 4 13-dit MIC
15 (150, 6) ∼= 52

GROUP GEOMETRICAL AXIOMS FOR MAGIC STATES OF QUANTUM COMPUTING11

d ty M3 (or P ) cp (i) pp geometry
2 cyc otet0400002, m206 1 no
3 cyc otet0600003, s961 1 no
4 irr otet0800002, L10n46, t12840 2 yes 2 2QB MIC, ∆

cyc otet0800007, t12839 1 no
5 cyc otet1000019 1 no

irr otet1000006, L8a20 3 yes ∆
irr (×2) otet1000026 2 yes 1 5-dit MIC

6 cyc otet1200013 1 no
irr otet1200039 1 no
irr (×2) otet1200038 1 yes 10 6-dit MIC
irr otet1200041 2 no
irr (×2) otet1200017 2 no
irr (×4) otet1200000 2 yes 2 6-dit MIC

7 cyc otet1400019 1 no
irr (×4) otet1400002, L14n55217 3 yes 2 7-dit MIC,∆ : Fano
irr (×4) otet1400035 1 yes 2 7-dit MIC, ∆ : Fano

8 cyc otet1600026 1 no
irr (×2) otet1600035 1 no
irr (×2) otet1600079 2 yes fd
irr (×2) otet1600016 2 yes fd
irr otet1600092 2 no
irr otet1600091 2 yes 16-cell
irr otet1600013, L14n17678 2 no

9 (36, 9) ∼= 32 ⋊ 4 yes 2 2QT MIC
(×2) (504, 156) = PSL(2, 8) yes 3 2QT MIC
(×2) (216, 153) ∼= 32 ⋊ (24, 3) yes 2 2QT MIC

10 (×6) (160, 234) ∼= 24 ⋊ 10 yes 5 10-dit MIC
(×2) (120, 34) = S5 yes 4 10-dit MIC, ∆ : [103]
(×2) (120, 34) = S5 no 7 10-dit MIC, 5-ortho

(360, 118) = A6 yes 5 10-dit MIC

Table 2. Table of 3-manifolds M3 found from subgroups of finite
index d of the fundamental group π1(S

3 \ K4a1) (alias the d-fold cov-
erings over the figure-eight knot 3-manifold). The covering type ‘ty’ in
column 2, the manifold identification ‘M3’ in column 3 and the number
of cusps ‘cp’ in column 4 are from SnapPy [19]. For d = 9 and 10,
SnapPy does not provide results so that we only identify the permuta-
tion group P =SmallGroup(o, k) (abbreviated as (o, k)), where o is the
order and k is the k-th group of order o in the standard notation (that
is used in Magma). If it exists, the MIC is ‘pp’-valued. If (i) is true,
unless otherwise specified, the graph of cosets leading to a MIC is that
of the d-simplex [and/or the condition (ii) is true: no geometry]. The
symbol ∆ means that (ii) fails to be satisfied. When there exists a MIC
with (i) true and (ii) false, the geometry is shown in bold characters.
The symbol ‘fd’ means a false detection of a MIC when (i) and (ii) are
satisfied simultaneously while a MIC does not exist. The abbreviations
‘Fano’, ‘d-ortho’ and ‘[103]’ are for the Fano plane, the d-orthoplex and
the corresponding geometric configuration.

3. MIC states pertaining to the Trefoil knot and its 0-surgery

We now investigate the relation of MIC states to the group geometrical axioms
(i)-(ii) (or their negation) in the context of the trefoil knot 31 (in Sec. 3.2) and

(6, 2), (×2) no 6 15-dit MIC, K(5, 5, 5)
16 (96, 72) ∼= 23
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d ty M3 (or P ) cp (i) pp geometry
2 cyc otet0400002, m206 1 no
3 cyc otet0600003, s961 1 no
4 irr otet0800002, L10n46, t12840 2 yes 2 2QB MIC, ∆

cyc otet0800007, t12839 1 no
5 cyc otet1000019 1 no

irr otet1000006, L8a20 3 yes ∆
irr (×2) otet1000026 2 yes 1 5-dit MIC

6 cyc otet1200013 1 no
irr otet1200039 1 no
irr (×2) otet1200038 1 yes 10 6-dit MIC
irr otet1200041 2 no
irr (×2) otet1200017 2 no
irr (×4) otet1200000 2 yes 2 6-dit MIC

7 cyc otet1400019 1 no
irr (×4) otet1400002, L14n55217 3 yes 2 7-dit MIC,∆ : Fano
irr (×4) otet1400035 1 yes 2 7-dit MIC, ∆ : Fano

8 cyc otet1600026 1 no
irr (×2) otet1600035 1 no
irr (×2) otet1600079 2 yes fd
irr (×2) otet1600016 2 yes fd
irr otet1600092 2 no
irr otet1600091 2 yes 16-cell
irr otet1600013, L14n17678 2 no

9 (36, 9) ∼= 32 ⋊ 4 yes 2 2QT MIC
(×2) (504, 156) = PSL(2, 8) yes 3 2QT MIC
(×2) (216, 153) ∼= 32 ⋊ (24, 3) yes 2 2QT MIC

10 (×6) (160, 234) ∼= 24 ⋊ 10 yes 5 10-dit MIC
(×2) (120, 34) = S5 yes 4 10-dit MIC, ∆ : [103]
(×2) (120, 34) = S5 no 7 10-dit MIC, 5-ortho

(360, 118) = A6 yes 5 10-dit MIC

Table 2. Table of 3-manifolds M3 found from subgroups of finite
index d of the fundamental group π1(S

3 \ K4a1) (alias the d-fold cov-
erings over the figure-eight knot 3-manifold). The covering type ‘ty’ in
column 2, the manifold identification ‘M3’ in column 3 and the number
of cusps ‘cp’ in column 4 are from SnapPy [19]. For d = 9 and 10,
SnapPy does not provide results so that we only identify the permuta-
tion group P =SmallGroup(o, k) (abbreviated as (o, k)), where o is the
order and k is the k-th group of order o in the standard notation (that
is used in Magma). If it exists, the MIC is ‘pp’-valued. If (i) is true,
unless otherwise specified, the graph of cosets leading to a MIC is that
of the d-simplex [and/or the condition (ii) is true: no geometry]. The
symbol ∆ means that (ii) fails to be satisfied. When there exists a MIC
with (i) true and (ii) false, the geometry is shown in bold characters.
The symbol ‘fd’ means a false detection of a MIC when (i) and (ii) are
satisfied simultaneously while a MIC does not exist. The abbreviations
‘Fano’, ‘d-ortho’ and ‘[103]’ are for the Fano plane, the d-orthoplex and
the corresponding geometric configuration.

