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Abstract: In this work, the bounds for the logarithmic coefficients γn of the general classes S∗(ϕ) and
K(ϕ) were estimated. It is worthwhile mentioning that the given bounds would generalize some
of the previous papers. Some consequences of the main results are also presented, noting that our
method is more general than those used by others.
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1. Introduction

Let H denote the class of analytic functions in the open unit disk U := {z ∈ C : |z| < 1} and A
denote the subclass ofH consisting of functions of the form

f (z) = z +
∞

∑
n=2

anzn. (1)

Also, let S be the subclass of A consisting of all univalent functions in U. Then the logarithmic
coefficients γn of f ∈ S are defined with the following series expansion:

log
(

f (z)
z

)
= 2

∞

∑
n=1

γn( f )zn, z ∈ U. (2)

These coefficients play an important role for various estimates in the theory of univalent functions.
Note that we use γn instead of γn( f ). The idea of studying the logarithmic coefficients helped
Kayumov [1] to solve Brennan’s conjecture for conformal mappings.

Recall that we can rewrite (2) in the series form as follows:

2
∞

∑
n=1

γnzn =a2z + a3z2 + a4z3 + · · · − 1
2
[a2z + a3z2 + a4z3 + · · · ]2

+
1
3
[a2z + a3z2 + a4z3 + · · · ]3 + · · · .
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Now, considering the coefficients of zn for n = 1, 2, 3, it follows that
2γ1 = a2,

2γ2 = a3 −
1
2

a2
2,

2γ3 = a4 − a2a3 +
1
3

a3
2.

(3)

For two functions f and g that are analytic in U, we say that the function f is subordinate to g in
U and write f (z) ≺ g (z) if there exists a Schwarz function ω that is analytic in U with ω (0) = 0 and
|ω (z)| < 1 such that

f (z) = g (ω (z)) (z ∈ U) .

In particular, if the function g is univalent in U, then f ≺ g if and only if f (0) = g(0) and
f (U) ⊆ g(U).

Using subordination, different subclasses of starlike and convex functions were introduced by
Ma and Minda [2], in which either of the quantity z f ′(z)

f (z) or 1 + z f ′′(z)
f ′(z) is subordinate to a more general

superordinate function. To this aim, they considered an analytic univalent function ϕ with positive real
part in U. ϕ(U) is symmetric respecting the real axis and starlike considering ϕ(0) = 1 and ϕ′(0) > 0.
They defined the classes consisting of several well-known classes as follows:

S∗(ϕ) :=
{

f ∈ S :
z f ′(z)

f (z)
≺ ϕ(z), z ∈ U

}
,

and

K(ϕ) :=
{

f ∈ S : 1 +
z f ′′(z)
f ′(z)

≺ ϕ(z), z ∈ U
}

.

For example, the classes S∗(ϕ) andK(ϕ) reduce to the classes S∗[A, B] :=
1 + Az
1 + Bz

andK[A, B] :=

1 + Az
1 + Bz

of the well-known Janowski starlike and Janowski convex functions for −1 ≤ B < A ≤ 1,

respectively. By replacing A = 1− 2α and B = −1 where 0 ≤ α < 1, we conclude the classes S∗(α)
andK(α) of the starlike functions of order α and convex functions of order α, respectively. In particular,
S∗ := S∗(0) and K := K(0) are the class of starlike functions and of convex functions in the unit
disk U, respectively. The Koebe function k(z) = z/(1− z)2 is starlike but not convex in U. Thus,
every convex function is starlike but not conversely; however, each starlike function is convex in the
disk of radius 2−

√
3.

Lately, several researchers have subsequently investigated similar problems in the direction of the
logarithmic coefficients, the coefficient problems, and differential subordination [3–11], to mention
a few. For example, the rotation of Koebe function k(z) = z(1− eiθ)−2 for each θ has logarithmic
coefficients γn = eiθn/n, n ≥ 1. If f ∈ S , then by using the Bieberbach inequality for the first equation
of (3) it concludes |γ1| ≤ 1 and by utilizing the Fekete–Szegö inequality for the second equation of (3),
(see [12] (Theorem 3.8)),

|γ2| =
1
2

∣∣a3 −
1
2

a2
2
∣∣ ≤ 1

2
(
1 + 2e−2) = 0.635 · · · .

