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Abstract: We introduce the novel concept of a non-stationary iterated function system by considering
a countable sequence of distinct set-valued maps {Fk}k∈N where each Fk mapsH(X)→ H(X) and
arises from an iterated function system. Employing the recently-developed theory of non-stationary
versions of fixed points and the concept of forward and backward trajectories, we present new classes
of fractal functions exhibiting different local and global behavior and extend fractal interpolation to
this new, more flexible setting.

Keywords: iterated function system (IFS); attractor; fractal interpolation; non-stationary IFS;
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1. Introduction

Contractive operators on complete function spaces play a crucial role in the theory of differential
and integral equations and are essential for the development of iterative solvers. One class of such
contractive operators is defined on the graphs of functions using a particular type of iterated function
system (IFS). The fixed points of such IFSs are graphs of functions that exhibit fractal characteristics.
There exists an extensive literature on IFSs and fractal functions including, for instance, [1–3].

Up to now, the construction of contractive operators on sets or functions uses primarily sequences
of iterates of one operator. Recently, motivated by non-stationary subdivision algorithms, a more
general class of sequences consisting of different contractive operators was introduced in [4] and their
limit properties studied. These ideas were then extended in [5] to sequences of different contractive
operators mapping between different spaces. Using different contractive operators provide one with
the ability to construct limit attractors that have different shapes or features at different scales.

This article uses the aforementioned new ideas to introduce the novel concept of non-stationary IFS
and non-stationary fractal interpolation. These new ideas widen the applicability of fractal functions
and fractal interpolation as they now include scale- and location-dependent features.

The outline of this paper is as follows. After providing some necessary preliminaries in Section 2,
some results from [4] are presented in Section 3. In Section 4, (stationary) fractal interpolation and
the associated (stationary) IFSs are reviewed. Non-stationary fractal functions are constructed in
Section 5, and non-stationary fractal interpolation is introduced in Section 6. The final Section 7 defines
non-stationary fractal functions on the Bochner–Lebesgue Lp-spaces with 0 < p ≤ ∞.

2. Preliminaries

Let (X, d) be a complete metric space. Given a map f : X → X, the Lipschitz constant associated
with f is defined by:

Lip( f ) = sup
x,y∈X,x 6=y

d
(

f (x), f (y)
)

d(x, y)
.

The map f is called Lipschitz if Lip( f ) < +∞ and a contraction on X if Lip( f ) < 1.
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Definition 1. Let (X, d) be a complete metric space and F := { f1, . . . , fn} a finite family of contractions on
X. Then, the pair (X,F ) is called a contractive iterated function system (IFS) on X.

Remark 1. As we deal exclusively with contractive IFSs in this article, we drop the adjective “contractive” in
the following.

Remark 2. In order to avoid trivialities, we henceforth assume that the number of maps in an IFS is an integer
greater than one.

With an IFS (X,F ) and its point maps f ∈ F , we can associate a set-valued mapping, also denoted
by F , as follows. Let (H(X), h) be the hyperspace of all nonempty compact subsets of X endowed
with the Hausdorff–Pompeiu metric:

h(S1, S2) := max{d(S1, S2), d(S2, S1)},

where d(S1, S2) := sup
x∈S1

d(x, S2) := sup
x∈S1

inf
y∈S2

d(x, y).

Define the mapping F : H(X)→ H(X) by [1,6]:

F (S) :=
n⋃

i=1

fi(S). (1)

It is known that for contractive mappings f ∈ F , the set-valued map F defined by (1) is a
contractive Lipschitz map on H(X) with Lipschitz constant Lip(F ) = max{Lip( fi) : i ∈ Nn}. Here,
we set Nn := {1, . . . , n}. Moreover, the completeness of (X, d) implies the completeness of (H(X), h).

The next definition is motivated by the validity of the Banach fixed point theorem in the
above setting.

Definition 2. The unique fixed point A ∈ H(X) of the contractive set-valued map F is called the attractor of
the IFS (X,F ).

Note that since A satisfies the self-referential equation:

A = F (A) =
n⋃

i=1

fi(A), (2)

the attractor is in general a fractal set.
It follows directly from the proof of the Banach fixed point theorem that the attractor A is obtained

as the limit (in the Hausdorff–Pompeiu metric) of the iterative process Ak := F (Ak−1), k ∈ N:

A = lim
k→∞

Ak = lim
k→∞
F k(A0), (3)

for an arbitrary A0 ∈ H(X). Here, F k denotes the k-fold composition of F with itself.
We refer to the element Ak ∈ H(X) as the kth level approximant of A or as a pre-fractal of rank

k [2].

