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Abstract: In this paper, our aim is to define certain new classes of multivalently spiral-like,
starlike, convex and the varied Mocanu-type functions, which are associated with conic domains.
We investigate such interesting properties of each of these function classes, such as (for example)
sufficiency criteria, inclusion results and integral-preserving properties.
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1. Introduction and Motivation
Let A(p) denote the class of functions of the form:
(o)
f2) =2+ ) any 2" (peN={1,23,---}), 1)
n=1

which are analytic and p-valent in the open unit disk:
E={z:z€C and |z| <1}

In particular, we write:

A(1) = A,

Furthermore, by S C A, we shall denote the class of all functions that are univalent in E.
The familiar class of p-valently starlike functions in E will be denoted by S*(p), which consists of
functions f € A(p) that satisfy the following conditions:

8%(3{22?) >0 (Vz € E).

One can easily see that:

S*(1) = S,

where §* is the well-known class of normalized starlike functions (see [1]).
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We denote by K the class of close-to-convex functions, which consists of functions f € A that
satisfy the following inequality:

for some g € S§*.
For two functions f and g analytic in [E, we say that the function f is subordinate to the function g
and write as follows:

f=g or f(z)=<g(2),
if there exists a Schwarz function w, which is analytic in E with:

w(0)=0 and |w(z)] <1,

such that:
fz)=3g(w(2)).
Furthermore, if the function g is univalent in E, then it follows that:

f(z2) <g(z) (z2€E) = f(0)=¢(0) and f(E)C g(E).

Next, for a function f € A (p) given by (1) and another function ¢ € A (p) given by:

g(z) =z + i buppz"? (Vz€E),
n=2
the convolution (or the Hadamard product) of f and g is given by:
)@ =27+ L wsghisy 27 = (g2£) (),
ne
The subclass of A consisting of all analytic functions with a positive real part in E is denoted by
P. An analytic description of P is given by:

h(z) =14 ) cuz" (Vz€R).
n=1

Furthermore, if:
R{n(z)} > p,
then we say that /1 is in the class P (p) . Clearly, one see that:
P(0) ="P.

Historically, in the year 1933, Spacek [2] introduced the B-spiral-like functions as follows.

Definition 1. A function f € A is said to be in the class S* (p) if and only if:

%(eiﬁzjjzl(g)> >0 (VzeE)

for:
BeR and |,B\<g,

where R is the set of real numbers.
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In the year 1967, Libera [3] extended this definition to the class of functions, which are spiral-like
of order p denoted by S; (B) as follows.

Definition 2. A function f €A is said to be in the class S; (B) if and only if:

éﬁzf/(z) .
9‘%( f(z)>>p (VzeR)

(0§p<1;[3€R and |ﬁ\<g),

where R is the set of real numbers.

The above function classes S* () and S; (B) have been studied and generalized by different
viewpoints and perspectives. For example, in the year 1974, a subclass S g (p) of spiral-like functions was
introduced by Silvia (see [4]), who gave some remarkable properties of this function class. Subsequently,
Umarani [5] defined and studied another function class SC(«, §) of spiral-like functions. Recently,
Noor et al. [6] generalized the works of Silvia [4] and Umarani [5] by defining the class M(p, &, B, p).
Here, in this paper, we define certain new subclasses of spiral-like close-to-convex functions by using
the idea of Noor et al. [6] and Umarani [5].

We now recall that Kanas et al. (see [7,8]; see also [9]) defined the conic domains O (k = 0)
as follows:

Qk:{u+i0:u>k (u—l)z—i-vz}. (2)

By using these conic domains ) (k = 0), they also introduced and studied the corresponding
class k-ST of k-starlike functions (see Definition 3 below).

Moreover, for fixed k, () represents the conic region bounded successively by the imaginary axis
for (k =0), for k = 1 a parabola, for 0 < k < 1 the right branch of a hyperbola, and for k > 1 an
ellipse. For these conic regions, the following functions pi(z), which are given by (3), play the role of
extremal functions.

