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Abstract: In this article, we study differential subordnations in q-analogue. Some properties of
analytic functions in q-analogue associated with cardioid domain and limacon domain are considered.

In particular, we determine conditions on α such that 1 + α
z∂qh(z)
(h(z))n (n = 0, 1, 2, 3) are subordinated

by Janowski functions and h (z) ≺ 1 + 4
3 z + 2

3 z2. We also consider the same implications such that
h (z) ≺ 1 +

√
2z + 1

2 z2. We apply these results on analytic functions to find sufficient conditions for
q-starlikeness related with cardioid and limacon.
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1. Introduction

We recall here some basic notions from the literature of Geometric Function Theory which are
essential for clarity and understandings of the upcoming work. We start with the symbol A which
represents the family of analytic functions in D = {z : |z| < 1} and any function f in A satisfies the
conditions f (0) = 0 and f ′ (0)− 1 = 0. That is, if f in A, then it has the Taylor series expansion as:

f (z) = z +
∞

∑
n=2

anzn, z ∈ D. (1)

Also let S denote a subclass of A which contains univalent functions in D. The notion of
subordinations between analytic functions is represented by f ≺ g and is defined as; a function f is
subordinated by function g, if we can find an analytic function w with the properties w (0) = 0 and
|w (z)| < |z| such that f (z) = g(w(z)). Further, if g is univalent in D, then we have:

f (z) ≺ g(z)⇔ f (0) = g(0) & f (D) ⊂ g(D). (2)

Ma and Minda [1] studied the function ϕ which is analytic and normalized by ϕ(0) = 1 and
ϕ′(0) > 0 with Re {ϕ (z)} > 0 in D. The function ϕ maps D onto regions which is starlike with respect
to 1 and symmetric along the real axis. Further, they introduced the subclasses of starlike and convex
functions respectively as

S∗ (ϕ) =

{
f ∈ A :

z f ′ (z)
f (z)

≺ ϕ (z) , (z ∈ D)
}

,

C (ϕ) =

{
f ∈ A : 1 +

z f ′′ (z)
f ′ (z)

≺ ϕ (z) , (z ∈ D)
}

.
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If we choose ϕ(z) = 1+Az
1+Bz (−1 ≤ B < A ≤ 1), then S∗[A, B] := S∗

(
1+Az
1+Bz

)
is the family of

Janowski starlike functions, see [2]. Further by taking A = 1− 2α with 0 ≤ α < 1 and B = −1, we get
the class S∗(α) := S∗[1− 2α,−1] of starlike functions of order α. Also, the notation S∗ := S∗(0)
represents the familiar class of starlike functions. The subclass S∗B := S∗(

√
1 + z) which motivates the

researchers was investigated by Sokół et al. [3] , containing functions f ∈ A such that z f ′(z)/ f (z) lies
in the region bounded by the right-half of the Bernoulli lemniscate given by |w2 − 1| < 1. If we choose
ϕ(z) = 1 + 4

3 z + 2
3 z2, then the class S∗(ϕ) coincides with the class S∗C studied by Sharma et al. [4],

consisting of functions f ∈ A such that z f ′(z)/ f (z) lies in the region bounded by the cardioid given by
(9x2 + 9y2− 18x + 5)2− 16(9x2 + 9y2− 6x + 1) = 0. If we choose ϕ(z) = 1 + sin z, then we get the set
S∗sin, established by Cho et al. [5]. By selecting ϕ(z) = 1 +

√
2z + 1

2 z2, we acheive an interesting class
S∗L containing starlike functions associated with limacon given by (4x2 + 4y2 − 8x − 5)2 − 8(4x2 +

4y2 − 12x− 3) = 0. The class S∗L was introduced in [6]. Further, by choosing some more particular
function ϕ(z), we get several interesting subclasses of starlike functions. For some details, see [7–10].

In some recent years, a more intensive approach has been shown by the researchers in quantum
calculus (q-calculus) because of its wide spread applications in various branches of sciences particularly
in Mathematics and Physics. Among contributors to the study, Jackson was the first who provided basic
notions and established the theory of q-calculus [11,12]. The idea of derivative in q-analogue was used
for the first time by Ismail et al. [13] to initiate and study the geometry of q-starlike functions. After that,
a comprenhensive applications of q-calculus in the field of Geometric Function Theory was contributed
by Srivastava in a book chapter (see, for details, [14] (pp. 347 et seq.)) and in the same chapter he
also given the usage of q-hypergeometric functions in function theory. The concepts of q-starlikeness
was further extended to certain subclasses of starlike functions in q-analogue by Agrawal and Sahoo
in [15] (for the recent contributions on this topic, see the work done by Srivastava et al. [16–19]).
Also, with help of Hadamard product, the q-analogue of Ruscheweyh operator has been introduced
by Kanas and Răducanu [20] and further studied in [21–24]. Many researchers contributed in the
development of the theory by introducing certain classes with the help of q-calculus. For some details
about these contributions, see [25–28].