3. MIC states pertaining to the Trefoil knot and its 0-surgery

We now investigate the relation of MIC states to the group geometrical axioms
(i)-(ii) (or their negation) in the context of the trefoil knot 31 (in Sec. 3.2) and

A4 yes K(4, 4, 4, 4)
19 (114, 1) ∼= 19
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d ty M3 (or P ) cp (i) pp geometry
2 cyc otet0400002, m206 1 no
3 cyc otet0600003, s961 1 no
4 irr otet0800002, L10n46, t12840 2 yes 2 2QB MIC, ∆

cyc otet0800007, t12839 1 no
5 cyc otet1000019 1 no

irr otet1000006, L8a20 3 yes ∆
irr (×2) otet1000026 2 yes 1 5-dit MIC

6 cyc otet1200013 1 no
irr otet1200039 1 no
irr (×2) otet1200038 1 yes 10 6-dit MIC
irr otet1200041 2 no
irr (×2) otet1200017 2 no
irr (×4) otet1200000 2 yes 2 6-dit MIC

7 cyc otet1400019 1 no
irr (×4) otet1400002, L14n55217 3 yes 2 7-dit MIC,∆ : Fano
irr (×4) otet1400035 1 yes 2 7-dit MIC, ∆ : Fano

8 cyc otet1600026 1 no
irr (×2) otet1600035 1 no
irr (×2) otet1600079 2 yes fd
irr (×2) otet1600016 2 yes fd
irr otet1600092 2 no
irr otet1600091 2 yes 16-cell
irr otet1600013, L14n17678 2 no

9 (36, 9) ∼= 32 ⋊ 4 yes 2 2QT MIC
(×2) (504, 156) = PSL(2, 8) yes 3 2QT MIC
(×2) (216, 153) ∼= 32 ⋊ (24, 3) yes 2 2QT MIC

10 (×6) (160, 234) ∼= 24 ⋊ 10 yes 5 10-dit MIC
(×2) (120, 34) = S5 yes 4 10-dit MIC, ∆ : [103]
(×2) (120, 34) = S5 no 7 10-dit MIC, 5-ortho

(360, 118) = A6 yes 5 10-dit MIC

Table 2. Table of 3-manifolds M3 found from subgroups of finite
index d of the fundamental group π1(S

3 \ K4a1) (alias the d-fold cov-
erings over the figure-eight knot 3-manifold). The covering type ‘ty’ in
column 2, the manifold identification ‘M3’ in column 3 and the number
of cusps ‘cp’ in column 4 are from SnapPy [19]. For d = 9 and 10,
SnapPy does not provide results so that we only identify the permuta-
tion group P =SmallGroup(o, k) (abbreviated as (o, k)), where o is the
order and k is the k-th group of order o in the standard notation (that
is used in Magma). If it exists, the MIC is ‘pp’-valued. If (i) is true,
unless otherwise specified, the graph of cosets leading to a MIC is that
of the d-simplex [and/or the condition (ii) is true: no geometry]. The
symbol ∆ means that (ii) fails to be satisfied. When there exists a MIC
with (i) true and (ii) false, the geometry is shown in bold characters.
The symbol ‘fd’ means a false detection of a MIC when (i) and (ii) are
satisfied simultaneously while a MIC does not exist. The abbreviations
‘Fano’, ‘d-ortho’ and ‘[103]’ are for the Fano plane, the d-orthoplex and
the corresponding geometric configuration.

3. MIC states pertaining to the Trefoil knot and its 0-surgery

We now investigate the relation of MIC states to the group geometrical axioms
(i)-(ii) (or their negation) in the context of the trefoil knot 31 (in Sec. 3.2) and

(6, 2) yes 3 19-dit MIC
21 (126, 9) ∼= 7
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d ty M3 (or P ) cp (i) pp geometry
2 cyc otet0400002, m206 1 no
3 cyc otet0600003, s961 1 no
4 irr otet0800002, L10n46, t12840 2 yes 2 2QB MIC, ∆

cyc otet0800007, t12839 1 no
5 cyc otet1000019 1 no

irr otet1000006, L8a20 3 yes ∆
irr (×2) otet1000026 2 yes 1 5-dit MIC

6 cyc otet1200013 1 no
irr otet1200039 1 no
irr (×2) otet1200038 1 yes 10 6-dit MIC
irr otet1200041 2 no
irr (×2) otet1200017 2 no
irr (×4) otet1200000 2 yes 2 6-dit MIC

7 cyc otet1400019 1 no
irr (×4) otet1400002, L14n55217 3 yes 2 7-dit MIC,∆ : Fano
irr (×4) otet1400035 1 yes 2 7-dit MIC, ∆ : Fano

8 cyc otet1600026 1 no
irr (×2) otet1600035 1 no
irr (×2) otet1600079 2 yes fd
irr (×2) otet1600016 2 yes fd
irr otet1600092 2 no
irr otet1600091 2 yes 16-cell
irr otet1600013, L14n17678 2 no

9 (36, 9) ∼= 32 ⋊ 4 yes 2 2QT MIC
(×2) (504, 156) = PSL(2, 8) yes 3 2QT MIC
(×2) (216, 153) ∼= 32 ⋊ (24, 3) yes 2 2QT MIC

10 (×6) (160, 234) ∼= 24 ⋊ 10 yes 5 10-dit MIC
(×2) (120, 34) = S5 yes 4 10-dit MIC, ∆ : [103]
(×2) (120, 34) = S5 no 7 10-dit MIC, 5-ortho

(360, 118) = A6 yes 5 10-dit MIC

Table 2. Table of 3-manifolds M3 found from subgroups of finite
index d of the fundamental group π1(S

3 \ K4a1) (alias the d-fold cov-
erings over the figure-eight knot 3-manifold). The covering type ‘ty’ in
column 2, the manifold identification ‘M3’ in column 3 and the number
of cusps ‘cp’ in column 4 are from SnapPy [19]. For d = 9 and 10,
SnapPy does not provide results so that we only identify the permuta-
tion group P =SmallGroup(o, k) (abbreviated as (o, k)), where o is the
order and k is the k-th group of order o in the standard notation (that
is used in Magma). If it exists, the MIC is ‘pp’-valued. If (i) is true,
unless otherwise specified, the graph of cosets leading to a MIC is that
of the d-simplex [and/or the condition (ii) is true: no geometry]. The
symbol ∆ means that (ii) fails to be satisfied. When there exists a MIC
with (i) true and (ii) false, the geometry is shown in bold characters.
The symbol ‘fd’ means a false detection of a MIC when (i) and (ii) are
satisfied simultaneously while a MIC does not exist. The abbreviations
‘Fano’, ‘d-ortho’ and ‘[103]’ are for the Fano plane, the d-orthoplex and
the corresponding geometric configuration.

3. MIC states pertaining to the Trefoil knot and its 0-surgery

We now investigate the relation of MIC states to the group geometrical axioms
(i)-(ii) (or their negation) in the context of the trefoil knot 31 (in Sec. 3.2) and

(18, 3), (×2) yes 5 21-dit MIC, ∆: K(3,3,3,3,3,3,3)

Exceptions to the rules are when a MIC exists with (i) true but not (ii). This occurs in dimension 3
(for the Hesse SIC), as the free group has a single generator (a trivial case) at index 4 (for the 2QB MIC),
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with a contextual geometry as in Figure 5, and at index 21, with a contextual geometry (not shown) of
graph K(3, 3, 3, 3, 3, 3, 3).