It was shown in [12] (Theorem 4) that the logarithmic coefficients γn of every function f ∈ S satisfy

∞

∑
n=1
|γn|2 ≤

π2

6
,

and the equality is attained for the Koebe function. For f ∈ S∗, the inequality |γn| ≤ 1/n holds but
is not true for the full class S , even in order of magnitude (see [12] (Theorem 8.4)). In 2018, Ali and
Vasudevarao [3] and Pranav Kumar and Vasudevarao [6] obtained the logarithmic coefficients γn for
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certain subclasses of close-to-convex functions. Nevertheless, the problem of the best upper bounds
for the logarithmic coefficients of univalent functions for n ≥ 3 is presumably still a concern.

Based on the results presented in previous research, in the current study, the bounds for the
logarithmic coefficients γn of the general classes S∗(ϕ) and K(ϕ) were estimated. It is worthwhile
mentioning that the given bounds in this paper would generalize some of the previous papers and
that many new results are obtained, noting that our method is more general than those used by others.
The following lemmas will be used in the proofs of our main results.

For this work, let Ω represent the class of all analytic functions ω in U that equips with conditions
ω(0) = 0 and |ω(z)| < 1 for z ∈ U. Such functions are called Schwarz functions.

Lemma 1. [13] (p. 172) Assume that ω is a Schwarz function so that ω(z) = ∑∞
n=1 pnzn. Then

|p1| ≤ 1, |pn| ≤ 1− |p1|2 n = 2, 3, . . ..

Lemma 2. [14] Let ψ, v ∈ H be any convex univalent functions in U. If f (z) ≺ ψ(z) and g(z) ≺ v(z),
then f (z) ∗ g(z) ≺ ψ(z) ∗v(z) where f , g ∈ H.

We observe that in the above lemma, nothing is assumed about the normalization of ψ and v,
and “∗” represents the Hadamard (or convolution) product.

Lemma 3. [12,15] (Theorem 6.3, p. 192; Rogosinski’s Theorem II (i)) Let f (z) =
∞
∑

n=1
anzn and g(z) =

∞
∑

n=1
bnzn be analytic in U, and suppose that f ≺ g where g is univalent in U. Then

n

∑
k=1
|ak|2 ≤

n

∑
k=1
|bk|2, n = 1, 2, . . ..

Lemma 4. [12,15] (Theorem 6.4 (i), p. 195; Rogosinski’s Theorem X) Let f (z) =
∞
∑

n=1
anzn and g(z) =

∞
∑

n=1
bnzn be analytic in U, and suppose that f ≺ g where g is univalent in U. Then

(i) If g is convex, then |an| ≤ |g′(0)| = |b1|, n = 1, 2, . . ..
(ii) If g is starlike (starlike with respect to 0), then |an| ≤ n|g′(0)| = n|b1|, n = 2, 3, . . ..

Lemma 5. [16] If ω(z) = ∑∞
n=1 pnzn ∈ Ω, then for any real numbers q1 and q2, the following sharp

estimate holds:
|p3 + q1 p1 p2 + q2 p3

1| ≤ H(q1; q2),

where

H(q1; q2) =



1 if (q1, q2) ∈ D1 ∪ D2 ∪ {(2, 1)},
|q2| if (q1, q2) ∈ ∪7

k=3Dk,

2
3 (|q1|+ 1)

(
|q1|+1

3(|q1|+1+q2)

) 1
2 if (q1, q2) ∈ D8 ∪ D9,

q2
3

(
q2

1−4
q2

1−4q2

)(
q2

1−4
3(q2−1)

) 1
2

if (q1, q2) ∈ D10 ∪ D11 \{(2, 1)},

2
3 (|q1| − 1)

(
|q1|−1

3(|q1|−1−q2)

) 1
2 if (q1, q2) ∈ D12.
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While the sets Dk, k = 1, 2, . . . , 12 are defined as follows:

D1 =

{
(q1, q2) : |q1| ≤

1
2

, |q2| ≤ 1
}

,

D2 =

{
(q1, q2) :

1
2
≤ |q1| ≤ 2,

4
27

(
(|q1|+ 1)3

)
− (|q1|+ 1) ≤ |q2| ≤ 1

}
,

D3 =

{
(q1, q2) : |q1| ≤

1
2

, |q2| ≤ −1
}

,

D4 =

{
(q1, q2) : |q1| ≥

1
2

, |q2| ≤ −
2
3
(|q1|+ 1)

}
,

D5 = {(q1, q2) : |q1| ≤ 2, |q2| ≥ 1} ,

D6 =

{
(q1, q2) : 2 ≤ |q1| ≤ 4, |q2| ≥

1
12

(q2
1 + 8)