14z

_ 24 ... =
T, =12zt (k=0)
2 1+ 2\’ _
1+712<10g1—ﬁ) (k=1)
pi(z) = 1+ ] ,2](2 sinh? { (i arccos k) arctan(hﬁ)} (0=k<1) )
u(z)
1 . T VK dt 1
e\ ww e meviser | Te K

where:

PR
u(z) = T (VzeE)

and « € (0,1) is chosen such that:

k = cosh ( Zf(gj))) .

Here, K(x) is Legendre’s complete elliptic integral of the first kind and:
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K'(x) = K(V1—x2),

that is, K’ («) is the complementary integral of K ().
These conic regions are being studied and generalized by several authors (see, for example, [10-13]).
The class k-ST is defined as follows.

Definition 3. A function f € Ais said to be in the class k-S°T if and only if:

ZJ]‘H(S) <@ (VzeE k20
or, equivalently,
%<ﬁWﬂ)>kZﬁ@)—4.
f(2) f(2)

The class of k-uniformly close-to-convex functions denoted by k-U/ K was studied by Acu [14].

Definition 4. A function f € Ais said to be in the class k-UK if and only if:

2F (@) |2 (2)
§R<g<z>>>"g<z> !

7

where g € k-ST.

In recent years, several interesting subclasses of analytic functions were introduced and
investigated from different viewpoints (see, for example, [6,15-20]; see also [21-25]). Motivated
and inspired by the recent and current research in the above-mentioned work, we here introduce and
investigate certain new subclasses of analytic and p-valent functions by using the concept of conic
domains and spiral-like functions as follows.

Definition 5. Let f € A(p). Then, f € k-KC(p, A) for a real number A with |A| < 7 if and only if:

() A o w0

for some p € S*.

Definition 6. Let f € A(p). Then, f € k-Q(p, A) for a real A with |A| < 5 if and only if:

e zf'(z) (zf'(2)) ,
§R<p lp’(z)> >k W—p +pcosA (k=20,0=p<1)
for some p € C.
Definition 7. Let f € A(p) with:
FRIE .,
pz

and for some real ¢ and A with |A| < 7. Then, f € k-Q (¢, A, 1, f, ) if and only if:

KM (A1, f,9) > k|M(P, A1, f,9) —pl+pcosA,
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where

= (e — ¢ cos 2f(z)
M@ A1, f9) = (¢ = gosd) s

, Peosh ((Zf’@)/ —77) (_21 =y < 1) . @)

p—n \ ¥
2. A Set of Lemmas
Each of the following lemmas will be needed in our present investigation.
Lemma 1. (see[26]p.70) Let h be a convex function in E and:
g:E = CandR(q(z)) >0  (z€E).

If p is analytic in E with:

then:
p(z)+q(z)zp' (z) < h(z) implies p(z) <h(z).

Lemma 2. (see [26] p. 195) Let h be a convex function in E with:
h(0)=0 and A>1

Suppose that j = ﬁo) and that the functions B (z), C(z) and D (z) are analytic in E and satisfy the
following inequalities:

R{B(z)} 2A+|C(z)—1|-R(C(z)—1)+jD(z), ze€E.
If p is analytic in E with:
p(z) =14az+az> +---
and the following subordination relation holds true:
AZ’p" (z) + B (2)zp' () + C(2) p(2) + D (2) < 1 (2),
then:
p(z) <h(z).

3. Main Results and Their Demonstrations

In this section, we will prove our main results.

Theorem 1. A function f € A'is in the class k-Q (¢, A, 1, f, ¢) if:

(o]

Zz Uy (p, ¢, A1, 8) < p*(p—1),

where:

Uy (p, ¢, A, &) = (k+1) [(¢* = @pcosA) (p —1)p + p*pcos A
+(e* —pcosA)(p—n)(n+p) [anip| + (n+ p)* |anyp]
+ [(nppcos A+ p>(p — m)|(n + p) [busp| + np*pcosA —p*(p—1). ()
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Proof. Let us assume that the relation (4) holds true. It now suffices to show that:

kKIM (¢, M, frp) —pl = RIM (e, A, f ) —pl <1

We first consider:

|IM (P, A, f. ) = pl
1- () | peosh ()
(7 —peos) 25+ B0 () )

z

_ | (e —¢cosA) (p—1n) f'(z z) P ppcos A (zf'(z))
p(p—n)¢'(z) p(p—n)¢'(z)

