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Abstract: The main goal of this paper is to study some interesting identities for the multiple
twisted (p, q)-L-function in a complex field. First, we construct new generating functions of the
new Carlitz-type higher order twisted (p,q)-Euler numbers and polynomials. By applying the
Mellin transformation to these generating functions, we obtain integral representations of the
multiple twisted (p, g)-Euler zeta function and multiple twisted (p, q)-L-function, which interpolate
the Carlitz-type higher order twisted (p, 4)-Euler numbers and Carlitz-type higher order twisted
(p,q)-Euler polynomials at non-positive integers, respectively. Second, we get some explicit formulas
and properties, which are related to Carlitz-type higher order twisted (p, q)-Euler numbers and
polynomials. Third, we give some new symmetric identities for the multiple twisted (p, g)-L-function.
Furthermore, we also obtain symmetric identities for Carlitz-type higher order twisted (p, q)-Euler
numbers and polynomials by using the symmetric property for the multiple twisted (p, g)-L-function.

Keywords: higher order twisted (p,q)-Euler numbers and polynomials; g-L-function; multiple
twisted (p, g)-L-function; symmetric identities
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1. Introduction

Many researchers have studied the Bernoulli numbers and polynomials, Euler numbers and
polynomials, Genocchi numbers and polynomials, tangent numbers and polynomials, zeta function,
and Hurwitz zeta function. Recently, some generalizations of the Bernoulli numbers and polynomials,
Euler numbers and polynomials, Genocchi numbers and polynomials, tangent numbers and
polynomials, zeta function, and Hurwitz zeta function were introduced (see [1-11]). Luo and Zhou [6]
introduced the I-function and g-L-function. Ryoo [7] discussed generalized Barnes-type multiple
g-Euler polynomials twisted by use of the roots of unity. Kim constructed the Barnes-type multiple
g-zeta function and g-Euler polynomials (see [9]). In [10], Simsek defined the twisted (4, g)-Bernoulli
numbers and polynomials of the twisted (h, q)-zeta function and L-function. Many (p, q)-extensions
of some special numbers, polynomials, and functions have been studied (see [1-5]). In this paper, we
introduce the multiple twisted (p, q)-L-function in the complex field and Carlitz-type higher order
twisted (p, g)-Euler numbers and polynomials. We obtain some new symmetric identities for the
multiple twisted (p, q)-L-function. We also give symmetric identities for Carlitz-type higher order
twisted (p,q)-Euler numbers and polynomials by using the symmetric property for the multiple
twisted (p, g)-L-function.
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Throughout this paper, we use the following: N is the set of natural numbers; Z; = NU {0} is
the set of nonnegative integers; Z, = {0,—1,—-2,-3,...} is the set of nonpositive integers; Z is the set
of integers; R is the set of real numbers; C is the set of complex numbers; and:

The binomial formulae are known as:

and:
The g-number is defined by:

n

1—
[n]y = 1_qq =1l+q+0++q0" 0 +0" 4", g £L
By using the g-number, Luo and Zhou defined the g-L-function L,(s, ) and g-I-function [,(s)

(see [6]):

00 n n+a
(s,a) =) n+Z , (Re(s) > La ¢ Zy),
n=0
and: . 1yngn
_y W (Re(s) > 1).
n=1 q

Choi and Srivastava [8] made the multiple Hurwitz—Euler eta function #,(s,a) and got some
results about the multiple Hurwitz—Euler eta function #,(s, a), which follows the r-ple series:

00 ( 1)k1+ ~+ky
i) = Zk: i+ ke +a)

, (Re(s) >0;a>0;r e N).

The (p, q)-number is:

n—3 2 2 n—3

g+t "2y

1]y = Tt +pq Lp#a

Note that this number is the g-number when p = 1. By substituting g by % in the g-number, we
cannot obtain the (p, q)-number. Therefore, many research works have been developed in the area of
special numbers and polynomials, as well as functions by using the (p, g)-number (see [1-5]).

Kim introduced the Barnes-type multiple g-zeta function and g-Euler polynomials (see [9]). In [10],
Simsek introduced the twisted (1, q)-Bernoulli numbers and polynomials of the twisted (h, q)-zeta
function and L-function.