3.2. Group Geometrical Axioms Applied to the Fundamental Group π1(S3 \ 31)

The characteristics of the submanifolds obtained from the subgroups of index d of the fundamental
group π1(S3 \ 31) for the trefoil knot complement are given in Table 4, using SnapPy [19] and Sage [15]
for identifying the corresponding subgroup of the modular group Γ [14] (this improves upon the
method in ([17], Table 1)).

As for the above sections, when axioms (i) and (ii) are simultaneously satisfied (or both are
not satisfied), a MIC is created; otherwise, no MIC exist in the corresponding dimension, as one
should expect.

There are a few exceptions where (i) is true and a geometry does exist (when (ii) fails to be
satisfied). This first occurs in dimension 3 for the Hesse SIC where the free subgroup is trivial with
a single generator. The next exceptions are for the 6-dit MIC related to the permutation group S4

with the contextual geometry of the octahedron shown in Figure 7a; in dimension 9 for the 2QT MIC
related to the permutation group 33 × S4, with a contextual geometry consisting of three disjoint
lines; and in dimension 10 for a 10-dit MIC related to the permutation group A5 and the contextual
geometry of the so-called Mermin pentagram. The latter geometry is known to allow a 3QB proof of
the Kochen–Specker theorem [10].
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the octahedron shown in Fig. 7a, in dimension 9 for the 2QT MIC related to the
permutation group 33 ⋊ S4 with a contextual geometry consisting of three disjoint
lines, and in dimension 10 for a 10-dit MIC related to the permutation group A5 and
the contextual geometry of the so-called Mermin pentagram. The latter geometry
is known to allow a 3QB proof of the Kochen-Specker theorem [8].

Figure 7. Contextual geometries associated to ‘(i) true and
(ii) false’ for the MICs of the trefoil knot 31 listed in Table
2: (a) the octahedron, related to the subgroup Γ0(4) of Γ
at index 6 , (b) three disjoint lines K3

3 at index 9, (c) The
Mermin’s pentagram at index 10. The bold lines are for
cosets that are not all mutually commuting.

4. Conclusion

Previous work about the relationship between quantum commutation and
coset-generated finite geometries has been expanded here by establishing a
connection between coset-generated magic states and coset-generated finite
geometries. The magic states under question are those leading to MICs
(with minimal complete quantum information in them). We found that,
given an appropriate free group G, two axioms (i): the normal closure N of
the subgroup of G generating the MIC is G itself and (ii): no coset-geometry
should exist, or the negation of both axioms (i) and (ii), are almost enough to
classify the MIC states. The few exceptions rely on configurations that admit
geometric contextuality. We restricted the application of the theory to the
fundamental group of the 3-manifolds defined from the figure-eight knot (an

hyperbolic manifold) and from the trefoil knot, and to 4-manifolds Y and Ẽ8

obtained by 0-surgery on them. It is of importance to improve of knowledge
of the magic states due to their application to quantum computing and we
intend to pursue this research in future work.

Figure 7. Contextual geometries associated to (i) true and (ii) false for the MICs of the trefoil knot 31

listed in Table 2. (a) The octahedron, related to the subgroup Γ0(4) of Γ at index 6; (b) three disjoint
lines K3

3 at index 9; (c) and the Mermin’s pentagram at index 10. The bold lines are for cosets that are
not all mutually commuting.
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Table 4. Subgroups of index d of the fundamental group π1(S3 \ 31) (alias the d-fold coverings over
the trefoil knot 3-manifold). The meaning of symbols is as in Table 2. When the subgroup in question
is a subgroup of the modular group Γ, it is identified as a congruence subgroup or by its signature
NC(g, N, ν2, ν3, [cWi

i ]) (see [14] for the meaning of entries). The permutation group P =SmallGroup(o, k)
is abbreviated as (o, k). As in Table 1, if (i) is true, unless otherwise specified, the graph of cosets leading
to a MIC is the d-simplex and/or the condition (ii) is true. Exceptions (with geometry identified in bold
characters) are for a MIC with (i) true and (ii) false. For indices 9 and 10, some subgroups of large order
could not be checked as leading to a MIC or not; they are not shown in the table. The abbreviation octa
is for the octahedron, MP is for the Mermin pentagram, and K3

3 means three disjoint triangles.

d ty cp P (i) pp Type in Γ Geometry

2 cyc 1 (2,1) ≡ 2 no

3 cyc 1 (3,1) ≡ 3 no
irr 2 (6,1) ≡ 6 yes 1 Γ0(2) Hesse SIC, ∆, L7n1

4 cyc 1 (4,1) ≡ 4 no
irr 2 (12, 3) = A4 yes 2 Γ0(3) 2QB MIC, ∆, L6a3

irr 1 (24, 12) = S4 yes 2 4A0 2QB MIC

5 cyc 2 (5,1) ≡ 5 no
irr 3 (60, 5) = A5 yes 1 5A0 5-dit MIC

6 reg 3 (6,1) ≡ 6 no 2 Γ(2) 6-dit MIC, 63
3 [18]

cyc 3 (6,2) = 3×2 no Γ′

irr 2 A4 no 2 3C0 6-dit MIC, K(2,2,2)

irr 1 (24, 13) = 3
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d ty M3 (or P ) cp (i) pp geometry
2 cyc otet0400002, m206 1 no
3 cyc otet0600003, s961 1 no
4 irr otet0800002, L10n46, t12840 2 yes 2 2QB MIC, ∆

cyc otet0800007, t12839 1 no
5 cyc otet1000019 1 no

irr otet1000006, L8a20 3 yes ∆
irr (×2) otet1000026 2 yes 1 5-dit MIC

6 cyc otet1200013 1 no
irr otet1200039 1 no
irr (×2) otet1200038 1 yes 10 6-dit MIC
irr otet1200041 2 no
irr (×2) otet1200017 2 no
irr (×4) otet1200000 2 yes 2 6-dit MIC

7 cyc otet1400019 1 no
irr (×4) otet1400002, L14n55217 3 yes 2 7-dit MIC,∆ : Fano
irr (×4) otet1400035 1 yes 2 7-dit MIC, ∆ : Fano

8 cyc otet1600026 1 no
irr (×2) otet1600035 1 no
irr (×2) otet1600079 2 yes fd
irr (×2) otet1600016 2 yes fd
irr otet1600092 2 no
irr otet1600091 2 yes 16-cell
irr otet1600013, L14n17678 2 no

9 (36, 9) ∼= 32 ⋊ 4 yes 2 2QT MIC
(×2) (504, 156) = PSL(2, 8) yes 3 2QT MIC
(×2) (216, 153) ∼= 32 ⋊ (24, 3) yes 2 2QT MIC

10 (×6) (160, 234) ∼= 24 ⋊ 10 yes 5 10-dit MIC
(×2) (120, 34) = S5 yes 4 10-dit MIC, ∆ : [103]
(×2) (120, 34) = S5 no 7 10-dit MIC, 5-ortho