}
,

D7 =

{
(q1, q2) : |q1| ≥ 4, |q2| ≥

2
3
(|q1| − 1)

}
,

D8 =

{
(q1, q2) :

1
2
≤ |q1| ≤ 2, − 2

3
(|q1|+ 1) ≤ q2 ≤

4
27

(
(|q1|+ 1)3

)
− (|q1|+ 1)

}
,

D9 =

{
(q1, q2) : |q1| ≥ 2, − 2

3
(|q1|+ 1) ≤ q2 ≤

2|q1|(|q1 + 1|)
q2

1 + 2|q1|+ 4

}
,

D10 =

{
(q1, q2) : 2 ≤ |q1| ≤ 4,

2|q1|(|q1 + 1|)
q2

1 + 2|q1|+ 4
≤ q2 ≤

1
12

(q2
1 + 8)

}
,

D11 =

{
(q1, q2) : |q1| ≥ 4,

2|q1|(|q1 + 1|)
q2

1 + 2|q1|+ 4
≤ q2 ≤

2|q1|(|q1 − 1|)
q2

1 − 2|q1|+ 4

}
,

D12 =

{
(q1, q2) : |q1| ≥ 4,

2|q1|(|q1 − 1|)
q2

1 − 2|q1|+ 4
≤ q2 ≤

2
3
(|q1| − 1)

}
.

2. Main Results

Throughout this paper, we assume that ϕ is an analytic univalent function in the unit disk U
satisfying ϕ(0) = 1 such that it has series expansion of the form

ϕ(z) = 1 + B1z + B2z2 + B3z3 + · · · , B1 6= 0. (4)

Theorem 1. Let the function f ∈ S∗(ϕ). Then the logarithmic coefficients of f satisfy the inequalities:

(i) If ϕ is convex, then

|γn| ≤
|B1|
2n

, n ∈ N, (5)

k

∑
n=1
|γn|2 ≤

1
4

k

∑
n=1

|Bn|2
n2 , k ∈ N, (6)

and
∞

∑
n=1
|γn|2 ≤

1
4

∞

∑
n=1

|Bn|2
n2 . (7)

(ii) If ϕ is starlike with respect to 1, then

|γn| ≤
|B1|

2
, n ∈ N. (8)

All inequalities in (5), (7), and (8) are sharp such that for any n ∈ N, there is the function fn given by
z f ′n(z)
fn(z)

= ϕ(zn) and the function f given by
z f ′(z)

f (z)
= ϕ(z), respectively.
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Proof. Suppose that f ∈ S∗(ϕ). Then considering the definition of S∗(ϕ), it follows that

z
d
dz

(
log
(

f (z)
z

))
=

z f ′(z)
f (z)

− 1 ≺ ϕ(z)− 1 =: φ(z), z ∈ U,

which according to the logarithmic coefficients γn of f given by (1), concludes

∞

∑
n=1

2nγnzn ≺ φ(z), z ∈ U.

Now, for the proof of inequality (5), we assume that ϕ is convex in U. This implies that φ(z) is
convex with φ′(0) = B1, and so by Lemma 4(i) we get

2n|γn| ≤ |φ′(0)| = |B1|, n ∈ N,

and concluding the result.

Next, for the proof of inequality (6), we define h(z) :=
f (z)

z
, which is an analytic function, and it

satisfies the relation
zh′(z)
h(z)

=
z f ′(z)

f (z)
− 1 ≺ φ(z), z ∈ U, (9)

as φ is convex in U with φ(0) = 0.
On the other hand, it is well known that the function (see [17])

b0(z) = log
(

1
1− z

)
=

∞

∑
n=1

zn

n

belongs to the class K, and for f ∈ H,

f (z) ∗ b0(z) =
∫ z

0

f (t)
t

dt. (10)

Now, by Lemma 2 and from (9), we obtain

zh′(z)
h(z)

∗ b0(z) ≺ φ(z) ∗ b0(z).

Considering (10), the above relation becomes

log
(

f (z)
z

)
≺
∫ z

0

φ(t)
t

dt.

In addition, it has been proved in [18] that the class of convex univalent functions is closed under

convolution. Therefore, the function
∫ z

0

φ(t)
t

dt is convex univalent. In addition, the above relation

considering the logarithmic coefficients γn of f given by (1) is equivalent to

∞

∑
n=1

2γnzn ≺
∞

∑
n=1

Bnzn

n
.