Let q ∈ (0, 1) and z ∈ D with z 6= 0. Then the q-derivative of f is defined by

∂q f (z) =
f (z)− f (qz)

z (1− q)
. (3)

By the virtue of (1) and (3) , we easily calculated that for n ∈ N and z ∈ D

∂q f (z) = 1 +
∞

∑
n=2

[n, q] anzn−1, (4)

where

[n, q] :=
1− qn

1− q
= 1 +

n−1

∑
k=1

ql , and [0, q] = 0.

Using the definition of q-derivative, Seoudy and Aouf [29] introduced the class S∗q (ϕ). Also,
for this class, the familiar Fekete-Szegö problem was obtained by the authors. This class is defined as;

S∗q (ϕ) =

{
f ∈ A :

z∂q f (z)
f (z)

≺ ϕ (z) , (z ∈ D)
}

.

By choosing particular functions instead of the function ϕ, we obtain several interesting subclasses
of starlike functions associated with different image domains. We define few of them as follows.
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S∗Bq
=

{
f ∈ A :

z∂q f (z)
f (z)

≺ φB (z) , (z ∈ D)
}

,

S∗Cq
=

{
f ∈ A :

z∂q f (z)
f (z)

≺ φC (z) , (z ∈ D)
}

,

S∗Lq
=

{
f ∈ A :

z∂q f (z)
f (z)

≺ φL (z) , (z ∈ D)
}

,

where the particular functions φB (z) , φC (z) and φL (z) are given by

φB (z) =
√

1 + z,

φC (z) = 1 +
4
3

z +
2
3

z2,

φL (z) = 1 +
√

2z +
1
2

z2.

Recently, Ali et al. [30] have studied some differential subordinations. More precisely they
studied the differental subordination 1 + αzp′(z)/pn(z) ≺

√
1 + z and found that p (z) ≺

√
1 + z,

where n = 0, 1, 2 for some particular range of α. Similar kind of differential subordinations are
also discussed by various authors. They used these results to find sufficient conditions for starlike
functions, see [31–36]. Motivated by the above work, we introduce and investigate some q-differential

subordinations. In particular, we determine conditions on α so that 1 + α
z∂qh(z)
(h(z))n are subordinated by

Janowski functions and h (z) is subordinated by 1 + 4
3 z + 2

3 z2, where n = 0, 1, 2, 3. Similar results are
also obtained for h (z) ≺ 1 +

√
2z + 1

2 z2, z ∈ D. We use these results to find sufficient conditions for
q-starlike functions associated with cardioid and limacon.

To prove our main results we need the following.

Lemma 1 ([37] (q-Jack’s Lemma)). Let w be analytic in D with w (0) = 0. If w attains its maximum value
on the circle |z| = 1 at z0 = reiθ , for θ ∈ [−π, π] , then for 0 < q < 1

z0∂qw (z0) = mw (z0) ,

where m is real and m ≥ 1.

2. Differential Subordination Related with Cardioid

Theorem 1. Assume that

|α| ≥ 3 (A− B)
2 (1− q) (1− |B|) , −1 < B < A ≤ 1 (5)

and h is an analytic function defined on D with h(0) = 1 satisfying

1 + αz∂qh (z) ≺ 1 + Az
1 + Bz

, z ∈ D. (6)

In addition, we suppose that

1 + αz∂qh (z) =
1 + Aw (z)
1 + Bw (z)

, z ∈ D,

where w is an analytic in D with w(0) = 0. Then

h (z) ≺ 1 +
4
3

z +
2
3

z2, z ∈ D.

Proof. We define a function
p (z) = 1 + αz∂qh (z) , (7)
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where p is analytic and p (0) = 1. Consider

h (z) = 1 +
4
3

w (z) +
2
3

w2 (z) . (8)

To prove our result, it will be enough to show that |w (z)| < 1. Using (7) and (8) , we obtain

p (z) = 1 +
α

3
z∂qw (z)

{
4 (1 + w (z))− 2 (1− q) z∂qw (z)

}
.

Also ∣∣∣∣ p (z)− 1
A− Bp (z)

∣∣∣∣ =∣∣∣∣∣ 1 + α
3 z∂qw (z)

{
4 + 4w (z)− 2 (1− q) z∂qw (z)

}
− 1

A− B
[
1 + α

3 z∂qw (z)
{

4 + 4w (z)− 2 (1− q) z∂qw (z)
}] ∣∣∣∣∣

=

∣∣∣∣∣ αz∂qw (z)
{

4 + 4w (z)− 2 (1− q) z∂qw (z)
}

3 (A− B) + αBz∂qw (z)
[
4 + 4w (z)− 2 (1− q) z∂qw (z)

] ∣∣∣∣∣ .

Suppose that there exists a point z0 ∈ D such that

max
|z|≤|z0|

|w (z)| = |w (z0)| = 1.