(360, 118) = A6 yes 5 10-dit MIC

Table 2. Table of 3-manifolds M3 found from subgroups of finite
index d of the fundamental group π1(S

3 \ K4a1) (alias the d-fold cov-
erings over the figure-eight knot 3-manifold). The covering type ‘ty’ in
column 2, the manifold identification ‘M3’ in column 3 and the number
of cusps ‘cp’ in column 4 are from SnapPy [19]. For d = 9 and 10,
SnapPy does not provide results so that we only identify the permuta-
tion group P =SmallGroup(o, k) (abbreviated as (o, k)), where o is the
order and k is the k-th group of order o in the standard notation (that
is used in Magma). If it exists, the MIC is ‘pp’-valued. If (i) is true,
unless otherwise specified, the graph of cosets leading to a MIC is that
of the d-simplex [and/or the condition (ii) is true: no geometry]. The
symbol ∆ means that (ii) fails to be satisfied. When there exists a MIC
with (i) true and (ii) false, the geometry is shown in bold characters.
The symbol ‘fd’ means a false detection of a MIC when (i) and (ii) are
satisfied simultaneously while a MIC does not exist. The abbreviations
‘Fano’, ‘d-ortho’ and ‘[103]’ are for the Fano plane, the d-orthoplex and
the corresponding geometric configuration.

3. MIC states pertaining to the Trefoil knot and its 0-surgery

We now investigate the relation of MIC states to the group geometrical axioms
(i)-(ii) (or their negation) in the context of the trefoil knot 31 (in Sec. 3.2) and

8 no 6B0

irr 1 (18, 3) ∼= 32
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d ty M3 (or P ) cp (i) pp geometry
2 cyc otet0400002, m206 1 no
3 cyc otet0600003, s961 1 no
4 irr otet0800002, L10n46, t12840 2 yes 2 2QB MIC, ∆

cyc otet0800007, t12839 1 no
5 cyc otet1000019 1 no

irr otet1000006, L8a20 3 yes ∆
irr (×2) otet1000026 2 yes 1 5-dit MIC

6 cyc otet1200013 1 no
irr otet1200039 1 no
irr (×2) otet1200038 1 yes 10 6-dit MIC
irr otet1200041 2 no
irr (×2) otet1200017 2 no
irr (×4) otet1200000 2 yes 2 6-dit MIC

7 cyc otet1400019 1 no
irr (×4) otet1400002, L14n55217 3 yes 2 7-dit MIC,∆ : Fano
irr (×4) otet1400035 1 yes 2 7-dit MIC, ∆ : Fano

8 cyc otet1600026 1 no
irr (×2) otet1600035 1 no
irr (×2) otet1600079 2 yes fd
irr (×2) otet1600016 2 yes fd
irr otet1600092 2 no
irr otet1600091 2 yes 16-cell
irr otet1600013, L14n17678 2 no

9 (36, 9) ∼= 32 ⋊ 4 yes 2 2QT MIC
(×2) (504, 156) = PSL(2, 8) yes 3 2QT MIC
(×2) (216, 153) ∼= 32 ⋊ (24, 3) yes 2 2QT MIC

10 (×6) (160, 234) ∼= 24 ⋊ 10 yes 5 10-dit MIC
(×2) (120, 34) = S5 yes 4 10-dit MIC, ∆ : [103]
(×2) (120, 34) = S5 no 7 10-dit MIC, 5-ortho

(360, 118) = A6 yes 5 10-dit MIC

Table 2. Table of 3-manifolds M3 found from subgroups of finite
index d of the fundamental group π1(S

3 \ K4a1) (alias the d-fold cov-
erings over the figure-eight knot 3-manifold). The covering type ‘ty’ in
column 2, the manifold identification ‘M3’ in column 3 and the number
of cusps ‘cp’ in column 4 are from SnapPy [19]. For d = 9 and 10,
SnapPy does not provide results so that we only identify the permuta-
tion group P =SmallGroup(o, k) (abbreviated as (o, k)), where o is the
order and k is the k-th group of order o in the standard notation (that
is used in Magma). If it exists, the MIC is ‘pp’-valued. If (i) is true,
unless otherwise specified, the graph of cosets leading to a MIC is that
of the d-simplex [and/or the condition (ii) is true: no geometry]. The
symbol ∆ means that (ii) fails to be satisfied. When there exists a MIC
with (i) true and (ii) false, the geometry is shown in bold characters.
The symbol ‘fd’ means a false detection of a MIC when (i) and (ii) are
satisfied simultaneously while a MIC does not exist. The abbreviations
‘Fano’, ‘d-ortho’ and ‘[103]’ are for the Fano plane, the d-orthoplex and
the corresponding geometric configuration.

3. MIC states pertaining to the Trefoil knot and its 0-surgery

We now investigate the relation of MIC states to the group geometrical axioms
(i)-(ii) (or their negation) in the context of the trefoil knot 31 (in Sec. 3.2) and

2 no 6A0

irr 3 S4 yes 2 Γ0(4) 6-dit MIC, ∆ : octa

irr 2 A5 yes 2 Γ0(5) 6-dit MIC
irr 2 S4 yes 2 4C0

6-dit MIC, ∆ : octa

7 cyc 1 (7,1)≡ 7 no
irr (×2) 2 (42, 1) ∼= 7
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d ty M3 (or P ) cp (i) pp geometry
2 cyc otet0400002, m206 1 no
3 cyc otet0600003, s961 1 no
4 irr otet0800002, L10n46, t12840 2 yes 2 2QB MIC, ∆

cyc otet0800007, t12839 1 no
5 cyc otet1000019 1 no

irr otet1000006, L8a20 3 yes ∆
irr (×2) otet1000026 2 yes 1 5-dit MIC

6 cyc otet1200013 1 no
irr otet1200039 1 no
irr (×2) otet1200038 1 yes 10 6-dit MIC
irr otet1200041 2 no
irr (×2) otet1200017 2 no
irr (×4) otet1200000 2 yes 2 6-dit MIC

7 cyc otet1400019 1 no
irr (×4) otet1400002, L14n55217 3 yes 2 7-dit MIC,∆ : Fano
irr (×4) otet1400035 1 yes 2 7-dit MIC, ∆ : Fano

8 cyc otet1600026 1 no
irr (×2) otet1600035 1 no
irr (×2) otet1600079 2 yes fd
irr (×2) otet1600016 2 yes fd
irr otet1600092 2 no
irr otet1600091 2 yes 16-cell
irr otet1600013, L14n17678 2 no

9 (36, 9) ∼= 32 ⋊ 4 yes 2 2QT MIC
(×2) (504, 156) = PSL(2, 8) yes 3 2QT MIC
(×2) (216, 153) ∼= 32 ⋊ (24, 3) yes 2 2QT MIC

10 (×6) (160, 234) ∼= 24 ⋊ 10 yes 5 10-dit MIC
(×2) (120, 34) = S5 yes 4 10-dit MIC, ∆ : [103]
(×2) (120, 34) = S5 no 7 10-dit MIC, 5-ortho