Inspired by their work, the multiple twisted (p, q)-L-function can be defined as follows: For s, x €

C with Re(x) > 0, the multiple twisted (p, q)-L-function Li(ﬂtf)i,C(s’ x) is defined by:

R g
pqé 4 q ml,...,mr:O [}’I’I1 + e + my + x};,q

The goal of this paper is the investigation of new generalizations of the Carlitz-type higher order
twisted g-Euler numbers and polynomials, multiple Hurwitz—Euler eta function, and g-L-function.
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It is called the Carlitz-type higher order twisted (p,q)-Euler numbers and polynomials, which
is the multiple twisted (p,q)-L-function. In Section 2, we define the Carlitz-type higher order
twisted (p, q)-Euler numbers and polynomials and get some properties involving the distribution
relation, and so on. In Section 3, we define the multiple twisted (p,q)-L-function used by the
higher order-type twisted (p,)-Euler numbers and polynomials. We also study some connected
formulae between the Carlitz-type higher order twisted (p, 4)-Euler numbers and polynomials and the
multiple twisted (p, q)-L-function. In Section 4, we study a few symmetric identities of the multiple
twisted (p, q)-L-function and Carlitz-type higher order twisted (p, q)-Euler numbers and polynomials.
Throughout the paper, let { be the ™ root of 1 and ¢ # 1.

Definition 1. The classical higher order twisted Euler numbers E ff% and twisted Euler polynomials Ef;%(x)
are the following:

(z751) = L (gt <m),
and:
2\ gt _ 5 g0
m e = HX::OEYL’@(X)E, (|t+10g€| < 7'[)
respectively.

When ¢ =1, E,(f) (x) are called the classical high order Euler polynomials E,(f) (x).

2. Carlitz’s Type Higher Order Twisted (p, q)-Euler Numbers and Polynomials

First, we make the Carlitz-type higher order twisted (p, q)-Euler numbers and polynomials as
follows:

Definition 2. Let 0 < q < p < 1and r € N. The high order twisted (p, q)-Euler polynomials Er(:;,q,c:(x) are
defined by the following:

i ED () m Y (b gttt (1)
m

n=0 1y, 1y =0
_ (rn  _ g
When x = OEnMg Enpqg

if p =1, then lim;_ E;S;qg

(0) are called the high order twisted (p,q)-Euler numbers E (r,) . Observe that

n,p,q,0
Ef:g and lim, ; E,SLM( ) = E(”( ).

Definition 3. Let 0 < g < p < 1,r € N, and h € Z. The high order twisted (h, p, q)-Euler polynomials
EUM (x) are defined like this:

P44
o (1 ¢ = oty
Y ECH (0E =l (gt phn ) ey @)
n=0 my,- my=0
When x =0, EEI p‘)ﬂ = ESZZ g(0) are called the high order twisted (h, p, q)-Euler numbers Ef1 ; o0 WE
remark that if h = 0, then E}(’IPL)]C = Eﬁl;qg and Egzp;g( ) = E;(f;qg( ). Observe that if p = 1, then
lim, 9 hmEi(w;C = E}Séand limg 9 Eflpt)ié( )= El g( )-

By (1) and (2), we see that:
(M (ni)x yip (i n—i
Bt = 1 (1) e ol

< n xz n i (7” i)
nMé Z<l>q EZMC

1=

o
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Theorem 1. Let 0 < g < p < landr € N. We get:

Bl =Rl X (1

np.q,
[2]2 = (1 I xl_ (n—1I)x 1 ’
_(P—q)”lg(l)( RN <1+Cq’r’”l> '

Proof. Using the Taylor series expansion of eltlrat we get:

& ! &
Y Bl (X = 2l Y (gl
1=0 ’ my, - My=0

1

(e} [ee] t
E (e £ comemen s, )

my,- =0

The first part of the theorem follows when we compare the coefficients of % in the above equation.
By using (p, g)-numbers and binomial expansion, we note that:

E(")

n pqg( ) = [2]’ Z (_1)m1+._.+m7€m1+~-+mr [ml 4+ dmy + x]zrq

= [2]; Z (—1)mtetmy ety <

e =0
B (1) e

% Z (_1)1111+-~+m,€m1+---+mrql(m1+ 4y ( 1) (mq+---~4my)

- =0

B () (i)

This completes the proof of Theorem 1. [J

pm1+---+mr+x _ qm1+---+m7+x ) n

pP—q

Theorem 2. Let 0 < q < p < landr € N. Then, we get:

Ef,f;,q,g(X) = [2} io (”2_1)(1)"@ [m + x] .- (4)

Proof. By the Taylor-Maclaurin series expansion of (1 —a) ", we have:
1 r_ - m+r—1> mym _ml m(n l)
(1_|_§qlpnl> mZ_:@( m (=1)"¢"q

By Theorem 1 and the binomial expansion, we also get the desired result immediately. [
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By Theorem 1, ford € Nand d = 1( mod 2), we can show:

7 n
EY (x) = 1)lgepln-D
m,p.4,
= = d d d d
X Z Z (_1)a1+ my+---+ar+ m,gaﬁr my+---+ap+dmy
ay,e ap=0my, - ,my=0

« ql(u1+dm1+~~~+ur+dmr)p(n—l)(a1+dm1+--~+ar+dmr).

Theorem 3. (Distribution relation of higher order twisted (p,q)-Euler polynomials) For d € N and
d = 1( mod 2), we have:

(r) 2 -l () a4 +ar+x
Enpqg( x) = T, [d]g,q 2 0( g)ﬂlJr +a Enp g 7 .
q ay, - ,Ar=

Proof. Since:

M ap+---+a+x
nptg?, d

n 1 r
l lu1+ Far+x)  (n=1)(ay+---+a,+x)
p ’
T (=g —q )" EJ( ) ( )

1+ gdgl pd(n=1)

we have:
d—1
_qyatetar pa+ta p (1) mt---tatx
al..gr:()( 1) ¢ ”P 47 €d< d
[ n
CEOn —q Z() Vi
v ety pay oy (ag 4 tay) (n—1) (ag+-+ay) 1 '
_ Ayt ay 7ayt+--Tay ayr+---t+ar n— ar—+-ray
Xal..gr:()( 1) g q b (1_|_é’dqdlpd(nl)>
By Theorem 1, we get:
2 5 a a+-+a+x
1t ay pag o tar p (1) 1 r
[2]20’ [d]p,qgl,--grzo( 1) 5 El’lp q gd( d )
[2]:7 < (”) 1 xl (n— l)x( 1 >r
_(P—q)"lg )V 1+Zq'pn!
= Erpat ()

This completes the proof of Theorem 3. []

3. Multiple Twisted (p, q)-L-Function

The multiple twisted (p, g)-L-function is defined in Section 3. This function interpolates the higher

order twisted (p,q)-Euler polynomials at negative integers —n. Choi and Srivastava [9] defined the
multiple Hurwitz-Euler eta function 7, (s, a) by using:

e ( 1)k1+ ~+ky
nr(s,a) = Zk: R (Re(s) > 0;a > 0;r € N).
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It is known that #,(s,a) can be continued analytically in the whole complex s-plane (see [8]).
The (p, q)-extension of the multiple Hurwitz-Euler eta function can be defined as follows:

Definition 4. Fors,x € C with Re(x) > 0, the multiple twisted (p, q)-L-function LI(;)

q,é(s’ x) is defined by:

(_1)m1+~~+mr€m1+m+m,
[my+ -+ my + 205,

Lg;lg(s, x) = [2]; [;n

my,..., =0

Observe that if { = 1,p = 1, then lim,_,; L;f;,g(s,a) = 2"1,(s, a).

Let:
E 3 0o
Z rp a.¢
- (5)
= [2]; Z (=)t et gty gl bt gt
my,...,my=0
Theorem 4. Forr € N, we have:

1 o _

o [ gl =0 e = 1 5,3) ©)

where T'(s) = [° 25 le ?dz.

Proof. Apply the Mellin transformation to (5) and Definition 4. We have:

L w(r) EAYEE

F(S)/O B (x,—t)r e

E % i (_1)m1+~--+mr§m1+---+111r /oo e*[m1+---+mr+x]p,qttsfldt
) 0

1 ad )Mty gy by oo
oy U 4 [t
o M1+ +metxl5, Jo

m
L& (1) gy
=2
1215 Z [my+ - +my +x15,

This completes the proof of Theorem 4. [J

The value of the multiple twisted (p, q)-L-function LS,;

explicitly by the theorem below:

¢ (s, x) at negative integers —n is given

Theorem 5. Let n € N. Then, we get:

Ly (=mx) = E) ().