Then by using Lemma 1, there exists a number m ≥ 1 such that z0∂qw (z0) =

mw (z0) . Suppose w (z0) = eiθ , θ ∈ [−π, π]. Then for z0 ∈ D, we have∣∣∣∣ p (z0)− 1
A− Bp (z0)

∣∣∣∣ = ∣∣∣∣ αmw (z0) {4 + 4w (z0)− 2 (1− q)mw (z0)}
3 (A− B) + αBmw (z0) [4 + 4w (z0)− 2 (1− q)mw (z0)]

∣∣∣∣
≥

m |α|
∣∣4 + 4eiθ − 2 (1− q)meiθ

∣∣
3 (A− B) + αm |B|

∣∣4 + 4eiθ − 2 (1− q)meiθ
∣∣

=
m |α|

√
16 + (4− 2 (1− q)m)2 + 8 (4− 2 (1− q)m) cos θ

3 (A− B) + m |α| |B|
√

16 + (4− 2 (1− q)m)2 + 8 (4− 2 (1− q)m) cos θ
.

Consider the function

Ψ (θ) =
m |α|

√
16 + (4− 2 (1− q)m)2 + 8 (4− 2 (1− q)m) cos θ

3 (A− B) + m |α| |B|
√

16 + (4− 2 (1− q)m)2 + 8 (4− 2 (1− q)m) cos θ
,

for θ ∈ [−π, π] . It is clear that Ψ is an even function, therefore we find the minimum value of Ψ when
θ ∈ [0, π] . Now

Ψ′ (θ) =
−12 |α|m (A− B) {4− 2 (1− q)m} sin θ(√

16 + (4− 2 (1− q)m)2 + 8 (4− 2 (1− q)m) cos θ

)
(

3 (A− B) + |α| |B|
√

16 + (4− 2 (1− q)m)2 + 8 (4− 2 (1− q)m) cos θ

)2

.

It is easy to see that Ψ′ (θ) = 0 when θ = 0, π. Similarly, we can see that Ψ′′ (θ) > 0, when θ = π.
Hence Ψ (θ) ≥ Ψ (π) . Consider the function
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Φ (m) =
|α|m

√
16 + (4− 2 (1− q)m)2 − 8 (4− 2 (1− q)m)

3 (A− B) + |α| |B|
√

16 + (4− 2 (1− q)m)2 − 8 (4− 2 (1− q)m)

=
2 |α| (1− q)m2

3 (A− B) + 2 |α| |B| (1− q)m2

Then

Φ′ (m) =
12 |α| (1− q) (A− B)

{3 (A− B) + 2m2 |α| |B| (1− q)}2 > 0.

which shows that Φ is an increasing function and it has its minimum value at m = 1, so∣∣∣ p(z0)−1
A−Bp(z0)

∣∣∣ ≥ 2|α|(1−q)
3(A−B)+2|α||B|(1−q) .

Now by (5) , we have ∣∣∣∣ p (z0)− 1
A− Bp (z0)

∣∣∣∣ ≥ 1,

which contradicts (6). Hence |w (z)| < 1 and so we get the desired result.

If we put p (z) = z∂q f (z)
f (z) in Theorem 1, we get the following result.

Corollary 1. Let |α| ≥ 3(A−B)
2(1−q)(1−|B|) , −1 < B < A ≤ 1 and f ∈ A satisfy the subordination

1 + αz∂q

(
z∂q f (z)

f (z)

)
≺ 1 + Az

1 + Bz
, z ∈ D. (9)

Then f ∈ S∗Cq

If we choose A = 1 and B = 0 in Corollary 1, then we obtain the following result.

Corollary 2. Let |α| ≥ 3
(1−q) , −1 < B < A ≤ 1and f ∈ A satisfy the subordination

1 + αz∂q

(
z∂q f (z)

f (z)

)
≺ 1 + z, z ∈ D. (10)

Then f ∈ S∗Cq
.

Theorem 2. Assume that

|α| ≥ (A− B)
2 (1− q) (1− |B|) , −1 < B < A ≤ 1 (11)

and h is an analytic function defined on D with h(0) = 1 satisfying

1 + α
z∂qh (z)

h (z)
≺ 1 + Az

1 + Bz
, z ∈ D. (12)

In addition, we suppose that

1 + α
z∂qh (z)

h (z)
=

1 + Aw (z)
1 + Bw (z)

, z ∈ D,

where w is an analytic in D with w(0) = 0. Then

h (z) ≺ 1 +
4
3

z +
2
3

z2, z ∈ D.
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Proof. We define a function

p (z) = 1 + α
z∂qh (z)

h (z)
, (13)

where p is analytic and p (0) = 1. Consider

h (z) = 1 +
4
3

w (z) +
2
3

w2 (z) . (14)

Using (13) and (14), we obtain

p (z) = 1 +
αz∂qw(z){4+4w(z)−2(1−q)z∂qw(z)}

3(1+ 4
3 w(z)+ 2

3 w2(z))
.

Therefore ∣∣∣∣ p (z)− 1
A− Bp (z)

∣∣∣∣ =∣∣∣∣∣∣ αz∂qw (z)
{

4 + 4w (z)− 2 (1− q) z∂qw (z)
}(

3 + 4w (z) + 2 (w (z))2
)
(A− B) + αB

[(
4 + 4w (z)− 2 (1− q) z∂qw (z)

)
z∂qw (z)

]
∣∣∣∣∣∣ .