(360, 118) = A6 yes 5 10-dit MIC

Table 2. Table of 3-manifolds M3 found from subgroups of finite
index d of the fundamental group π1(S

3 \ K4a1) (alias the d-fold cov-
erings over the figure-eight knot 3-manifold). The covering type ‘ty’ in
column 2, the manifold identification ‘M3’ in column 3 and the number
of cusps ‘cp’ in column 4 are from SnapPy [19]. For d = 9 and 10,
SnapPy does not provide results so that we only identify the permuta-
tion group P =SmallGroup(o, k) (abbreviated as (o, k)), where o is the
order and k is the k-th group of order o in the standard notation (that
is used in Magma). If it exists, the MIC is ‘pp’-valued. If (i) is true,
unless otherwise specified, the graph of cosets leading to a MIC is that
of the d-simplex [and/or the condition (ii) is true: no geometry]. The
symbol ∆ means that (ii) fails to be satisfied. When there exists a MIC
with (i) true and (ii) false, the geometry is shown in bold characters.
The symbol ‘fd’ means a false detection of a MIC when (i) and (ii) are
satisfied simultaneously while a MIC does not exist. The abbreviations
‘Fano’, ‘d-ortho’ and ‘[103]’ are for the Fano plane, the d-orthoplex and
the corresponding geometric configuration.

3. MIC states pertaining to the Trefoil knot and its 0-surgery

We now investigate the relation of MIC states to the group geometrical axioms
(i)-(ii) (or their negation) in the context of the trefoil knot 31 (in Sec. 3.2) and

(6, 2) yes 2 NC(0, 6, 1, 1, [1161 ]) 7-dit MIC
irr (×2) 1 (168, 42) = PSL(2, 7) yes 2 7A0 7-dit MIC
irr (×2) 2 S7 (order 5040) yes NC(0, 10, 1, 1, [2151 ]) 7-dit MIC

8 cyc 1 (8, 1) ≡ 8 no
irr 2 (24,13) no 6C0

irr 2 S4 no 4D0

irr (×2) 2 (24, 3) ∼= 2.A4 yes 16-cell
irr 2 PSL(2, 7) yes Γ0(7) fd
irr (×2) 1 SL(2, 7) yes NC(0, 8, 2, 2, [81 ]) fd
irr (×2) 2 (48, 29) ∼= 2.(24, 3) yes 8A0 16-cell

9 (9, 1) ≡ 9 no
2 (18,3) no 7 6D0 9-dit MIC, K(3,3,3)

2 (54, 5) ∼= 32

GROUP GEOMETRICAL AXIOMS FOR MAGIC STATES OF QUANTUM COMPUTING11

d ty M3 (or P ) cp (i) pp geometry
2 cyc otet0400002, m206 1 no
3 cyc otet0600003, s961 1 no
4 irr otet0800002, L10n46, t12840 2 yes 2 2QB MIC, ∆

cyc otet0800007, t12839 1 no
5 cyc otet1000019 1 no

irr otet1000006, L8a20 3 yes ∆
irr (×2) otet1000026 2 yes 1 5-dit MIC

6 cyc otet1200013 1 no
irr otet1200039 1 no
irr (×2) otet1200038 1 yes 10 6-dit MIC
irr otet1200041 2 no
irr (×2) otet1200017 2 no
irr (×4) otet1200000 2 yes 2 6-dit MIC

7 cyc otet1400019 1 no
irr (×4) otet1400002, L14n55217 3 yes 2 7-dit MIC,∆ : Fano
irr (×4) otet1400035 1 yes 2 7-dit MIC, ∆ : Fano

8 cyc otet1600026 1 no
irr (×2) otet1600035 1 no
irr (×2) otet1600079 2 yes fd
irr (×2) otet1600016 2 yes fd
irr otet1600092 2 no
irr otet1600091 2 yes 16-cell
irr otet1600013, L14n17678 2 no

9 (36, 9) ∼= 32 ⋊ 4 yes 2 2QT MIC
(×2) (504, 156) = PSL(2, 8) yes 3 2QT MIC
(×2) (216, 153) ∼= 32 ⋊ (24, 3) yes 2 2QT MIC

10 (×6) (160, 234) ∼= 24 ⋊ 10 yes 5 10-dit MIC
(×2) (120, 34) = S5 yes 4 10-dit MIC, ∆ : [103]
(×2) (120, 34) = S5 no 7 10-dit MIC, 5-ortho

(360, 118) = A6 yes 5 10-dit MIC

Table 2. Table of 3-manifolds M3 found from subgroups of finite
index d of the fundamental group π1(S

3 \ K4a1) (alias the d-fold cov-
erings over the figure-eight knot 3-manifold). The covering type ‘ty’ in
column 2, the manifold identification ‘M3’ in column 3 and the number
of cusps ‘cp’ in column 4 are from SnapPy [19]. For d = 9 and 10,
SnapPy does not provide results so that we only identify the permuta-
tion group P =SmallGroup(o, k) (abbreviated as (o, k)), where o is the
order and k is the k-th group of order o in the standard notation (that
is used in Magma). If it exists, the MIC is ‘pp’-valued. If (i) is true,
unless otherwise specified, the graph of cosets leading to a MIC is that
of the d-simplex [and/or the condition (ii) is true: no geometry]. The
symbol ∆ means that (ii) fails to be satisfied. When there exists a MIC
with (i) true and (ii) false, the geometry is shown in bold characters.
The symbol ‘fd’ means a false detection of a MIC when (i) and (ii) are
satisfied simultaneously while a MIC does not exist. The abbreviations
‘Fano’, ‘d-ortho’ and ‘[103]’ are for the Fano plane, the d-orthoplex and
the corresponding geometric configuration.

3. MIC states pertaining to the Trefoil knot and its 0-surgery

We now investigate the relation of MIC states to the group geometrical axioms
(i)-(ii) (or their negation) in the context of the trefoil knot 31 (in Sec. 3.2) and

(18, 3) no 7 NC(0, 6, 3, 0, [3161 ]) 9-dit MIC, K(3,3,3)

1 (324, 160) ∼= 33

GROUP GEOMETRICAL AXIOMS FOR MAGIC STATES OF QUANTUM COMPUTING11

d ty M3 (or P ) cp (i) pp geometry
2 cyc otet0400002, m206 1 no
3 cyc otet0600003, s961 1 no
4 irr otet0800002, L10n46, t12840 2 yes 2 2QB MIC, ∆

cyc otet0800007, t12839 1 no
5 cyc otet1000019 1 no

irr otet1000006, L8a20 3 yes ∆
irr (×2) otet1000026 2 yes 1 5-dit MIC

6 cyc otet1200013 1 no
irr otet1200039 1 no
irr (×2) otet1200038 1 yes 10 6-dit MIC
irr otet1200041 2 no
irr (×2) otet1200017 2 no
irr (×4) otet1200000 2 yes 2 6-dit MIC