Proof. By using (5) and (6), we have:

(r) 1 / g1
Lyac(s =1 P (x, —t)t* " 1dt
) (7)
r(s 2 Empqé
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Observe that: -
I'(—n) = / e 2z "z
Jo

: 1 d\" n+l,-z_—n-1
= lim 27ti — % (2" ez ) (8)

(-1

=27
n!

Let us take s = —n in (7) for n € N. We use (7), (8), and the Cauchy residue theorem. Then, we
have:

(r) 1 & r) (-n" —n—1
Lmé(_”’x) _sg@n@mgolsmmé( ) m! Jo et
P 1 (r) (=1)"
=27 (ngn r(s)) (E”'P/‘%g(x) n!
o 1 () (="
- <2m(7}!)"> (E”"’M ()=
= Eg;,q,é (x)

This completes the proof of Theorem 5. [J
If we use (4), then we have:
n "oy <m+r—1) m ]t
E = [2] (=1)mg™elmlea
n; e q m;O m
If we use the Taylor series of e[”/r4! in the above equation, we get:
o 1 " r (m+r—l> A
e (—1)" )2, | &
Compare the coefficients L—H, in the above equation. We have:
— (m+k—1
Eae =125 & ("0 ) 0, ©)
m=

This is defined as the multiple twisted (p, q)-Euler zeta function in the definition below by (9):

Definition 5. For s € C, we define:

=2 2 (") (10

m=1 m ]qu

)

The function C ") P, g( s) interpolates the number E, (r npal negative integers. Substitute s = —n

instead of n € N into (10), and use (9), then we get the following theorem:

Corollary 1. Let n € N. We obtain:
") (_y— g0
glﬂ/‘iz@( n) =E, e
4. Some Identities for the Multiple Twisted (p, q)-L-Function

If we have wy, wp, € Nand w; =1 (mod 2), wp =1 (mod 2) and forr € Nand n € Z, we get
symmetric identities for the multiple twisted (p, q)-L-function.
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Theorem 6. For wy,wp € Nand w; =1 (mod 2), wy =1 (mod 2), we obtain

wp—1

[l Yo (~DHIgeE

jir =0

wy . .
X L(fgl o (s,wzx—l— w—l(h +--- +]r))

1 (11)
Wy — , ) . )
= [wl];rq [2];%1 . Z O(_]‘)ZI:l ]l€W1 Zl:l ]I
s gr=

w1 .. .
X L(rw)2 42,72 <s,w1x + w—z(h + - -I—]r)) .
Proof. Note that [xy]; = [x],[y]; for any x,y € C. In Definition 4, substitute w,x + w72( 4+ r)
1
instead of x and replace q“1, p™1, and (™! instead of g, p, and (, respectively. We get the next result

1 (r) wy . .
[2];7”1 prl,qwl,éwl (S/ woXx + ’(,()71(]1 + .. +]'r‘)>

(_1)m1+---+mr€w1m1+~-+wlmr

wy .
my, =0 (M + - - - 4 My + Wwrx + w—(jl + -
1

v +jr)];w1,qwl
=) (_l)ml+~-+m,gw1m1+---+w1m,
o [Wi(my - ) Fwiwax +wa (o 4+ i) ]
w1 pwl,qwl
[} (_1)ml-&-'-~+mr§w1m1+~~~+wlm,
ml,,,;nrzo [wy(my + -+ my) + wiwpx +wa(j1 + -+ ji) 5 g
[wl]%,q
©0 -1 my+-+my Fwymy+---+wimy
— iy, Y (=) ¢ — 12)
=0 [wy(my + -+ my) + wywax +wa(j1 + -+ -+ jr ]p,
0 wy—1 (_1)m1+~~+m,€w1m1+-~+w1my
=l L L [wr (m1 + - - - + my) + wiwx + wa(j1 + - - - + Jr) |3
e =0, ip=0 [YVI1 r 12 21 Jr)ip.q
wy—1 . .
_ [wl];q 2 2 / 1 (wamj+i; )gwl ijl(wzmj-&-zj)
011 =0

1
X ([%(wzml +i1) + o A wy (wamy + i) + wiwax + wo(j1 + +]'r)]pq)

wy—1
= oy Z Z

011 =0

X ([W1ZU2(X +mq+--

] —1 m] ( 71)Z;=1 i]-gwlzuz Z/y-=1 m] é-wl Z]r‘zl 1]

-1
~—|—mr)+ZU1(i1—|-"'—|-ir)+W2(j1+"'+jr)];,q) .
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We get the following equation from (12).