Hence by applying Lemma 1, we conclude that∣∣∣ p(z0)−1
A−Bp(z0)

∣∣∣ ≥ 2|α|(1−q)
(A−B)+2|αB|(1−q) .

By using (11) , we have ∣∣∣∣ p (z0)− 1
A− Bp (z0)

∣∣∣∣ ≥ 1,

which contradicts (12). Hence we get the desired result.

If we put p (z) = z∂q f (z)
f (z) in the above theorem, we get the following result.

Corollary 3. Let |α| ≥ (A−B)
2(1−q)(1−|B|) , −1 < B < A ≤ 1and f ∈ A such that

1 + αz
(

f (z)
z∂q f (z)

)
∂q

(
z∂q f (z)

f (z)

)
≺ 1 + Az

1 + Bz
, z ∈ D. (15)

Then f ∈ S∗Cq
.

Theorem 3. Assume that

|α| ≥ (A− B)
6 (1− q) (1− |B|) , −1 < B < A ≤ 1 (16)

and h is an analytic function defined on D with h(0) = 1 satisfying

1 + α
z∂qh (z)
h2 (z)

≺ 1 + Az
1 + Bz

, z ∈ D. (17)

In addition, we suppose that

1 + α
z∂qh (z)
h2 (z)

=
1 + Aw (z)
1 + Bw (z)

, z ∈ D,
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where w is an analytic in D with w(0) = 0. Then

h (z) ≺ 1 +
4
3

z +
2
3

z2, z ∈ D.

Proof. We define a function

p (z) = 1 + α
z∂qh (z)

(h (z))2 , (18)

where p is analytic and p (0) = 1. Consider

h (z) = 1 +
4
3

w (z) +
2
3

w2 (z)

After some simple calculations, we obtain

p (z) = 1 +
3αz∂qw (z)

{
4 + 4w (z)− 2 (1− q) z∂qw (z)

}
(3 + 4w (z) + 2w2 (z))2 .

Therefore ∣∣∣∣ p (z)− 1
A− Bp (z)

∣∣∣∣ =∣∣∣∣∣ 3αz∂qw (z)
{

4 + 4w (z)− 2 (1− q) z∂qw (z)
}

(3 + 4w (z) + 2w2 (z))2
(A− B)− 3αBz∂qw (z)

[(
4 + 4w (z)− 2 (1− q) z∂qw (z)

)] ∣∣∣∣∣ .

Hence by applying Lemma 1, we conclude that∣∣∣ p(z0)−1
A−Bp(z0)

∣∣∣ ≥ 6|α|(1−q)
(A−B)+6|αB|(1−q) .

Now by using (16) , we have ∣∣∣∣ p (z0)− 1
A− Bp (z0)

∣∣∣∣ ≥ 1,

which contradicts (17). Hence we get the required result.

If we put p (z) = z∂q f (z)
f (z) in the above theorem, we get the following result.

Corollary 4. Let |α| ≥ (A−B)
6(1−q)(1−|B|) , −1 < B < A ≤ 1and f ∈ A satisfy

1 + αz
(

f (z)
z∂q f (z)

)2
∂q

(
z∂q f (z)

f (z)

)
≺ 1 + Az

1 + Bz
, z ∈ D. (19)

Then f ∈ S∗Cq
.

Theorem 4. Assume that

|α| ≥ (A− B)
18 (1− q) (1− |B|) , −1 < B < A ≤ 1 (20)

and h is an analytic function defined on D with h(0) = 1 satisfying

1 + α
z∂qh (z)
h3 (z)

≺ 1 + Az
1 + Bz

, z ∈ D. (21)
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In addition, we suppose that

1 + α
z∂qh (z)
h3 (z)

=
1 + Aw (z)
1 + Bw (z)

, z ∈ D,

where w is an analytic in U with w(0) = 0. Then

h (z) ≺ 1 +
4
3

z +
2
3

z2, z ∈ D.

Proof. Here we define a function

p (z) = 1 + α
z∂qh (z)

(h (z))3 , (22)

where p is analytic and p (0) = 1. Consider

h (z) = 1 + 4
3 w (z) + 2

3 w2 (z) .

After some simplifications, we obtain

p (z) = 1 +
αz∂qw(z){4+4w(z)−2(1−q)z∂qw(z)}

3(1+ 4
3 w(z)+ 2

3 w2(z))
3 .

Therefore ∣∣∣∣ p (z)− 1
A− Bp (z)

∣∣∣∣ =∣∣∣∣∣∣∣
9αz∂qw (z)

{
4 + 4w (z)− 2 (1−) z∂qw (z)

}(
3 + 4w (z) + 2 (w (z))2

)3
(A− B) + 9αBz∂qw (z)

[
4 + 4w (z)− 2 (1− q) z∂qw (z)

]
∣∣∣∣∣∣∣ .

Hence by Lemma 1, we conclude that∣∣∣ p(z0)−1
A−Bp(z0)

∣∣∣ ≥ 18|α|(1−q)
(A−B)+18|αB|(1−q) .