7 cyc otet1400019 1 no
irr (×4) otet1400002, L14n55217 3 yes 2 7-dit MIC,∆ : Fano
irr (×4) otet1400035 1 yes 2 7-dit MIC, ∆ : Fano

8 cyc otet1600026 1 no
irr (×2) otet1600035 1 no
irr (×2) otet1600079 2 yes fd
irr (×2) otet1600016 2 yes fd
irr otet1600092 2 no
irr otet1600091 2 yes 16-cell
irr otet1600013, L14n17678 2 no

9 (36, 9) ∼= 32 ⋊ 4 yes 2 2QT MIC
(×2) (504, 156) = PSL(2, 8) yes 3 2QT MIC
(×2) (216, 153) ∼= 32 ⋊ (24, 3) yes 2 2QT MIC

10 (×6) (160, 234) ∼= 24 ⋊ 10 yes 5 10-dit MIC
(×2) (120, 34) = S5 yes 4 10-dit MIC, ∆ : [103]
(×2) (120, 34) = S5 no 7 10-dit MIC, 5-ortho

(360, 118) = A6 yes 5 10-dit MIC

Table 2. Table of 3-manifolds M3 found from subgroups of finite
index d of the fundamental group π1(S

3 \ K4a1) (alias the d-fold cov-
erings over the figure-eight knot 3-manifold). The covering type ‘ty’ in
column 2, the manifold identification ‘M3’ in column 3 and the number
of cusps ‘cp’ in column 4 are from SnapPy [19]. For d = 9 and 10,
SnapPy does not provide results so that we only identify the permuta-
tion group P =SmallGroup(o, k) (abbreviated as (o, k)), where o is the
order and k is the k-th group of order o in the standard notation (that
is used in Magma). If it exists, the MIC is ‘pp’-valued. If (i) is true,
unless otherwise specified, the graph of cosets leading to a MIC is that
of the d-simplex [and/or the condition (ii) is true: no geometry]. The
symbol ∆ means that (ii) fails to be satisfied. When there exists a MIC
with (i) true and (ii) false, the geometry is shown in bold characters.
The symbol ‘fd’ means a false detection of a MIC when (i) and (ii) are
satisfied simultaneously while a MIC does not exist. The abbreviations
‘Fano’, ‘d-ortho’ and ‘[103]’ are for the Fano plane, the d-orthoplex and
the corresponding geometric configuration.

3. MIC states pertaining to the Trefoil knot and its 0-surgery

We now investigate the relation of MIC states to the group geometrical axioms
(i)-(ii) (or their negation) in the context of the trefoil knot 31 (in Sec. 3.2) and

A4 no 9A0 K(3,3,3), K3
3

3 (54,5) yes 7 NC(0, 6, 1, 0, [112161 ]) 9-dit MIC
(×3) (162, 10) ∼= 32
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d ty M3 (or P ) cp (i) pp geometry
2 cyc otet0400002, m206 1 no
3 cyc otet0600003, s961 1 no
4 irr otet0800002, L10n46, t12840 2 yes 2 2QB MIC, ∆

cyc otet0800007, t12839 1 no
5 cyc otet1000019 1 no

irr otet1000006, L8a20 3 yes ∆
irr (×2) otet1000026 2 yes 1 5-dit MIC

6 cyc otet1200013 1 no
irr otet1200039 1 no
irr (×2) otet1200038 1 yes 10 6-dit MIC
irr otet1200041 2 no
irr (×2) otet1200017 2 no
irr (×4) otet1200000 2 yes 2 6-dit MIC

7 cyc otet1400019 1 no
irr (×4) otet1400002, L14n55217 3 yes 2 7-dit MIC,∆ : Fano
irr (×4) otet1400035 1 yes 2 7-dit MIC, ∆ : Fano

8 cyc otet1600026 1 no
irr (×2) otet1600035 1 no
irr (×2) otet1600079 2 yes fd
irr (×2) otet1600016 2 yes fd
irr otet1600092 2 no
irr otet1600091 2 yes 16-cell
irr otet1600013, L14n17678 2 no

9 (36, 9) ∼= 32 ⋊ 4 yes 2 2QT MIC
(×2) (504, 156) = PSL(2, 8) yes 3 2QT MIC
(×2) (216, 153) ∼= 32 ⋊ (24, 3) yes 2 2QT MIC

10 (×6) (160, 234) ∼= 24 ⋊ 10 yes 5 10-dit MIC
(×2) (120, 34) = S5 yes 4 10-dit MIC, ∆ : [103]
(×2) (120, 34) = S5 no 7 10-dit MIC, 5-ortho

(360, 118) = A6 yes 5 10-dit MIC

Table 2. Table of 3-manifolds M3 found from subgroups of finite
index d of the fundamental group π1(S

3 \ K4a1) (alias the d-fold cov-
erings over the figure-eight knot 3-manifold). The covering type ‘ty’ in
column 2, the manifold identification ‘M3’ in column 3 and the number
of cusps ‘cp’ in column 4 are from SnapPy [19]. For d = 9 and 10,
SnapPy does not provide results so that we only identify the permuta-
tion group P =SmallGroup(o, k) (abbreviated as (o, k)), where o is the
order and k is the k-th group of order o in the standard notation (that
is used in Magma). If it exists, the MIC is ‘pp’-valued. If (i) is true,
unless otherwise specified, the graph of cosets leading to a MIC is that
of the d-simplex [and/or the condition (ii) is true: no geometry]. The
symbol ∆ means that (ii) fails to be satisfied. When there exists a MIC
with (i) true and (ii) false, the geometry is shown in bold characters.
The symbol ‘fd’ means a false detection of a MIC when (i) and (ii) are
satisfied simultaneously while a MIC does not exist. The abbreviations
‘Fano’, ‘d-ortho’ and ‘[103]’ are for the Fano plane, the d-orthoplex and
the corresponding geometric configuration.

3. MIC states pertaining to the Trefoil knot and its 0-surgery

We now investigate the relation of MIC states to the group geometrical axioms
(i)-(ii) (or their negation) in the context of the trefoil knot 31 (in Sec. 3.2) and

6 yes K(3,3,3)
(×2) 1 (504, 156) = PSL(2, 8) yes 3 NC(1, 9, 1, 0, [91 ]) 2QT MIC
(×2) 2 (432, 734) ∼= 32
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d ty M3 (or P ) cp (i) pp geometry
2 cyc otet0400002, m206 1 no
3 cyc otet0600003, s961 1 no
4 irr otet0800002, L10n46, t12840 2 yes 2 2QB MIC, ∆

cyc otet0800007, t12839 1 no
5 cyc otet1000019 1 no

irr otet1000006, L8a20 3 yes ∆
irr (×2) otet1000026 2 yes 1 5-dit MIC

6 cyc otet1200013 1 no
irr otet1200039 1 no
irr (×2) otet1200038 1 yes 10 6-dit MIC
irr otet1200041 2 no
irr (×2) otet1200017 2 no
irr (×4) otet1200000 2 yes 2 6-dit MIC