3. Systems of Function Systems

In [4], a generalization of IFSs was presented. The idea for this generalization comes from the
theory of subdivision schemes. Instead of using only one set-valued map F to obtain an iterative
process {An}n∈N with initial A0 ∈ H(X), a sequence of function systems consisting of different
families F is considered.
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To this end, let (X, d) be a complete metric space and {Tk}k∈N a sequence of transformations
Tk : X → X.

Definition 3. ([4], Definition 3.6) Let {Tk}k∈N be a sequence of transformations Tk : X → X. A subset I of
X is called an invariant set of the sequence {Tk}k∈N if:

∀ k ∈ N ∀ x ∈ I : Tk(x) ∈ I .

A criterion for obtaining an invariant domain for a sequence {Tk}k∈N of transformations on X is
given below.

Proposition 1. ([4], Lemma 3.7) Let {Tk}k∈N be a sequence of transformations on (X, d). Suppose there exists
a q ∈ X such that for all x ∈ X:

d(Tk(x), q) ≤ µ d(x, q) + M,

for some µ ∈ [0, 1) and M > 0. Then, the ball Br(q) of radius r = M/(1− µ) centered at q is an invariant set
for {Tk}k∈N.

Proof. For the proof, we refer the interested reader to [4].

Now, suppose that {Fk}k∈N is a sequence of set-valued maps Fk : H(X)→ H(X) defined by:

Fk(A0) :=
nk⋃

i=1

fi,k(A0), A0 ∈ H(X), (4)

where Fk = { fi,k : i ∈ Nnk} is a family of contractions constituting an IFS on a complete metric space
(X, d). Setting si,k := Lip( fi,k), we obtain that Lip(Fk) = max{si,k : i ∈ Nnk} < 1.

The following definitions are taken from [4] (Section 4).

Definition 4. Let A0 ∈ H(X). The sequences:

Φk(A0) := Fk ◦ Fk−1 ◦ · · · ◦ F1(A0) (5)

and:
Ψk(A0) := F1 ◦ F2 ◦ · · · ◦ Fk(A0) (6)

are called the forward and backward trajectories of A0, respectively.

For our current setting, it was shown in ([4], Corollary 4.2) that if:

(i) n := nk, for all k ∈ N;
(ii) there exists a common nonempty compact invariant set I ⊆ X for the maps { fi,k}, i ∈ Nn, k ∈ N,

such that { fi,k}k∈N converges uniformly on I to fi as k→ ∞;
(iii) the IFS (X,F ) with F = { fi : i ∈ Nn} is contractive on (X, d);

then the forward trajectory {Φk(A0)} converges for an arbitrary A0 ⊆ I to the unique attractor
of (X,F ).

It was observed in [4] that the limits of forward trajectories do not lead to new classes of fractals.
On the other hand, backward trajectories converge under rather mild conditions, even when forward
trajectories do not converge to a (contractive) IFS, and generate new types of fractal sets.

As the convergence of backward trajectories is important for this article, we summarize the result
in the next theorem, whose proof the reader can find in [4].
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Theorem 1. ([4], Corollary 4.4) Let {Fk}k∈N be a family of set-valued maps of the form (4) whose elements are
collections Fk = { fi,k : i ∈ Nnk} of contractions constituting IFSs on a complete metric space (X, d). Suppose
that:

(i) there exists a nonempty closed invariant set I ⊆ X for { fi,k}, i ∈ Nnk , k ∈ N;
(ii) and:

∞

∑
k=1

k

∏
j=1

Lip(Fj) < ∞. (7)

Then, the backward trajectories {Ψk(A0)} converge for any initial A0 ⊆ I to a unique attractor A ⊆ I .

Remark 3. In [4] (Proposition 3.11), it was required that the invariant set I be compact. However, it suffices
to only require that I be closed as (X, d) is complete (see the proof of Proposition 3.11 in [4]).

Remark 4. The conditions for convergence of the forward and backward trajectories are more general in [4].
For our purposes and setting, the above criteria are however sufficient.