[wal5, “st wy . )
[z]rl”] Z ( 1)]1+ +]rng(]1+ +]r)L;121 1, (S, WX + w—(]l 4+ .- ‘|‘]r))
qwl ]'],...,jr: 1
1 -1
_ [w ]s [w }s 2 wz2 wlz Zl 1Gitig+my) gwleZz 1
= llpgl™2 pa (13)

=01y, iy= 0]1 : /]r
x V1 Xi=1 iz 21:1 ji

-1
x ([w1w2(x+m1 oot me) Fwi(i o i) Fwa(i +jr)};,q)

We have the following result from the same method like (13):

Sl wzz_ll ( )it gt ") (s wix 4+ 2L (h+-+j >>
o w w: w 2 1 1 o ..
[2];w2 1, jr=0 p©2,4%2,0%2 W, p
0 -1 -1
= [w1]} 4[wal]; Y. wzz wt (—1)Zi=aUrtitm)
= [pql®2lp,q (14)

my, =0y, jr=0iy, ir=0

x gW1%2 Kimy M1 702 Ny fr 701 Xy
-1
< (foora(r o+ me) w4 o) +walin o))

Therefore, we have Theorem 6 from Equations (13) and (14). O

We obtain the below corollary when we take w, = 1 in Theorem 6.

Corollary 2. Let wy € Nwithwy =1 (mod 2). Forr € Nand n € Z... We obtain:
213

(r) _
L S, W1X) = o 7o
pg (5:01%) (217, [w1ls,4

(15)
wy—1 () ]1++]7‘
<L - DEAIGEAIL, e (s BEED
j1,0,jr=0
We get the corollary below when p = 1,{ = 1, and g approaches one in Corollary 2.
Corollary 3. Let m € Nwithm =1 (mod 2). Forr € Nand n € Z.. We obtain:
1 o X+ji4- 4]
B(s,x) = — Y. (=1)ittig, (S]l]’> ‘
ms . m
J1, /17:0

Let us take s = —n in Theorem 6. We obtain symmetric identities for high order twisted

(p,q)-Euler polynomials forr € Nand n € Z..
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Theorem 7. Let wy, wy € N, and let w; =1 (mod 2), wy =1 (mod 2). Forr € Nand n € Z., we obtain:

wy—1

il Y (—1)Eige S
Jieejr=0
wy . .
X Ei:;wquwlfgwl <w2x + a(]l +oe +]V)>
(16)
wal . . , .
= [w2]pql2]er Z (—1)ki=tiigir ki
i jr=0
w1 ,. .
X Eﬁlf;wzrqwzlng <w1x + wiz(]l +oe +]Y)) :
Proof. We obtain the theorem by Theorems 5 and 6. O
We get the corollary below when we take w, = 1 in Theorem 7.
Corollary 4. Let wy € N, and let wy =1 (mod 2). Let r € Nand n € Z.. Then, we have:
(V) [2]; n wlil Zr : Zr H
En,p,q,g(wlx) = [z]rw [wl]p,q ‘ Z (_1) =11 gRi= )t
q“1 j1,0 jr=0 (17)
(r) jut- A
X En,pwl,qwl,gwl <S/x + w1 .
We have the corollary below when p = 1, and g approaches one in (17).
Corollary 5. Let m € Nwithm =1 (mod 2). Forr € Nand n € Z., we obtain:
m—1 . .
T X+ji+o+
E,S%(x) =m" Y (<) +JVE1(12m ( J a Jr) ‘
Jire jr=0
We obtain the following corollary if { = 1 in Corollary 5.
Corollary 6. Let m € Nwithm =1 (mod 2). Forr € Nand n € Z,, we obtain:
(7 S bt g () (X
BV () =t Y (i) (SR, (18)
jiejr=0

We have the theorem below.