Applying Lemma 3, from the above subordination this gives

4
k

∑
n=1
|γn|2 ≤

k

∑
n=1

|Bn|2
n2 ,
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which yields the inequality in (6). Supposing that k→ ∞, we deduce that

4
∞

∑
n=1
|γn|2 ≤

∞

∑
n=1

|Bn|2
n2 ,

and it concludes the inequality (7).
Finally, we suppose that ϕ is starlike with respect to 1 in U, which implies φ(z) is starlike, and thus

by Lemma 4(ii), we obtain
2n|γn| ≤ n|φ′(0)| = n|B1|, n ∈ N,

This implies the inequality in (8).
For the sharp bounds, it suffices to use the equality

z
d
dz

(
log
(

f (z)
z

))
=

z f ′(z)
f (z)

− 1,

and so these results are sharp in inequalities (5), (6), and (8) such that for any n ∈ N, there is the function

fn given by
z f ′n(z)
fn(z)

= ϕ(zn) and the function f given by
z f ′(z)

f (z)
= ϕ(z), respectively. This completes

the proof.

In the following corollaries, we obtain the logarithmic coefficients γn for two subclasses S∗(α +

(1− α)ez) and S∗(α + (1− α)
√

1 + z), which were defined by Khatter et al. in [19], and α + (1− α)ez

and α + (1− α)
√

1 + z are the convex univalent functions in U. For α = 0, these results reduce to the
logarithmic coefficients γn for the subclasses S∗(ez) and S∗(

√
1 + z) (see [20,21]).

Corollary 1. For 0 ≤ α < 1, let the function f ∈ S∗(α + (1− α)ez). Then the logarithmic coefficients of f
satisfy the inequalities

|γn| ≤
1− α

2n
, n ∈ N

and
∞

∑
n=1
|γn|2 ≤

1
4

∞

∑
n=1

(1− α)2/(n!)2

n2 .

These results are sharp such that for any n ∈ N, there is the function fn given by
z f ′n(z)
fn(z)

= α + (1− α)ezn

and the function f given by
z f ′(z)

f (z)
= α + (1− α)ez.

Corollary 2. For 0 ≤ α < 1, let the function f ∈ S∗(α + (1− α)
√

1 + z). Then the logarithmic coefficients
of f satisfy the inequalities

|γn| ≤
1− α

4n
, n ∈ N

and
∞

∑
n=1
|γn|2 ≤

1
4

∞

∑
n=1

(
(1− α)(

1
2
n)
)2

n2 .

These results are sharp such that for any n ∈ N, there is the function fn given by
z f ′n(z)
fn(z)

= α + (1−

α)
√

1 + zn and the function f given by
z f ′(z)

f (z)
= α + (1− α)

√
1 + z.

The following corollary concludes the logarithmic coefficients γn for a subclass S∗(1 + sin z)
defined by Cho et al. in [22], in which considering the proof of Theorem 1 and Corollary 1, the convexity
radius for q0(z) = 1 + sin z is given by r0 ≈ 0.345.
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Corollary 3. Let the function f ∈ S∗(1 + sin z) where q0(z) is a convex univalent function for r0 ≈ 0.345 in
U. Then the logarithmic coefficients of f satisfy the inequalities

|γn| ≤
1

2n
, n ∈ N

and
∞

∑
n=1
|γn|2 ≤

1
4

∞

∑
n=1

1
((2n + 1)!n)2 .

These results are sharp such that for any n ∈ N, there is the function fn given by
z f ′n(z)
fn(z)

= q0(zn) and

the function f given by
z f ′(z)

f (z)
= q0(z).

In the following result, we get the logarithmic coefficients γn for a subclass S∗(pk(z)) defined by
Kanas and Wisniowska in [23] (see also [24,25]), in which

pk(z) = 1 + P1(k)z + P2(k)z2 + · · · ,

where pk(z) is a convex univalent function in U and

P1(k) =


2A2

1−k2 if 0 ≤ k < 1,
8

π2 if k = 1,
π2

4κ2(t)(k2−1)(1+t)
√

t
if k > 1.

A = 2
π arccos k and κ(t) is the complete elliptic integral of the first kind.

Corollary 4. For 0 ≤ k < ∞, let the function f ∈ S∗(pk(z)). Then the logarithmic coefficients of f satisfy
the inequalities

|γn| ≤
P1(k)

2n
, n ∈ N.

This result is sharp such that for any n ∈ N, there is the function fn given by
z f ′n(z)
fn(z)

= pk(zn).