7 cyc otet1400019 1 no
irr (×4) otet1400002, L14n55217 3 yes 2 7-dit MIC,∆ : Fano
irr (×4) otet1400035 1 yes 2 7-dit MIC, ∆ : Fano

8 cyc otet1600026 1 no
irr (×2) otet1600035 1 no
irr (×2) otet1600079 2 yes fd
irr (×2) otet1600016 2 yes fd
irr otet1600092 2 no
irr otet1600091 2 yes 16-cell
irr otet1600013, L14n17678 2 no

9 (36, 9) ∼= 32 ⋊ 4 yes 2 2QT MIC
(×2) (504, 156) = PSL(2, 8) yes 3 2QT MIC
(×2) (216, 153) ∼= 32 ⋊ (24, 3) yes 2 2QT MIC

10 (×6) (160, 234) ∼= 24 ⋊ 10 yes 5 10-dit MIC
(×2) (120, 34) = S5 yes 4 10-dit MIC, ∆ : [103]
(×2) (120, 34) = S5 no 7 10-dit MIC, 5-ortho

(360, 118) = A6 yes 5 10-dit MIC

Table 2. Table of 3-manifolds M3 found from subgroups of finite
index d of the fundamental group π1(S

3 \ K4a1) (alias the d-fold cov-
erings over the figure-eight knot 3-manifold). The covering type ‘ty’ in
column 2, the manifold identification ‘M3’ in column 3 and the number
of cusps ‘cp’ in column 4 are from SnapPy [19]. For d = 9 and 10,
SnapPy does not provide results so that we only identify the permuta-
tion group P =SmallGroup(o, k) (abbreviated as (o, k)), where o is the
order and k is the k-th group of order o in the standard notation (that
is used in Magma). If it exists, the MIC is ‘pp’-valued. If (i) is true,
unless otherwise specified, the graph of cosets leading to a MIC is that
of the d-simplex [and/or the condition (ii) is true: no geometry]. The
symbol ∆ means that (ii) fails to be satisfied. When there exists a MIC
with (i) true and (ii) false, the geometry is shown in bold characters.
The symbol ‘fd’ means a false detection of a MIC when (i) and (ii) are
satisfied simultaneously while a MIC does not exist. The abbreviations
‘Fano’, ‘d-ortho’ and ‘[103]’ are for the Fano plane, the d-orthoplex and
the corresponding geometric configuration.

3. MIC states pertaining to the Trefoil knot and its 0-surgery

We now investigate the relation of MIC states to the group geometrical axioms
(i)-(ii) (or their negation) in the context of the trefoil knot 31 (in Sec. 3.2) and

(48, 29) yes 2 NC(0, 8, 3, 0, [8111 ]) 2QT MIC
3 (648, 703) ∼= 33

GROUP GEOMETRICAL AXIOMS FOR MAGIC STATES OF QUANTUM COMPUTING11

d ty M3 (or P ) cp (i) pp geometry
2 cyc otet0400002, m206 1 no
3 cyc otet0600003, s961 1 no
4 irr otet0800002, L10n46, t12840 2 yes 2 2QB MIC, ∆

cyc otet0800007, t12839 1 no
5 cyc otet1000019 1 no

irr otet1000006, L8a20 3 yes ∆
irr (×2) otet1000026 2 yes 1 5-dit MIC

6 cyc otet1200013 1 no
irr otet1200039 1 no
irr (×2) otet1200038 1 yes 10 6-dit MIC
irr otet1200041 2 no
irr (×2) otet1200017 2 no
irr (×4) otet1200000 2 yes 2 6-dit MIC

7 cyc otet1400019 1 no
irr (×4) otet1400002, L14n55217 3 yes 2 7-dit MIC,∆ : Fano
irr (×4) otet1400035 1 yes 2 7-dit MIC, ∆ : Fano

8 cyc otet1600026 1 no
irr (×2) otet1600035 1 no
irr (×2) otet1600079 2 yes fd
irr (×2) otet1600016 2 yes fd
irr otet1600092 2 no
irr otet1600091 2 yes 16-cell
irr otet1600013, L14n17678 2 no

9 (36, 9) ∼= 32 ⋊ 4 yes 2 2QT MIC
(×2) (504, 156) = PSL(2, 8) yes 3 2QT MIC
(×2) (216, 153) ∼= 32 ⋊ (24, 3) yes 2 2QT MIC

10 (×6) (160, 234) ∼= 24 ⋊ 10 yes 5 10-dit MIC
(×2) (120, 34) = S5 yes 4 10-dit MIC, ∆ : [103]
(×2) (120, 34) = S5 no 7 10-dit MIC, 5-ortho

(360, 118) = A6 yes 5 10-dit MIC

Table 2. Table of 3-manifolds M3 found from subgroups of finite
index d of the fundamental group π1(S

3 \ K4a1) (alias the d-fold cov-
erings over the figure-eight knot 3-manifold). The covering type ‘ty’ in
column 2, the manifold identification ‘M3’ in column 3 and the number
of cusps ‘cp’ in column 4 are from SnapPy [19]. For d = 9 and 10,
SnapPy does not provide results so that we only identify the permuta-
tion group P =SmallGroup(o, k) (abbreviated as (o, k)), where o is the
order and k is the k-th group of order o in the standard notation (that
is used in Magma). If it exists, the MIC is ‘pp’-valued. If (i) is true,
unless otherwise specified, the graph of cosets leading to a MIC is that
of the d-simplex [and/or the condition (ii) is true: no geometry]. The
symbol ∆ means that (ii) fails to be satisfied. When there exists a MIC
with (i) true and (ii) false, the geometry is shown in bold characters.
The symbol ‘fd’ means a false detection of a MIC when (i) and (ii) are
satisfied simultaneously while a MIC does not exist. The abbreviations
‘Fano’, ‘d-ortho’ and ‘[103]’ are for the Fano plane, the d-orthoplex and
the corresponding geometric configuration.

3. MIC states pertaining to the Trefoil knot and its 0-surgery

We now investigate the relation of MIC states to the group geometrical axioms
(i)-(ii) (or their negation) in the context of the trefoil knot 31 (in Sec. 3.2) and

S4 yes 2 NC(0, 12, 1, 0, [213141 ]) 2QT MIC, ∆ : K3
3

10 1 (120, 35) ∼= 2

GROUP GEOMETRICAL AXIOMS FOR MAGIC STATES OF QUANTUM COMPUTING11

d ty M3 (or P ) cp (i) pp geometry
2 cyc otet0400002, m206 1 no
3 cyc otet0600003, s961 1 no
4 irr otet0800002, L10n46, t12840 2 yes 2 2QB MIC, ∆

cyc otet0800007, t12839 1 no
5 cyc otet1000019 1 no

irr otet1000006, L8a20 3 yes ∆
irr (×2) otet1000026 2 yes 1 5-dit MIC

6 cyc otet1200013 1 no
irr otet1200039 1 no
irr (×2) otet1200038 1 yes 10 6-dit MIC
irr otet1200041 2 no
irr (×2) otet1200017 2 no
irr (×4) otet1200000 2 yes 2 6-dit MIC