Now by using (20) , we have ∣∣∣∣ p (z0)− 1
A− Bp (z0)

∣∣∣∣ ≥ 1,

which is contradiction. We complete the required proof.

If we put p (z) = z∂q f (z)
f (z) in the above theorem, we get the following result.

Corollary 5. Let |α| ≥ (A−B)
18(1−q)(1−|B|) , −1 < B < A ≤ 1 and f ∈ A such that

1 + αz
(

f (z)
z∂q f (z)

)3
∂q

(
z∂q f (z)

f (z)

)
≺ 1 + Az

1 + Bz
, z ∈ D. (23)

Then f ∈ S∗Cq
.

Theorem 5. Assume that

|α| ≥ (A− B)
2.3n−1 (1− q) (1− |B|)

, −1 < B < A ≤ 1 (24)



Mathematics 2019, 7, 724 9 of 16

and h is an analytic function defined on D with h(0) = 1 satisfying

1 + α
z∂qh (z)
(h (z))n ≺

1 + Az
1 + Bz

, z ∈ D. (25)

In addition, we suppose that

1 + α
z∂qh (z)
(h (z))n =

1 + Aw (z)
1 + Bw (z)

, z ∈ D,

where w is an analytic in D with w(0) = 0. Then

h (z) ≺ 1 +
4
3

z +
2
3

z2, z ∈ D.

Proof. The proof of Theorem 5 is similar to the theorems proved above and so here we choose to omit
the details.

If we put p (z) = z∂q f (z)
f (z) in the above theorem, we get the following result.

Corollary 6. Let |α| ≥ (A−B)
2.3n−1(1−q)(1−|B|) , −1 < B < A ≤ 1and f ∈ A such that

1 + αz
(

f (z)
z∂q f (z)

)n
∂q

(
z∂q f (z)

f (z)

)
≺ 1 + Az

1 + Bz
, z ∈ D. (26)

Then f ∈ S∗Cq
.

3. Differential Subordination Related with Limacon

Theorem 6. Assume

|α| ≥ 2 (A− B)√
8 + (1 + q)

(
1 + q− 4

√
2
)
(1− |B|)

, −1 < B < A ≤ 1 (27)

and h is an analytic function defined on D with h(0) = 1 satisfying

1 + α∂qh (z) ≺ 1 + Az
1 + Bz

, z ∈ D. (28)

In addition, we suppose that

1 + α∂qh (z) =
1 + Aw (z)
1 + Bw (z)

, z ∈ D

with w (0) = 0, then

h (z) ≺ 1 +
√

2z +
1
2

z2, z ∈ D.

Proof. We define a function
p (z) = 1 + αz∂qh (z) , (29)

where p is analytic and p (0) = 1. Consider

h (z) = 1 +
√

2w (z) +
1
2

w2 (z) . (30)
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To prove our result, it will be enough to show that |w (z)| < 1. Using (29) and (30) , we obtain

p (z) = 1 +
αz∂qw (z)

2

{
2
√

2 + 2w (z)− (1− q) z∂qw (z)
}

.

Also ∣∣∣∣ p (z)− 1
A− Bp (z)

∣∣∣∣ =∣∣∣∣∣∣
1 + αz∂qw(z)

2

{
2
√

2 + 2w (z)− (1− q) z∂qw (z)
}
− 1

A− B
[
1 + αz∂qw(z)

2

{
2
√

2 + 2w (z)− (1− q) z∂qw (z)
}]
∣∣∣∣∣∣

=

∣∣∣∣∣∣
αz∂qw (z)

{
2
√

2 + 2w (z)− (1− q) z∂qw (z)
}

2 (A− B) + αBz∂qw (z)
[
2
√

2 + 2w (z)− (1− q) z∂qw (z)
]
∣∣∣∣∣∣ .

Suppose that there exists a point z0 ∈ D such that

max
|z|≤|z0|

|w (z)| = |w (z0)| = 1.

Then by using Lemma 1, there exists a number m ≥ 1 such that z0∂qw (z0) = mw (z0).
Suppose w (z0) = eiθ , θ ∈ [−π, π]. Then for z0 ∈ D, we have

∣∣∣∣ p (z0)− 1
A− Bp (z0)

∣∣∣∣ =
∣∣∣∣∣∣

αmw (z0)
{

2
√

2 + 2w (z0)− (1− q)mw (z0)
}

2 (A− B) + αBmw (z0)
[
2
√

2 + 2w (z0)− (1− q)mw (z0)
]
∣∣∣∣∣∣

≥
m |α|

∣∣∣2√2 + 2eiθ − (1− q)meiθ
∣∣∣

2 (A− B) + m |αB|
∣∣∣2√2 + 2eiθ − (1− q)meiθ

∣∣∣
=

m |α|
√

8 + (2− (1− q)m)2 + 4
√

2 ((2− (1− q)m)) cos θ

2 (A− B) + m |α| B
√

8 + (2− (1− q)m)2 + 4
√

2 ((2− (1− q)m)) cos θ
.