Remark 5. Fractals generated by backwards trajectories allow for more flexibility in their shapes. By a proper
choice of IFSs, one can construct fractals exhibiting different local behavior (cf. [4]). This is due to the fact that
in the sequence:

F1 ◦ F2 ◦ · · · Fk−1 ◦ Fk(A0), A0 ∈ H(X),

the global shape of the attractor is determined by the initial maps F1 ◦ F2 . . ., whereas the local shape is given by
the final maps Fk−1 ◦ Fk . . .. Thus, scaling the attractor by Lip(Ψk), Ψk = F1 ◦ F2 ◦ · · · Fk−1 ◦ Fk, reveals
the behavior of the attractor of {Fm}m>k. See also [4] (Example 5.1).

Remark 6. A comparison to V-variable fractals [7] was also undertaken in [4] (Section 4.1), showing that
systems of function systems (SFSs) have weaker prerequisites than V-variable fractals.

4. Fractal Interpolation

Before introducing the new concept of non-stationary fractal interpolation, we need to briefly
recall the rudimentaries of (stationary) fractal interpolation and (stationary) fractal functions. This is
the purpose of the current section.

4.1. Stationary Fractal Interpolation

Suppose we are given a finite family {li}n
i=1 of injective contractions X → X generating a partition

of X in the sense that:

X =
n⋃

i=1

li(X); (8)

li(X) ∩ lj(X) = ∅, ∀ i, j ∈ Nn, i 6= j. (9)

Let (Y, dY) be a complete metric space with metric dY. A map g : X → Y is called bounded
(with respect to the metric dY) if there exists a constant M > 0 such that for all x1, x2 ∈ X,
dY(g(x1), g(x2)) < M.

Recall that the set B(X, Y) := {g : X → Y : g is bounded} becomes a complete metric space when
endowed with the metric:

d(g, h) := sup
x∈X

dY(g(x), h(x)). (10)
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Remark 7. Under the usual addition and scalar multiplication of functions, the space B(X, Y) is actually a
metric linear space, i.e., a vector space for which the operations of vector addition and scalar multiplication are
continuous (see, for instance, [8]).

For i ∈ Nn, let Fi : X×Y → Y be a mapping that is uniformly contractive in the second variable,
i.e., there exists a c ∈ [0, 1) so that for all y1, y2 ∈ Y:

dY(Fi(x, y1), Fi(x, y2)) ≤ c dY(y1, y2), ∀x ∈ X, ∀i ∈ Nn. (11)

Define an operator T : B(X, Y)→ B(X, Y) by:

Tg(x) :=
n

∑
i=1

Fi(l−1
i (x), g ◦ l−1

i (x)) χli(X)(x), (12)

where χM denotes the characteristic function of a set M. Such operators are referred to as
Read–Bajractarević (RB) operators. The operator T is well defined, and since g is bounded and
each Fi contractive in the second variable, Tg ∈ B(X, Y).

Equivalently, (12) can also be expressed in the form:

(Tg ◦ li)(x) := Fi(x, g(x)), x ∈ X, i ∈ Nn. (13)

Moreover, (11) implies that T is contractive on B(X, Y):

d(Tg, Th) = sup
x∈X

dY(Tg(x), Th(x))

= sup
x∈X

dY(F(l−1
i (x), g(l−1

i (x))), F(l−1
i (x), h(l−1

i (x))))

≤ c sup
x∈X

dY(g ◦ l−1
i (x), h ◦ l−1

i (x)) ≤ c dY(g, h). (14)

To achieve notational simplicity, we set F(x, y) :=
n
∑

i=1
Fi(x, y) χX(x) in the above equation.

Therefore, by the Banach fixed point theorem, T has a unique fixed point f ∗ in B(X, Y).
This unique fixed point is called the bounded fractal function (generated by T), and it satisfies the
self-referential equation:

f ∗(x) =
n

∑
i=1

Fi(l−1
i (x), f ∗ ◦ l−1

i (x)) χli(X)(x), (15)

or, equivalently,
f ∗ ◦ li(x) = Fi(x, f ∗(x)), x ∈ X, i ∈ Nn. (16)

The fixed point f ∗ ∈ B(X, Y) is obtained as the limit of the sequence of mappings:

Tk( f0)→ f ∗, as k→ ∞, (17)

where f0 ∈ B(X, Y) is arbitrary.
Next, we would like to consider a special choice for the mappings Fi. To this end, we require

the concept of an F-space. We recall that a metric d : Y× Y → R is called complete if every Cauchy
sequence in Y converges (with respect to d) to a point of Y, and translation-invariant if:

d(x + a, y + a) = d(x, y), for all x, y, a ∈ Y.
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Now, assume that Y is an F-space, i.e., a topological vector space whose topology is induced by a
complete translation-invariant metric d and, in addition, that this metric is homogeneous. This setting
allows us to consider mappings Fi of the form:

Fi(x, y) := qi(x) + Si(x) y, i ∈ Nn, (18)

where qi ∈ B(X, Y) and Si : X → R is a function.
The metric dY is homogeneous, and therefore, the mappings (18) satisfy condition (11) if the

functions Si are assumed to be bounded on X with bounds in [0, 1). For then:

lldY(qi(x) + Si(x) y1, qi(x) + Si(x) y2) = dY(Si(x) y1, Si(x) y2)

= |Si(x)|dY(y1, y2) ≤ ‖Si‖∞ dY(y1, y2) ≤ s dY(y1, y2).

Here, ‖ · ‖∞ denotes the supremum norm and s := max{‖Si‖∞ : i ∈ Nn}. Henceforth, we will
assume that all functions Si are bounded above by s ∈ [0, 1).

With the choice (18), the RB operator T becomes an affine operator on B(X, Y) of the form:

Tg =
n

∑
i=1

qi ◦ l−1
i χli(X) +

n

∑
i=1

Si ◦ l−1
i · g ◦ l−1

i χli(X) (19)

= T(0) +
n

∑
i=1

Si ◦ l−1
i · g ◦ l−1

i χli(X). (20)

Next, we exhibit the relationship between the graph G( f ∗) of the fixed point f ∗ of the operator T
given by (12) and the attractor of an associated contractive IFS.

To this end, consider the complete metric space X×Y, and define mappings wi : X×Y→ X×Y by:

wi(x, y) := (li(x), Fi(x, y)), i ∈ Nn. (21)

Assume that the mappings Fi in addition to being uniformly contractive in the second variable
are also uniformly Lipschitz continuous in the first variable, i.e., there exists a constant L > 0 such that
for all y ∈ Y,

dY(Fi(x1, y), Fi(x2, y)) ≤ L dX(x1, x2), ∀x1, x2 ∈ X, ∀i = 1, . . . , n.

Denote by a := max{ai : i ∈ Nn} the largest of the contractivity constants of the li, and let
θ := 1−a

2L . Then, the mapping dθ : (X×Y)× (X×Y)→ R given by:

dθ := dX + θ dY

is a metric on X×Y compatible with the product topology on X×Y.
The next theorem is a special case of a result presented in [9].

Theorem 2. The family FT := (X×Y, w1, w2, . . . , wn) is a contractive IFS in the metric dθ , and the graph
G( f ∗) of the fractal function f ∗ generated by the RB operator T given by (12) is the unique attractor of FT .
Moreover,

G(Tg) = FT(G(g)), ∀ g ∈ B(X, Y), (22)

where FT denotes the set-valued operator (1).
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Equation (22) can be represented by the following commutative diagram:

X×Y
FT−−−−→ X× XxG

xG

B(X, Y) T−−−−→ B(X, Y)

(23)

where G is the mapping B(X, Y) 3 g 7→ G(g) = {(x, g(x)) : x ∈ X} ∈ X×Y.
Conversely, assume that F = (X × Y, w1, w2, . . . , wn) is an IFS whose maps wi are of the form

(21) where the functions li are contractive injections satisfying (8) and (9), and the mappings Fi are
uniformly Lipschitz continuous in the first variable and uniformly contractive in the second variable.
Thus, an RB operator TF of the form (12) can be associated with the IFS F . The attractor AF of F is
then the graph G( f ) of the fixed point f of TF (this was the original approach in [10] to define a fractal
interpolation function on a compact interval in R). The diagram (23) is then commutative with FT
replaced by F and T replaced by TF .

We now specialize even further and choose arbitrary f , b ∈ B(X, Y) and set:

qi := f ◦ li − Si · b. (24)

Then, the RB operator T becomes:

Tg = f + (Si ◦ l−1
i ) · (g− b) ◦ l−1

i , on li(X), i ∈ Nn, (25)

and under the assumption that s < 1, its unique fixed point f ∗ ∈ B(X, Y) satisfies the self-referential
equation:

f ∗ = f + (Si ◦ l−1
i ) · ( f ∗ − b) ◦ l−1

i , on li(X), i ∈ Nn. (26)

Remark 8. The functions f and b are referred to as the seed and base function, respectively.