_yppcosAY'(z)  p*(p—n) ¥ (2)

p(p—mv'(z) plp—mi'(z) |

Now, by using the series form of the functions f and ¢ given by:

fz) =2+ ) anipz"?

n=2

and:

p(z) =2P + ) by p2"'?

n=2

in the above relation, we have:

(M (P, A, f,9) —pl

| (" =¢cosA) (p—n) (pzF~ 1) + ppcos A(p*2P 1)
- p(p—1) (pzP ' + Lo (n + p)buypz" P 1)

Yoo (i + p)anipz" P [(e" —gcosA) (p—y) + (n+p)]  npcosA

p(p—1) (pzp 1 + Lo (n + p)bugpz 7 1) (p—n)
< (*=¢cosA) (p—1) (p) + pgcos A(p?)
= pp—nm (p+Ira(n+p) [basp])
N Yoo (n+p) |ansp| { (e —pcosA) (p—n)+ (n+p)} 3 {nqmos)\
p(p—n) (p+Lia(n+p) [buspl) CE))

We now see that:

kKIM (g, A, f,9) —pl = R{M (¢, A, f,9) — p}
s (k+1) M (A7, f,9) —pl
(e —pcosA) (p—1) (p) + pp cos A(p?)
(k1) p(p—mn)(p+Laa(n+p) |butp])

L Lisa(n4p) [anip| [(¢F —gcosA) (p—y) + (n+p)] [n4>cos2»
p(p—1) (p+Xna(n+p)|buip|) (r—m)

A

6 0of 12

(6)
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The above inequality is bounded above by one, if:
(k+1) [(¢* = gcosr) (p—n)p| + (ppcosA)p?
— ; n¢ cos A
- (pr) |an+p|> (e = geos)(p=n)+ ()} - | 225 -]

=2 (p—1)
: {P(P —17) <p+ iz(nﬂﬂ) |bn+p!>}
é i H+P)|bn+p|.

Hence:

Y o (p,p A 8) < p*(p—1),

n=2
where Uy, (p, ¢, A, 1, &) is given by (5), which completes the proof of Theorem 1. [J

Theorem 2. A function f € A(p) satisfies the condition:

eiil-}(z)_zlp’<21p (0Sp<1;jeR) (7)
ifand only if f € 0-KC(p, A), where
Fay - 20
Py (z)

Proof. Suppose that f satisfies (7). We then can write:

20 — elF(z) 1
¢iF(z)2p | 2p

~ (e <)
= <2p—e”F ) (20— €F(z)) < e TFE)EMF(2)
= 40> —2p [e_” (z)+elfp(z)] + F(2)F(z) < F(z)E(z)
e 40220 e { ~iE(z) +eifF(z)} <0
> 20 -2 [F(z)| <0
= R [effp (z)} > p

. /
R (euzf(z)) > 0.
Py (2)
This completes the proof of Theorem 2. []

Theorem 3. For 0 < @1 < ¢y, it is asserted that:

k“Q (pr (PZr /\/ 77) C O_Q (P: §91/ )\r 17) .
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Proof. Let f(z) € k-Q (p, ¢2,A,17) . Then:
1 i zf' (2) (zf' (2))
P [(M _¢1cosA) (r—n) i (2) + @pcosA ( o) —17)]
q)l f ( ) P2 cos A (Zf/ (Z))
9 [( TP e - ( () ”)]
_ ¢1— z/\sf ( )
Sl

P2 )
=P H (2) + (1—“’”) Hz (z) = H (z),

P2 ]
where:
Hy(z) = (em — (2 cos A) Z/JI ((;) + ?;C_O;/)\ (i{;z% - 17) eP (hk,,;) CP(p)
and:

/
H (z) = e”\m € P(p).
Since P(p) is a convex set (see [27]), we therefore have H(z) € P(p). This implies that f €
0-Q (p, @1, A, 17). Thus:
k-Q (p, 92, A1) C0-Q(p, 91,4, 1) -

The proof of Theorem 3 is now completed. O
Theorem 4. Let ¢ > 0and A < 7. Then:
k-Q(p, ¢, A,1,8) C k-K(p,0,).