The following result concludes the logarithmic coefficients γn for a subclass S∗
(√

2− (
√

2−

1)
√

1−z
1+2(

√
2−1)z

)
defined by Mendiratta et al. in [26], in which

ϕ0(z) =
√

2− (
√

2− 1)

√
1− z

1 + 2(
√

2− 1)z
= 1 +

5− 3
√

2
2

z +
71− 51

√
2

8
z2 + · · · ,

where ϕ0 is a convex univalent function in U.

Corollary 5. Let the function f ∈ S∗
(√

2− (
√

2− 1)
√

1−z
1+2(

√
2−1)z

)
. Then the logarithmic coefficients of f

satisfy the inequalities

|γn| ≤
5− 3

√
2

4n
, n ∈ N.

This result is sharp such that for any n ∈ N, there is the function fn given by
z f ′n(z)
fn(z)

= ϕ0(zn).
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The following results conclude the logarithmic coefficients γn for two subclasses S∗(z +
√

1 + z2)

and S∗
(
1 + z

(1−αz2)

)
defined by Krishna Raina and Sokół in [27] and Kargar et al. in [28], where

z +
√

1 + z2 = 1 + z +
∞

∑
n=1

( 1
2
n

)2

z2n,

and

1 +
z

(1− αz2)
= 1 + z +

∞

∑
n=1

αnz2n+1, (0 ≤ α < 1),

respectively. These functions are univalent and starlike with respect to 1 in U.

Corollary 6. Let the function f ∈ S∗(z +
√

1 + z2). Then the logarithmic coefficients of f satisfy
the inequalities

|γn| ≤
1
2

, n ∈ N.

This result is sharp such that for any n ∈ N, there is the function fn given by
z f ′n(z)
fn(z)

= zn +
√

1 + z2n.

Corollary 7. Let the function f ∈ S∗
(
1 + z

(1−αz2)

)
, where 0 ≤ α < 1. Then the logarithmic coefficients of f

satisfy the inequalities

|γn| ≤
1
2

, n ∈ N.

This result is sharp such that for any n ∈ N, there is the function fn given by
z f ′n(z)
fn(z)

= 1 +
z

(1− αz2n)
.

Remark 1. 1. Letting

ϕ(z) =
1 + Az
1 + Bz

=1 + (A− B)z− B(A− B)z2 + B2(A− B)z3 + · · ·

=1 +


A− B

B

∞
∑

n=1
(−1)n−1Bnzn, if B 6= 0

Az, if B = 0,
(−1 ≤ B < A ≤ 1),

which is convex univalent in U in Theorem 1, then we get the results obtained by Ponnusamy et al. [7] (Theorem
2.1 and Corollary 2.3).

2. For A = eiα(eiα − 2β cos α), where β ∈ [0, 1) and α ∈ (−π/2, π/2) in the above expression, then we
get the results obtained by Ponnusamy et al. [7] (Theorem 2.5).

3. Taking

ϕ(z) =
(

1 + z
1− z

)α

=1 + 2αz + 2α2z2 +
8α3 + 4α

6
z3 + . . .

=1 +
∞

∑
n=1

An(α)zn, (0 < α ≤ 1),

which is convex univalent in U, and An(α) =
n
∑

k=1
(n−1

k−1)(
α
k)2

k in Theorem 1, then we get the results obtained by

Ponnusamy et al. [7] (Theorem 2.6).
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4. Setting

ϕ(z) = 1 +
β− α

π
i log

(
1− e2πi 1−α

β−α z

1− z

)
=1 +

∞

∑
n=1

Cnzn, (α > 1, β < 1),

which is convex univalent in U, and Cn =
β− α

nπ
i
(
1− e2nπi 1−α

β−α
)

in Theorem 1, then we get the results obtained
by Kargar [5] (Theorems 2.2 and 2.3).

5. Letting

ϕ(z) = 1 +
1

2i sin δ
log
(

1 + zeiδ

1 + ze−iδ

)
=1 +

∞

∑
n=1

Dnzn, (π/2 ≤ δ < π),

which is convex univalent in U, and Dn =
(−1)n−1 sin nδ

n sin δ
in Theorem 1, then we get the results obtained by

Kargar [5] (Theorems 2.5 and 2.6).
6. Letting

ϕ(z) =
(

1 + cz
1− z

)(α1+α2)/2

=1 +
∞

∑
n=1

λnzn,
(

0 < α1, α2 ≤ 1, c = eπiθ , θ =
α2 − α1

α2 + α1

)
,

which is convex univalent in U, and

λn =
n

∑
k=1

(
n− 1
k− 1

)(
(α1 + α2)/2

k

)
(1 + c)k

in Theorem 1, then we get the results obtained for |γn| by Kargar et al. [29] (Theorem 3.1). Moreover,
for α1 = α2 = β, we get the result presented by Thomas in [30] (Theorem 1).