Theorem 8. Let wy,wp € Nwithwy =1 (mod 2), wy =1 (mod 2). Forr € Nand n € Z, we obtain:

wil (_1)Z§:1j1€WzZ?:1jl « E,(zr;,wl o g (wa + @(]1 N _|_]‘r))
i 3r=0 r w1
_ = (n i —i wiwyxi (1)
= l;:) <Z> [wﬂp,q [wl]p,qp Enfj,pﬂ'l,qwl el (wa)
wp—1

x Z (_1)2{:1]}@% er=1]'lqwz(n—i) Lim1h [jg - - _|_]'r];w2 o2
i =0 '
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Proof. We have the following formula by (3):
"= DEiiigo2 it w g0 @2 '
| Z (—1)&=1 g2 i XEnpwlq“’lg“’l w2x+w—1(]1+---+]k)
1 =0
w1 —1 ) ‘
— Z (_1)2;:1]l§w22;:1]l
Jisee jr=0
i g2ttty ) (w2) |2+ +50)| (19)
- n=ip LA wq ' P11
wlfl ) .
- Y (—=1)Ei=1 g2 K i
Juejr=0
< wz n—i) Y 1 ji w1wzx1E(“) [wz]p,q 1 [ 447 ]i
; p n—i,p?1,4°1,01 (ZUQJC) [wl]p,q J1 Jr p¥1,4™

O

For each integer n > 0, let:

w—1 . r . . r . Lo
Ag?’p/qlg(w) = ) (—1)Zi=1/1gki=1 qu(n—z) Yiaii[jy - .- + il
jure,jr=0

The above sum A is called the alternating twisted (p, q)-power sums.
n,i,p,49, C g p.q9)p

Theorem 9. Let wy,wo € Nwithwy; =1 (mod 2), wy =1 (mod 2). Forr € Nand n € Z., we obtain:
[z]r Z n [w ]i [ZU ]n i wlwsz(V i) (w X)A(r) (w )
qwl L l 1 P4 pq p n— prz qwz ng 1 n,i,pwquwl,gwl 2
_ r o n i n—i wlwzxiE(T,i) A(’)
- [2]17“’2 1;0 i [w2]p,q [wl]p,q p n—i,p¥1,4%1,¢%1 (ZUZX) n,i,p"2,42,002 (wl)

Proof. If we use Theorem 8, then we have:

w1—1 . i " .
2pealrlpy Yo (F)HgERE
JiaJr=
wy . .
X Er(1 ;wl 1,7 <wzx + ;1(]1 +e +]r)> (20)

n n .
mng 'Z(:) <i > [wz}lp 1]2 qu ZU]wzsz;(qr 11) PULLg0,C0 (wa)“41(1r,l),}7w2,qz“2,zetaw2 (w1)
1=

If we use the same method as the proof method of Formula (20), we have:

wal

D lwalpy 3 (~1)Hevige ki
Jur jr=0
(r w1 ,. .
X E, ;wz 2. (wlx + ;2(]1 4 +],)> (21)
row (1 i n—i_wywyxi ¢ (7.0) (r)
= [2fwm ) ; [wr1]}y q[w2]y o' p E,” G por goa g (W1X) A wr n oy (02)
i=0

Therefore, we have Theorem 9 by (20) and (21) and Theorem 7. O
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(r/h)

We obtain the symmetric identity for the higher order twisted (, p, q)-Euler numbers E b, N

the complex field using Theorem 9.

Corollary 7. Let w; =1 (mod 2), wp = 1 (mod 2) for wy,w; € N. Let k € Nand n € Z. It follows
that:

nn ) » ) y
[2];%1 Z(:) <l> [wl]lprq [ZUZ]ZIqlPZUlZUZXlAEl}:l?/pwllqwllgwl (wZ)E}(flr_lg’pwz’qWngwz
=
_ [z]r i n [ZU ]i [w ]n—i wlwzxiA(’) (w )E(V,i) )
qwz = i 2 pAa 1 p.q p n,i,pr,qu,éwZ 1 n—i,pwllq“’l,gwl'
1=

If=1,p=1,r =1, and g approaches one in Theorem 7, then we have the following theorem
for Euler polynomials, which are symmetric in w; and w, (see [11]).

Corollary 8. Let wy =1 (mod 2), wy =1 (mod 2) for wy, w, € N. Then, we obtain:

w1 —1 ) wy . wy—1 ) wy |
wi ), (=1)/Ex (%sz + w]) =wy ) (=1)Ex (w1x+ w]> :
j=0 1 =0 >
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