Remark 9. The fixed point f ∗ in (26) clearly depends on the seed function f , the base function b, and the
scaling functions Si. Fixing f and b, but varying Si generate an uncountable family of fractal functions
f ∗ = f ∗(S1, . . . , Sn) originating from f = f ∗(0, . . . , 0).

In the case of univariate fractal interpolation on the real line with X := [a, b], −∞ < a < b < +∞,
the base function b can be chosen to be the affine function whose graph connects the points (a, f (a))
and (b, f (b)).

If we consider the complete metric space of continuous functions (C(X,R), d) instead of
(B(X,R), d), define:

x0 := a, xn := b, and xi := li(b), i ∈ Nn,

and impose the join-up conditions:

T f (xj−) = T f (xj+), j ∈ Nn−1, (27)

the fixed point f ∗ will be a continuous function whose graph interpolates the set {(xj, f (xj)) : j =
0, 1, . . . , n}. Such functions are usually referred to as fractal interpolation functions [6,10]. As the RB
operator is the same at each level of recursion (17), we refer to this as stationary fractal interpolation.

5. Non-Stationary Fractal Functions

Here, we introduce non-stationary versions of the concepts of fractal functions as presented in the
previous section.
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To this end, consider a doubly-indexed family of injective contractions {lik ,k : ik ∈ Nnk , k ∈ N}
from X → X generating a partition of X for each k ∈ N in the sense of (8) and (9).

Suppose that Y is an F-space, {qik ,k : ik ∈ Nnk , k ∈ N} ⊂ B(X, Y) and {Sik ,k : ik ∈ Nnk , k ∈ N} ⊂
B(X,R) is such that:

s := sup
k∈N

max
ik∈Nk

‖Sik ,k‖∞ < 1.

For each k ∈ N, define an RB operator Tk : B(X, Y)→ B(X, Y) by:

Tk f :=
nk

∑
ik=1

qik ,k ◦ l−1
ik ,k χlik ,k(X) +

nk

∑
ik=1

Sik ,k ◦ l−1
ik ,k · f ◦ l−1

ik ,k χlik ,k(X) (28)

= Tk(0) +
nk

∑
ik=1

Sik ,k ◦ l−1
ik ,k · f ◦ l−1

ik ,k χlik ,k(X). (29)

It is straightforward to verify that each RB operator Tk is a contraction on B(X, Y) with
Lipschitz constant:

Lip(Tk) = max
ik∈Nk

‖Sik ,k‖∞ ≤ s < 1. (30)

Proposition 2. Let {Tk}k∈N be a sequence of RB operators of the form (28) on (B(X, Y), d). Suppose that the
elements of {qik ,k : ik ∈ Nnk , k ∈ N} satisfy:

sup
k∈N

max
ik∈Nk

d(qik ,k, 0) ≤ M, (31)

for some M > 0. Then, the ball Br(0) of radius r = M/(1− s) centered at 0 ∈ B(X, Y) is an invariant set
for {Tk}k∈N.

Proof. Note that since Y is an F-space, we have for all a, b ∈ Y,

dY(a + b, 0) ≤ dY(a + b, b) + dY(b, 0) = dY(a, 0) + dY(b, 0).

Now, let x ∈ X. Then, there exists an ik ∈ Nnk with x ∈ lik ,k(X). Thus, for any f ∈ B(X, Y),

dY(Tk f (x), 0) ≤ dY(Sik ,k ◦ l−1
ik ,k(x) · f ◦ l−1

ik ,k(x), 0) + dY(Tk(0), 0).

By (31), Tk(0) is uniformly bounded in B(X, Y) by M > 0. As the metric dY is homogeneous,

dY(Sik ,k ◦ l−1
ik ,k(x) · f ◦ l−1

ik ,k(x), 0) ≤ s dY( f ◦ l−1
ik ,k(x), 0),

which shows, after taking the sup over x ∈ X, that d(Tk f , 0) ≤ s d( f , 0) + M. Proposition 1 now yields
the statement.

Considering the backward trajectories {Ψk}k∈N of the sequence {Tk}k∈N of RB operators defined
above and using Theorem 1, we obtain the next result.

Theorem 3. The backwards trajectories {Ψk}k∈N converge for any initial f0 ∈ I to a unique attractor f ∗ ∈ I ,
where I is the closed ball in B(X, Y) of radius M/(1− s) centered at zero.