7 cyc otet1400019 1 no
irr (×4) otet1400002, L14n55217 3 yes 2 7-dit MIC,∆ : Fano
irr (×4) otet1400035 1 yes 2 7-dit MIC, ∆ : Fano

8 cyc otet1600026 1 no
irr (×2) otet1600035 1 no
irr (×2) otet1600079 2 yes fd
irr (×2) otet1600016 2 yes fd
irr otet1600092 2 no
irr otet1600091 2 yes 16-cell
irr otet1600013, L14n17678 2 no

9 (36, 9) ∼= 32 ⋊ 4 yes 2 2QT MIC
(×2) (504, 156) = PSL(2, 8) yes 3 2QT MIC
(×2) (216, 153) ∼= 32 ⋊ (24, 3) yes 2 2QT MIC

10 (×6) (160, 234) ∼= 24 ⋊ 10 yes 5 10-dit MIC
(×2) (120, 34) = S5 yes 4 10-dit MIC, ∆ : [103]
(×2) (120, 34) = S5 no 7 10-dit MIC, 5-ortho

(360, 118) = A6 yes 5 10-dit MIC

Table 2. Table of 3-manifolds M3 found from subgroups of finite
index d of the fundamental group π1(S

3 \ K4a1) (alias the d-fold cov-
erings over the figure-eight knot 3-manifold). The covering type ‘ty’ in
column 2, the manifold identification ‘M3’ in column 3 and the number
of cusps ‘cp’ in column 4 are from SnapPy [19]. For d = 9 and 10,
SnapPy does not provide results so that we only identify the permuta-
tion group P =SmallGroup(o, k) (abbreviated as (o, k)), where o is the
order and k is the k-th group of order o in the standard notation (that
is used in Magma). If it exists, the MIC is ‘pp’-valued. If (i) is true,
unless otherwise specified, the graph of cosets leading to a MIC is that
of the d-simplex [and/or the condition (ii) is true: no geometry]. The
symbol ∆ means that (ii) fails to be satisfied. When there exists a MIC
with (i) true and (ii) false, the geometry is shown in bold characters.
The symbol ‘fd’ means a false detection of a MIC when (i) and (ii) are
satisfied simultaneously while a MIC does not exist. The abbreviations
‘Fano’, ‘d-ortho’ and ‘[103]’ are for the Fano plane, the d-orthoplex and
the corresponding geometric configuration.

3. MIC states pertaining to the Trefoil knot and its 0-surgery

We now investigate the relation of MIC states to the group geometrical axioms
(i)-(ii) (or their negation) in the context of the trefoil knot 31 (in Sec. 3.2) and

A5 no 10A0 5-ortho
2 A5 yes 5 5C0 10-dit MIC, ∆: MP

(×2) 1 (720, 764) ∼= A6
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d ty M3 (or P ) cp (i) pp geometry
2 cyc otet0400002, m206 1 no
3 cyc otet0600003, s961 1 no
4 irr otet0800002, L10n46, t12840 2 yes 2 2QB MIC, ∆

cyc otet0800007, t12839 1 no
5 cyc otet1000019 1 no

irr otet1000006, L8a20 3 yes ∆
irr (×2) otet1000026 2 yes 1 5-dit MIC

6 cyc otet1200013 1 no
irr otet1200039 1 no
irr (×2) otet1200038 1 yes 10 6-dit MIC
irr otet1200041 2 no
irr (×2) otet1200017 2 no
irr (×4) otet1200000 2 yes 2 6-dit MIC

7 cyc otet1400019 1 no
irr (×4) otet1400002, L14n55217 3 yes 2 7-dit MIC,∆ : Fano
irr (×4) otet1400035 1 yes 2 7-dit MIC, ∆ : Fano

8 cyc otet1600026 1 no
irr (×2) otet1600035 1 no
irr (×2) otet1600079 2 yes fd
irr (×2) otet1600016 2 yes fd
irr otet1600092 2 no
irr otet1600091 2 yes 16-cell
irr otet1600013, L14n17678 2 no

9 (36, 9) ∼= 32 ⋊ 4 yes 2 2QT MIC
(×2) (504, 156) = PSL(2, 8) yes 3 2QT MIC
(×2) (216, 153) ∼= 32 ⋊ (24, 3) yes 2 2QT MIC

10 (×6) (160, 234) ∼= 24 ⋊ 10 yes 5 10-dit MIC
(×2) (120, 34) = S5 yes 4 10-dit MIC, ∆ : [103]
(×2) (120, 34) = S5 no 7 10-dit MIC, 5-ortho

(360, 118) = A6 yes 5 10-dit MIC

Table 2. Table of 3-manifolds M3 found from subgroups of finite
index d of the fundamental group π1(S

3 \ K4a1) (alias the d-fold cov-
erings over the figure-eight knot 3-manifold). The covering type ‘ty’ in
column 2, the manifold identification ‘M3’ in column 3 and the number
of cusps ‘cp’ in column 4 are from SnapPy [19]. For d = 9 and 10,
SnapPy does not provide results so that we only identify the permuta-
tion group P =SmallGroup(o, k) (abbreviated as (o, k)), where o is the
order and k is the k-th group of order o in the standard notation (that
is used in Magma). If it exists, the MIC is ‘pp’-valued. If (i) is true,
unless otherwise specified, the graph of cosets leading to a MIC is that
of the d-simplex [and/or the condition (ii) is true: no geometry]. The
symbol ∆ means that (ii) fails to be satisfied. When there exists a MIC
with (i) true and (ii) false, the geometry is shown in bold characters.
The symbol ‘fd’ means a false detection of a MIC when (i) and (ii) are
satisfied simultaneously while a MIC does not exist. The abbreviations
‘Fano’, ‘d-ortho’ and ‘[103]’ are for the Fano plane, the d-orthoplex and
the corresponding geometric configuration.

3. MIC states pertaining to the Trefoil knot and its 0-surgery

We now investigate the relation of MIC states to the group geometrical axioms
(i)-(ii) (or their negation) in the context of the trefoil knot 31 (in Sec. 3.2) and

2 yes 9 NC(0, 10, 0, 4, [101 ]) 10-dit MIC

4. Conclusions

Previous work on the relationship between quantum commutation and coset-generated finite
geometries has been expanded here, by establishing a connection between coset-generated magic
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states and coset-generated finite geometries. The magic states under question are those leading to
MICs (with minimal complete quantum information in them). We found that, given an appropriate
free group G, two axioms, (i) the normal closure N of the subgroup of G generating the MIC is G itself
and (ii) no coset-geometry should exist, or the negation of both axioms (i) and (ii), are almost enough to
classify the MIC states. The few exceptions rely on configurations that admit geometric contextuality.
We restricted the application of the theory to the fundamental group of the 3-manifolds defined from
the figure-eight knot (an hyperbolic manifold) and from the trefoil knot, and to 4-manifolds Y and Ẽ8

obtained by 0-surgery on them. It is of importance to improve of knowledge of the magic states due to
their application to quantum computing, and we intend to pursue this research in future work.
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