Consider the function

Θ1 (θ) =
m |α|

√
8 + (2− (1− q)m)2 + 4

√
2 ((2− (1− q)m)) cos θ

2 (A− B) + m |αB|
√

8 + (2− (1− q)m)2 + 4
√

2 ((2− (1− q)m)) cos θ
.

For θ ∈ [−π, π] . It is clear that Θ1 is an even function, therefore we find the minimum value of
Θ1 when θ ∈ [0, π] . Now

Θ′1 (θ) = −
4
√

2m |α| (A− B) a sin θ(√
8 + a2 + 4

√
2a cos θ

) (
2 (A− B) + m |αB|

√
8 + a2 + 4

√
2a cos θ

)2 ,

where a = 2− (1− q)m. It is easy to see that Θ′1 (θ) = 0 when θ = 0, π. Similarly, we can see that
Θ′′1 (θ) > 0, when θ = π. Hence Θ1 (θ) ≥ Θ1 (π) . Now consider the function

Λ1 (m) =
m |α|

√
8 + (2− (1− q)m)2 − 4

√
2 (2− (1− q)m)

2 (A− B) + m |αB|
√

8 + (2− (1− q)m)2 − 4
√

2 (2− (1− q)m)
.
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Now

Λ′1 (m) =
4 |α| (A− B)

{
6− 4

√
2 + 3bm

(√
2− 1

)
+ b2m2)

}
√

8 + (2− bm)2 + 4
√

2(bm− 2)

(
2 (A− B) +

m |αB|
√

8 + (2− bm)2 − 4
√

2(2− bm)

)2 > 0,

where b = 1− q. This shows that Λ is an increasing function and it has its minimum value at m = 1, so

∣∣∣ p(z0)−1
A−Bp(z0)

∣∣∣ ≥ |α|
√

8+(2−(1−q))2−4
√

2(2−(1−q))

2(A−B)+|αB|
√

8+(2−(1−q))2−4
√

2(2−(1−q))
.

Now by (27) , we have ∣∣∣∣ p (z0)− 1
A− Bp (z0)

∣∣∣∣ ≥ 1,

which contradicts (28). Hence |w (z)| < 1 and so we get the desired result.

If we put p (z) = z∂q f (z)
f (z) in the above theorem, we get the following result.

Corollary 7. Let |α| ≥ 2(A−B)√
8+(1+q)(1+q−4

√
2)(1−|B|)

, −1 < B < A ≤ 1 and f ∈ A satisfy

1 + α∂q

(
z∂q f (z)

f (z)

)
≺ 1 + Az

1 + Bz
, z ∈ D. (31)

Then f ∈ S∗Lq
.

Theorem 7. Assume

|α| ≥ (A−B)
√

28−16
√

2

(1−|B|)
√

8+(1+q)(1+q−4
√

2)
, −1 < B < A ≤ 1 (32)

and h is an analytic function defined on D with h(0) = 1 satisfying

1 + α
z∂qh(z)

h(z) ≺ 1+Az
1+Bz . (33)

In addition, we suppose that

1 + α
z∂qh (z)

h (z)
=

1 + Aw (z)
1 + Bw (z)

, z ∈ D,

where w is an analytic in D with w(0) = 0, then

h (z) ≺ 1 +
√

2z + 1
2 z2.

Proof. We define a function

p (z) = 1 + α
z∂qh (z)

h (z)
, (34)

where p is analytic and p (0) = 1. Consider

h (z) = 1 +
√

2w (z) + 1
2 w2 (z) . (35)
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Using (34) and (35), we obtain

p (z) = 1 +
αz∂qw(z){2

√
2+2w(z)−(1−q)z∂qw(z)}

2
(

2+2
√

2w(z)+w2(z).
2

) .

Therefore ∣∣∣∣ p (z)− 1
A− Bp (z)

∣∣∣∣ =∣∣∣∣∣∣
αz∂qw (z)

{
2
√

2 + 2w (z)− (1− q) z∂qw (z)
}

(
2 + 2

√
2w (z) + w2 (z)

)
(A− B) + αBz∂qw (z)

[
2
√

2 + 2w (z)− (1− q) z∂qw (z)
]
∣∣∣∣∣∣ .

Then using the similar method as in Theorem 7, we obtain

∣∣∣ p(z0)−1
A−Bp(z0)

∣∣∣ ≥ |α|
√

8+(2−(1−q))2−4
√

2(2−(1−q))√
28−16

√
2(A−B)+|αB|

√
8+(2−(1−q))2−4

√
2(2−(1−q))

.

By using (32) , we have ∣∣∣∣ p (z0)− 1
A− Bp (z0)

∣∣∣∣ ≥ 1,

which contradicts (33). Hence we get the desired result.

If we put p (z) = z∂q f (z)
f (z) in the above theorem, we get the following result.

Corollary 8. Let |α| ≥ (A−B)
√

28−16
√

2

(1−|B|)
√

8+(1+q)(1+q−4
√

2)
, −1 < B < A ≤ 1 and f ∈ A satisfy

1 + αz
(

f (z)
z∂q f (z)

)
∂q

(
z∂q f (z)

f (z)

)
≺ 1 + Az

1 + Bz
. (36)

Then f ∈ S∗Lq
.