Proof. By Theorem 1, it remains to show that
∞
∑

k=1

k
∏
j=1

Lip(Tj) converges. This, however, follows directly

from (30):
k

∏
j=1

Lip(Tj) ≤ sk and
∞

∑
k=1

sk =
s

1− s
.
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A fixed point f ∗ generated by a sequence {Tk} of different RB operators will be called a
non-stationary fractal function (of class B(X, Y)).

Remark 10. Item (b) in Remark 3, of course, also applies to a sequence of RB operators {Tk}, thus allowing the
construction of more general fractal functions exhibiting different local behavior at different scales.

Example 1. Let X := [0, 1] and Y := R. Consider the two RB operators:

T1 f (x) :=

{
2x + 1

2 f (2x), x ∈ [0, 1
2 ),

2− 2x + 1
2 f (2x− 1), x ∈ [ 1

2 , 1],

and:

T2 f (x) :=

{
2x + 1

4 f (2x), x ∈ [0, 1
2 ),

2− 2x + 1
4 f (2x− 1), x ∈ [ 1

2 , 1].

For both operators, li(x) := 1
2 (x + i− 1), i = 1, 2.

It is known that Tk
1 f → τ, where τ denotes the Takagi function [11], and that Tk

2 → q, where q(x) =
4x(1− x).

Consider the alternating sequence {Ti}i∈N of RB operators given by:

Ti :=

{
T1, 10(j− 1) < i ≤ 10j− 5,

T2, 10j− 5 < i ≤ 10j,
j ∈ N.

Two images of this hybrid attractor of the backward trajectory Ψk starting with f0 ≡ 0 are shown in
Figure 1.
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Figure 1. The hybrid τ − q attractor. It is smooth at one scale (Left), but fractal at another (Right).

6. Non-Stationary Fractal Interpolation

Let us now consider the case X := [0, 1] and Y := R. Both spaces are metrizable under the usual
Euclidean distance. In the following, we consider a sequence {Tk} of RB operators of the form (25)
acting on an appropriate metric subspace of B[0, 1] := B([0, 1],R). Our emphasis here lies in the
construction of attractors that are continuous functions on [0, 1]. For this purpose, we need to impose
conditions on the RB operators that guarantee global continuity of the iterates across [0, 1].

For k ∈ N, let {lik ,k : ik ∈ Nnk , k ∈ N} be a family of injections from [0, 1] → [0, 1] generating a
partition of [0, 1] in the sense of (8) and (9). Assume w.l.o.g. that l1,k(0) = 0 and lnk ,k(1) = 1, and define:

xik−1,k := lik ,k(0), xik ,k := lik ,k(1), ik ∈ Nnk ,

where x0,k := 0 and xnk ,k := 1. By relabeling, if necessary, we may assume that 0 = x0,k < · · · <
xik−1,k < xik ,k < · · · xnk ,k = 1.

Let f ∈ C[0, 1] be arbitrary. Define a metric subspace of C[0, 1] by:

C∗[0, 1] := {g ∈ C[0, 1] : g(0) = f (0) ∧ g(1) = f (1)}
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and note that C∗[0, 1] becomes a complete linear metric space when endowed with the metric induced
by the sup-norm on continuous functions. Additionally, let b ∈ C∗[0, 1] be the unique affine function
whose graph connects the points (0, f (0)) and (1, f (1)):

b(x) = ( f (1)− f (0))x + f (0). (32)

Further, let {Pk}k∈N, where Pk := {(xjk , f (xj,k)) ∈ [0, 1]×R : j = 0, 1, . . . , n}, be a family of sets
of points in [0, 1]×R. For k ∈ N, define an RB operator Tk : C∗[0, 1]→ C∗[0, 1] by:

Tkg = f +
nk

∑
ik=1

Sik ,k ◦ l−1
ik ,k · (g− b) ◦ l−1

ik ,k χlik ,k [0,1], (33)

where {Sik ,k}
nk
ik=1 ⊂ C[0, 1] such that

sup
k∈N

max
ik∈Nik

‖Sik ,k‖∞ < 1.

Note that we have the continuity of Tkg at the points xik ,k ∈ [0, 1]:

Tkg(xik ,k−) = Tkg(xik ,k+), ∀ ik ∈ {1, . . . , n− 1}.