Proof. Let f € k-Q(p, ¢, A, 1, &), and suppose that:

FS =@, ®)

where p (z) is analytic and p (0) = 1. Now, by differentiating both sides of (8) with respect to z,
we have:

LA 2 a)+p(a)te) o)
where: ( ( ))/
e(z) = z’ (z
® =)

By using (8) and (9) in (4), we arrive at:

Mg A f9) = (¢ = goosn) P4 LB () 4 p(ajetz) )

p—
_ pcosA_, (e”‘_d)cos)x)(qbcosA) _ n¢cosA
P—UZP(Z)+ p p—ez)/)\p—rn ) P
=B(2)zp' () +C(z)p(z) + D (2), (10)
where:
B(z) = (/)COS/\

p—n’
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Cz) = C P =) —pcosA(p—n) + cosde(z)p

plp—1)
and:
D(z) = 17<,bc05/\'
p—=n
Now, since f € k-Q(p, ¢, A, 1,&), we have:
B(z)zp' (z) +C(2) p(2) + D (2) < p (2), (11)

which, upon replacing p (z) by:

pe(z) =p(2) -1,
and py (z) by:

pr(2) = pr(2) =1,

shows that the above subordination in (11) becomes as follows:

B(2)zp (2) + C(2) px (2) + D (2) < p (2), (12)
where:
D.(z)=C(z2)+D(z) - 1.
We now apply Lemma 2 with:
A=0
and
ps(2) < pi (2).
We thus find that: ,
LG — b <pi o). (13

This complete the proof of Theorem 4. [J
For f € A, we next consider the integral operator defined by:

F) = Inlf) = "2 [T ip (14)

This operator was given by Bernardi [28] in the year 1969. In particular, the operator I; was
considered by Libera [29]. We prove the following result.

Theorem 5. Let f(z) € k-Q (p, p, A, n,&) . Then, I, [f] € K (p,0,¢) .

Proof. Let the function ¢ (z) be such that:

ity D) peosh ()
MigAn f) = ("~ ‘prcf+@—n><4un ”)'

Then, according to [14], the function G = I, [f] € CD (k,6). Furthermore, from (14), we
deduce that:
(14m)f(z) = (A+m)F(z) +z(F(2)) (15)

and:
(1+m)g(z)=1+m)G(z) +2z(G(2)). (16)
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If we now put:

_F(2)
P(Z) - G/ (Z)
and: )
q(Z - zG"(z)\’

or, equivalently, that:

i 8 =p@@)+zp' (2)q(2). (17)
We now let:
PO —p )+ (a2 = (o) as)
g PTIRE '
where the function / (z) is analytic in E with & (0) = 1. Then, by using (18), we have:
(lef, ((ZZ)))/ =zh' (z) +e(2) h(z), (19)
where: =¥ (2))
e(z) = B @)
e

Furthermore, by using (18) and (19) in (4) , we obtain:
(e 2f'(2) | geosd (= ()
M b f) = (1 —0cost) g+ ( Vo) ")
= (ei’\ — 0 cos /\) + (l;;isi;\zh’ (z) + [z (z) + € (2) h (z) — 7]
:(pcos)\ W in A ¢pcosA i 17 (¢cos))
7}97”2 (z)+<e ¢ cos +P11) (z) e
=B (z)zh (z) + C(2)h(z) + D (z),

where:
B(z) = (pcos)xl
p—1
C(z) = (p—mn)e*—(p—n)PpcosA+pcosA)

p—n

and:
D (z) = 1($cost)
p—1

Now, if we apply Lemma 1 with A = 0, we get:

f'(z)
¥ (2)

—h(z) < pi(2). 20)
Furthermore, from (18), we have:

p(z)+zp' (2)q(2) < pi (2).
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By using Lemma 2 on (20), we obtain the desired result. This completes the proof of Theorem 5. [J

4. Conclusions

Using the idea of spiral-like and close-to-convex functions, we have introduced Mocanu-type
functions associated with conic domains. We have derived some interesting results such as sufficiency
criteria, inclusion results, and integral-preserving properties. We have also proven that the our
newly-defined function classes are closed under the famous Libera operator.
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