7. Let the function f ∈ K
(

1− cz
1− z

)
= K(1 − cz − cz2 − cz3 + . . .), where c ∈ (0, 1]. It is

equivalent to

Re
(

1 +
z f ′′(z)
f ′(z)

)
< 1 +

c
2

.

Then we have (see e.g., [31] (Theorem 1))

z f ′(z)
f (z)

≺ (1 + c)(1− z)
1 + c− z

,

where
(1 + c)(1− z)

1 + c− z
is a convex univalent function in U, and

(1 + c)(1− z)
1 + c− z

= 1− c
c + 1

z− c
(c + 1)2 z2 + · · · = 1− c

∞

∑
n=1

zn

(1 + c)n .

Thus, applying Theorem 1, we get the results obtained by Obradović et al. [4] (Theorem 2 and Corollary 2).

Theorem 2. Let the function f ∈ K(ϕ). Then the logarithmic coefficients of f satisfy the inequalities

|γ1| ≤
|B1|

4
, (11)
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|γ2| ≤


|B1|
12

if |4B2 + B2
1 | ≤ 4|B1|

|4B2 + B2
1 |

48
if |4B2 + B2

1 | > 4|B1|

, (12)

and if B1, B2, and B3 are real values,

|γ3| ≤
|B1|
24

H(q1; q2), (13)

where H(q1; q2) is given by Lemma 5, q1 =
B1+

4B2
B1

2 , and q2 =
B2+

2B3
B1

2 . The bounds (11) and (12) are sharp.

Proof. Let f ∈ K(ϕ). Then by the definition of the subordination, there is a ω ∈ Ω with ω(z) =

∑∞
n=1 cnzn so that

1 +
z f ′′(z)
f ′(z)

=ϕ(ω(z))

=1 + B1c1z + (B1c2 + B2c2
1)z

2 + (B1c3 + 2c1c2B2 + B3c3
1)z

3 + · · · .

From the above equation, we get that
2a2 = B1c1

6a3 − 4a2
2 = B1c2 + B2c2

1
12a4 − 18a2a3 + 8a3

2 = B1c3 + 2c1c2B2 + B3c3
1.

(14)

By substituting values an (n = 1, 2, 3) from (14) in (3), we have

2γ1 =
B1c1

2

2γ2 =
8B1c2 + (8B2 + 2B2

1)c
2
1

48

2γ3 =
B1

12

[
c3 +

B1 +
4B2

B1
2

c1c2 +
B2 +

2B3

B1
2

c3
1

]
.

Firstly, for γ1, by applying Lemma 1 we get |γ1| ≤
|B1|

4
, and this bound is sharp for |c1| = 1.

Next, applying Lemma 1 for γ2, we have

|γ2| ≤
4|B1|(1− |c1|2) + |4B2 + B2

1 ||c1|2
48

=
4|B1|+

[
|4B2 + B2

1 | − 4|B1|
]
|c1|2

48

≤


4|B1|

48
if |4B2 + B2

1 | ≤ 4|B1|

|4B2 + B2
1 |

48
if |4B2 + B2

1 | > 4|B1|.

These bounds are sharp for c1 = 0 and |c1| = 1, respectively.
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Finally, using Lemma 5 for γ3, we obtain

2|γ3| ≤
|B1|
12

∣∣∣∣c3 +
B1 +

4B2

B1
2

c1c2 +
B2 +

2B3

B1
2

c3
1

∣∣∣∣ ≤ H(q1; q2),

where q1 =
B1+

4B2
B1

2 and q2 =
B2+

2B3
B1

2 . Therefore, this completes the proof.

Remark 2. 1. Letting

ϕ(z) =1 +
cz

1− z
=1 + cz + cz2 + cz3 + . . . (c ∈ (0, 3])

in Theorem 2, (for |γ3| with respect to D6) then we get the results obtained by Ponnusamy et al. [7] (Theorem
2.7 and Corollary 2.8).

2. Taking

ϕ(z) =1− cz
1− z

=1− cz− cz2 − cz3 + . . . (c ∈ (0, 1])

in Theorem 2, (for |γ3| respect to D2) then we get the results obtained by Ponnusamy et al. [7] (Theorem 2.10).
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