For,

Tkg(xik ,k−) = f (xik ,k−) + Sik ,k ◦ l−1
ik ,k(xik ,k−) · (g− b) ◦ l−1

ik ,k(xik ,k−)

= f (xik ,k) + Sik ,k(1) · ( f − b)(1) = f (xik ,k)

and

Tkg(xik ,k+) = f (xik ,k+) + Sik+1,k ◦ l−1
ik+1,k(xik ,k+) · (g− b) ◦ l−1

ik+1,k(xik ,k+)

= f (xik ,k) + Sik+1,k(0) · ( f − b)(0) = f (xik ,k).

Therefore, Tkg ∈ C∗[0, 1], and Tkg interpolates Pk in the sense that:

Tkg(xik ,k) = f (xik ,k), ∀ ik ∈ Nnk .

Remark 11. Denote by ([0, 1],Lk) the IFS given by the maps Lk := {lik ,k : ik ∈ Nnk}, and observe that,
for each k ∈ N, the attractor of ([0, 1],Lk) is the interval [0, 1]. The invariant set, in H([0, 1]), for Lk
is given by [0, 1]. Hence, all backward trajectories L1 ◦ · · · ◦ Lk converge to [0, 1] as k → ∞ (as do all
forward trajectories).

Proposition 3. A nonempty closed invariant set for {Tk}k∈N is given by the closed ball in C∗[0, 1],

I =

{
g ∈ C∗[0, 1] : ‖g‖∞ ≤

‖ f ‖∞ + s‖b‖∞

1− s

}
, (34)

where s is given by (30).

Proof. Using the form (24) for the functions qik ,k, we obtain from (31) the estimate ‖qik ,k‖∞ ≤ ‖ f ‖∞ +

s‖b‖∞, which by Proposition 2 yields the result.

In connection with Theorem 3, the above arguments prove the next result.
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Theorem 4. Let {Tk}k∈N be a sequence of RB operators of the form (33), each of whose elements acts on the
complete metric space (C∗[0, 1], d) where f ∈ C∗[0, 1] is arbitrary and b is given by (32). Further, let the
family of functions {Sik ,k} ⊂ C[0, 1] satisfy (30). Then, the backward trajectories Ψk( f0) converge to a function
f ∗ ∈ I , for any f0 ∈ I . As f0 one may choose f or b.

We refer to the fixed point f ∗ ∈ C∗[0, 1] as a continuous non-stationary fractal
interpolation function.

To illustrate the above results, we refer to Remark 3(c) and present the following example.

Example 2. Here, we consider the two RB operators Ti : C[0, 1]→ C[0, 1], i = 1, 2, given by:

(T1 f )(x) =


− 1

2 f (4x), x ∈ [0, 1
4 ),

− 1
2 + 1

2 f (4x− 1), x ∈ [ 1
4 , 1

2 ),
1
2 f (4x− 2), x ∈ [ 1

2 , 3
4 ),

1
2 + 1

2 f (4x− 3), x ∈ [ 3
4 , 1],

and

(T2 f )(x) :=

{
3
4 f (2x), x ∈ [0, 1

2 ),
3
4 + 1

4 f (2x− 1), x ∈ [ 1
2 , 1].

The RB operators T1 and T2 generate Kiesswetter’s fractal function [12] and a Casino function
[13], respectively.

Consider again the alternating sequence {Ti}i∈N of RB operators given by:

Ti :=

{
T1, 10(j− 1) < i ≤ 10j− 5,

T2, 10j− 5 < i ≤ 10j,
j ∈ N.

Two images of the hybrid attractor of the backward trajectory Ψk starting with the function f0(x) = x,
x ∈ [0, 1], are shown below in Figure 2.

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

0.2 0.4 0.6 0.8 1.0

-0.2

0.2

0.4

0.6

0.8

1.0

Figure 2. The hybrid Kiesswetter–Casino attractor. The graph of the Casino function (Right) contains
at the fine scale images of the Kiesswetter function (Left).

Remark 12. Theorem 2 holds in the case of non-stationary fractal functions as well. For k ∈ N, a non-stationary
IFS is associated with Tk by setting:

wik ,k(x, y) := (lik ,k(x), f ◦ lik ,k(x) + Sik ,k(x) · (y− b)).

The conditions imposed on Sik ,k and the form of the second component allow the immediate transfer of the
proof of Theorem 2. Hence, even in the non-stationary case, one may choose the geometry (IFS) or the analytic
(RB operator) approach when defining non-stationary fractal functions.
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7. Non-Stationary Fractal Functions in Bochner–Lebesgue Spaces

In this section, we construct non-stationary fractal functions in the Bochner–Lebesgue spaces
Lp with 0 < p ≤ ∞. To this end, suppose that X is a closed subspace of a Banach space X and
X := (X, Σ, µ) a measure space. Further, suppose that (Y, ‖ · ‖Y) is a Banach space.