Theorem 8. Assume

|α| ≥ (12−8
√

2)(A−B)

(1−|B|)
√

8+(1+q)(1+q−4
√

2)
, −1 < B < A ≤ 1 (37)

and h is an analytic function defined on D with h(0) = 1 satisfying

1 + α
z∂qh(z)
(h(z))2 ≺ 1+Az

1+Bz .

In addition, we suppose that

1 + α
z∂qh (z)

(h (z))2 =
1 + Aw (z)
1 + Bw (z)

, z ∈ D,

where w is an analytic in D with w(0) = 0, then

h (z) ≺ 1 +
√

2z + 1
2 z2.

Proof. We define a function

p (z) = 1 + α
z2∂qh (z)

(h (z))2 , (38)
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where p is analytic and p (0) = 1. Consider

h (z) = 1 +
√

2w (z) + 1
2 w2 (z) .

After some simple calculations, we obtain

p (z) = 1 +
αz∂qw(z){2

√
2+2w(z)−(1−q)z∂qw(z)}

2
(

2+2
√

2w(z)+w2(z).
2

)2 .

Therefore ∣∣∣∣ p (z)− 1
A− Bp (z)

∣∣∣∣ =∣∣∣∣∣∣∣
αz∂qw (z)

{
2
√

2 + 2w (z)− (1− q) z∂qw (z)
}

(2+2
√

2w(z)+w2(z))
2

2 (A− B) + αBz∂qw (z)
[(

2
√

2 + 2w (z)− (1− q) z∂qw (z)
)]
∣∣∣∣∣∣∣ .

Using similar method as in Theorem 7, we obtain

∣∣∣ p(z0)−1
A−Bp(z0)

∣∣∣ ≥ |α|
√

8+(2−(1−q))2−4
√

2(2−(1−q))

(12−8
√

2)(A−B)+|αB|
√

8+(2−(1−q))2−4
√

2(2−(1−q))
.

Now by using (37) , we have ∣∣∣∣ p (z0)− 1
A− Bp (z0)

∣∣∣∣ ≥ 1,

which is contradiction. Hence we get the required result.

If we put p (z) = z∂q f (z)
f (z) in the above theorem, we get the following result.

Corollary 9. Let |α| ≥ (12−8
√

2)(A−B)

(1−|B|)
√

8+(1+q)(1+q−4
√

2)
, −1 < B < A ≤ 1 and f ∈ A such that

1 + αz
(

f (z)
z∂q f (z)

)2
∂q

(
z∂q f (z)

f (z)

)
≺ 1 + Az

1 + Bz
.

Then f ∈ S∗Lq
.

Theorem 9. Assume

|α| ≥ (28−16
√

2)
3
2 (A−B)

4(1−|B|)
√

8+(1+q)(1+q−4
√

2)
, −1 < B < A ≤ 1 (39)

and h is an analytic function defined on D with h(0) = 1 satisfying

1 + α
z3∂qh(z)
(h(z))3 ≺ 1+Az

1+Bz . (40)

In addition, we suppose that

1 + α
z3∂qh (z)

(h (z))3 =
1 + Aw (z)
1 + Bw (z)

, z ∈ D,

where w is an analytic in D with w(0) = 0, then

h (z) ≺ 1 +
√

2z + 1
2 z2.
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Proof. Here we define a function

p (z) = 1 + α
z3∂qh (z)

(h (z))3 , (41)

where p is analytic and p (0) = 1. Consider

h (z) = 1 +
√

2w (z) + 1
2 w2 (z) .

After some simplifications, we obtain

p (z) = 1 +
αz∂qw(z){2

√
2+2w(z)−(q−1)z∂qw(z)}

2
(

2+2
√

2w(z)+w2(z).
2

)3 .

Therefore ∣∣∣∣ p (z)− 1
A− Bp (z)

∣∣∣∣ =∣∣∣∣∣∣∣
αz∂qw (z)

{
2
√

2 + 2w (z)− (1− q) z∂qw (z)
}

(2+2
√

2w(z)+w2(z))
3

4 (A− B) + αBz∂qw (z)
[
2
√

2 + 2w (z)− (1− q) z∂qw (z)
]
∣∣∣∣∣∣∣ .

Therefore by using Lemma 1, we obtain

∣∣∣ p(z0)−1
A−Bp(z0)

∣∣∣ ≥
|α|
√
(12−8

√
2)+(1−q)2+4(

√
2−1)(1−q)

(28−16
√

2)
3
2

4 (A−B)+|α||B|
[√

(12−8
√

2)+(1−q)2+4(
√

2−1)(1−q)
] .

Next by using (39) , we have ∣∣∣∣ p (z0)− 1
A− Bp (z0)

∣∣∣∣ ≥ 1,

which is contradiction. Hence, we get the required proof.

If we put p (z) = z∂q f (z)
f (z) in the above theorem, we get the following result.