Recall that the Bochner–Lebesgue space Lp(X,Y), 1 ≤ p ≤ ∞ is comprised of all Bochner
measurable functions f : X → Y such that:

‖ f ‖Lp(X,Y) :=
(∫

X
‖ f (x)‖p

Y dµ(x)
)1/p

< ∞, 1 ≤ p < ∞,

and
‖ f ‖L∞(X,Y) := ess supx∈X ‖ f (x)‖Y < ∞, p = ∞.

For 0 < p < 1, the spaces Lp(X,Y) are defined using a metric instead of a norm to obtain
completeness. More precisely, for 0 < p < 1, define dp : Lp(X,Y)×Lp(X,Y)→ R by:

dp( f , g) := ‖ f − g‖p
Y.

Then, (Lp(X,Y), dp) becomes an F-space (note that the inequality (a + b)p ≤ ap + bp holds for all
a, b ≥ 0). For more details, we refer to [14,15].

In order to work in both cases simultaneously, we define ρp : Lp(X,Y)×Lp(X,Y)→ R by:

ρp(g, h) :=

{
‖g− h‖Lp(X,Y), 1 ≤ p ≤ ∞,

‖g− h‖p
Y, 0 < p < 1,

with the usual modification for p = ∞.
We use the notation and terminology of Section 5 and assume that:

(A1) {qik ,k : ik ∈ Nnk , k ∈ N} ⊂ Lp(X,Y);

(A2) {Sik ,k : ik ∈ Nnk , k ∈ N} ⊂ Lp(X,R);

(A3) {lik ,k : ik ∈ Nnk , k ∈ N} is a family of µ-measurable diffeomorphisms X → X generating for each
k ∈ N a partition of X in the sense of (8) and (9).

If we define for each k ∈ N an RB operator Tk on Lp(X,Y) of the form (28), whose maps satisfy
assumptions (A1), (A2), and (A3), then a straightforward computation shows that Tk has the following
Lipschitz constants on Lp(X,Y):

ρp(Tkg, Tkh) ≤



(
nk
∑

ik=1
‖Sik ,k‖

p
Lp(X,Y)

· Lik ,k

)1/p

, (1 ≤ p < ∞)

max
ik∈Nnk

‖Sik ,k‖L∞(X,Y), (p = ∞)

nk
∑

ik=1
‖Sik ,k‖

p
Lp(X,Y)

· Lik ,k, (0 < p < 1)


ρp(g, h),

where Lik ,k denotes the Lipschitz constant of Dl−1
ik ,k and D the Fréchet derivative on X.

Now, set:

γp :=



sup
k∈N

(
nk
∑

ik=1
‖Sik ,k‖

p
Lp(X,Y)

· Lik ,k

)1/p

, 1 ≤ p < ∞

sup
k∈N

max
ik∈Nnk

‖Sik ,k‖L∞(X,Y), p = ∞

sup
k∈N

(
nk
∑

ik=1
‖Sik ,k‖

p
Lp(X,Y)

· Lik ,k

)
, 0 < p < 1.

(35)



Mathematics 2019, 7, 666 13 of 14

Imposing the condition:
sup
k∈N

max
ik∈Nnk

ρp(qik ,k, 0) < M, (36)

for some M > 0 and further requiring that:

Lip Tk ≤ γp < 1, ∀ k ∈ N, (37)

yield by Proposition 2 an invariant set for {Tk}k∈N, namely the closed Lp-ball:

I = Br(0) with r = M/(1− γp).

The above elaborations now prove the following theorem.

Theorem 5. Let {Tk}k∈N be a sequence of RB operators of the from (28) mapping Lp(X,Y) into itself. Further,
suppose that the Lipschitz constant of Tk satisfies (37) and that the maps {qik ,k} fulfill (36). Then, the backward
trajectories {Ψk}k∈N of {Tk}k∈N converge for any initial f0 ∈ I to a unique attractor f ∗ ∈ I , where I is the
ball in L(X,Y) of radius M/(1− γp) centered at zero.

Proof. Only (7) needs to be established. This, however, carries over directly from the proof of
Theorem 3 with γp instead of s.

The attractor f ∗ : X → Y whose existence is guaranteed by Theorem 5 is called a non-stationary
fractal function of class Lp(X,Y).
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