Corollary 10. Let |α| ≥ (28−16
√

2)
3
2 (A−B)

4(1−|B|)
√

8+(1+q)(1+q−4
√

2)
, −1 < B < A ≤ 1 and f ∈ A satisfy

1 + αz
(

f (z)
z∂q f (z)

)3
∂q

(
z∂q f (z)

f (z)

)
≺ 1 + Az

1 + Bz
.

Then f ∈ S∗Lq
.

4. Conclusions

In this article, we have studied some q-differential subordinations. We have determined conditions
on α and

1 + α
z∂qh (z)
(h (z))n ≺

1 + Az
1 + Bz

(n = 0, 1, 2, 3) , (42)

then h (z) ≺ 1 + 4
3 z + 2

3 z2. Similar results are also investigated involving the function 1 +
√

2z + 1
2 z2.

Further we have deduced sufficiency criterion for q-starlikeness related with cardioid and limacon
from our main results. Moreover, by choosing particular functions instead of h, sufficient conditions
for other analytic functions can be found.



Mathematics 2019, 7, 724 15 of 16

Author Contributions: The authors have equally contributed to accomplish this research work.

Funding: This paper was supported partially by the Natural Science Foundation of the People’s Republic of China
under Grants 11561001 and 11271045, the Program for Young Talents of Science and Technology in Universities
of Inner Mongolia Autonomous Region under Grant NJYT-18-A14 and the Natural Science Foundation of Inner
Mongolia of the People’s Republic of China under Grant 2018MS01026.

Conflicts of Interest: The authors agree with the contents of the manuscript, and there are no conflict of interest
among the authors.

References

1. Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the
Conference on Complex Analysis; International Press: Cambridge, MA, USA, 1992; pp. 157–169, .

2. Janowski, W. Extremal problems for a family of functions with positive real part and for some related
families. Ann. Pol. 1970, 23, 159–177. [CrossRef]

3. Sokół, J.; Stankiewicz, J. Radius of convexity of some subclasses of strongly starlike functions. Zesz. Nauk.
Politech. Rzesz. Mat. 1996, 19, 101–105.

4. Sharma, K.; Jain, N.K.; Ravichandran, V. Starlike functions associated with a cardioid. Afr. Mat. 2016, 27,
923–939. [CrossRef]

5. Cho, N.E.; Kumar, V.; Kumar, S.S.; Ravichandran, V. Radius problems for starlike functions associated with
the sine function. Bull. Iran. Math. Soc. 2019, 45, 213–232. [CrossRef]

6. Yunus,Y.; Halim, S.A.; Akbarally, A.B. Subclass of starlike functions associated with a limacon. AIP Conf. Proc.
2018, 1974, 030023. [CrossRef]

7. Kargar, R.; Ebadian, A.; Sokół, J. On Booth lemniscate and starlike functions. Anal. Math. Phys. 2019, 9,
143–154. [CrossRef]

8. Kumar, S.; Ravichandran, V. A subclass of starlike functions associated with a rational function.
Southeast Asian Bull. Math. 2016, 40, 199–212.

9. Mendiratta, R.; Nagpal, S.; Ravichandran, V. On a subclass of strongly starlike functions associated with
exponential function. Bull. Malays. Math. Sci. Soc. 2015, 38, 365–386. [CrossRef]

10. Raina, R.K.; Sokół, J. On coefficient estimates for a certain class of starlike functions. Hacet. J. Math. Stat.
2015, 44, 1427–1433. [CrossRef]

11. Jackson, F.H. On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 1909, 46, 253–281.
[CrossRef]

12. Jackson, F.H. On q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203.
13. Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14,

77–84. [CrossRef]
14. Srivastava, H.M. Univalent functions, fractional calculus, and associated generalized hypergeometric

functions in Univalent Functions. In Fractional Calculus, and Their Applications; Srivastava, H.M., Owa, S.,
Eds.; Halsted Press (Ellis Horwood Limited): Chichester, UK; Wileya, J. and Sons: New York, NY, USA;
Chichester, UK; Brisbane, Australia; Toronto, ON, USA, 1989; pp. 329–354.

15. Agrawal, S.; Sahoo, S.K. A generalization of starlike functions of order α. Hokkaido Math. J. 2017, 46, 15–27.
[CrossRef]

16. Srivastava, H.M.; Khan, B.; Khan, N.; Ahmad, Q.Z. Coeffcient inequalities for q-starlike functions associated
with the Janowski functions. Hokkaido Math. J. 2019, 48, 407–425. [CrossRef]

17. Srivastava, H.M.; Ahmad, Q.Z.; Khan, N.; Khan, B. Hankel and Toeplitz determinants for a subclass of
q-starlike functions associated with a general conic domain. Mathematics 2019, 7, 181. [CrossRef]

18. Srivastava, H.M.; Tahir, M.; Khan, B.; Ahmad, Q.Z.; Khan, N. Some general classes of q-starlike functions
associated with the Janowski functions. Symmetry 2019, 11, 292. [CrossRef]

19. Srivastava, H.M.; Bansal, D. Close-to-convexity of a certain family of q-Mittag-Leffler functions. J. Non-linear
Var. Anal. 2017, 1, 61–69.
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