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Abstract: The purpose of this work is to extend Leech cohomology for monoids (and so Eilenberg-Mac
Lane cohomology of groups) to presheaves of monoids on an arbitrary small category. The main result
states and proves a cohomological classification of monoidal prestacks on a category with values in
groupoids with abelian isotropy groups. The paper also includes a cohomological classification for
extensions of presheaves of monoids, which is useful to the study ofH-extensions of presheaves of
regular monoids. The results apply directly in several settings such as presheaves of monoids on
a topological space, simplicial monoids, presheaves of simplicial monoids on a topological space,
monoids or simplicial monoids on which a fixed monoid or group acts, and so forth.
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1. Introduction And Summary

This work grew out of the problem of stating a precise classification theorem for prestacks [1]
on a small category C with values in the 2-category of monoidal abelian groupoids, that is, of tensor
groupoids whose isotropy groups are abelian. The non-fibered case, that is, when C is the final category,
was treated recently in [2], where it is shown how monoidal abelian groupoids are classified by elements
of Leech third cohomology groups of monoids H3(M, A) [3,4]. In that classification process, for each
monoidal abelian groupoid, M is its monoid of connected components, with multiplication induced by
the tensor product, the coefficients A are provided by its automorphism groups, and the classifying
datum c ∈ H3(M, A) is the cohomology class of a certain 3-cocycle canonically constructed from
its structure associativity constraint. For categorical groups (also known as Gr-categories), that is,
monoidal groupoids where the objects are quasi-invertible, that cohomological classification goes
back to that given by Sinh in [5], where she proved that categorical groups are classified by the
elements of the third Eilenberg-Mac Lane cohomology groups. When C is an arbitrary small category,
every prestack on C valued in monoidal abelian groupoids produces, by taking connected components,
not a monoid as in the punctual case but rather a presheaf on C with values in the category Mon of
monoids. Then, we were naturally led to a research for an adequate cohomology theory for presheaves
of monoidsM : Cop → Mon. Here, we provide a proposal for such a cohomology theory, which enjoys
desirable properties whose study the paper is dedicated to.

Presheaves on small categories are rather familiar objects and arise in many situations.
The cohomology of presheaves of several algebraic structures (groups, rings, etc.) has been object of
study with interest along the last decades. Particularly, we should refer here to the seminal work by
Gerstenhaber-Shack (in deformation theory) on cohomology of presheaves of algebras (e.g., associative
or Lie) [6–8], which greatly inspires part of this paper on cohomology of presheaves of monoids.
Also, our exposition is strongly influenced by several papers on cohomology of diagrams of simplicial
sets (in equivariant homotopy theory). Particularly we should refer those by Dwayer-Kan [9,10],
Moerdijk-Svensson [11,12], and Blanc-Johnson-Turner [13]. Notice that, when each monoid is replaced
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by its nerve (i.e., its simplicial classifying space), every presheaf of monoidsM on a small category
produces a presheaf of simplicial sets, NM, whose homotopy type is represented by its homotopy
colimit [14]. Thus, Gabriel-Zisman cohomology groups [15] of the simplicial set hocolim NM naturally
arise from a presheaf of monoidsM. In this setting, it is worth to recall that every path-connected
CW-complex has the same homotopy type as the classifying space of a monoid [16].

1.1. Outline Of Results

In this paper we actually present two cohomology theories for presheaves of monoids. For both
theories, we start by associating to each presheaf of monoids M : Cop → Mon a small category,
denoted by D(M), whose left modules, that is, the abelian group valued functors on it, provide the
coefficients. This is justified because of the existence of an equivalence

Ab
(
Psh(C, Mon)↓M

)
' D(M)-Mod (1)

between the category of abelian group objects in the slice category of presheaves of monoids on C over
M and the category of abelian group valued functors on D(M). The first cohomology theory of a
presheaf of monoidsM is then defined as the cohomology of the category D(M), that is, by the right
derived functors

Hn(M,−) = RnHomD(M)(Z,−) = Extn
D(M)(Z,−) (n ≥ 0), (2)

where Z is the constant D(M)-module given by the abelian group of integers. For the second one,
which following to Gerstenhaber and Shack [7] we call the simple cohomology theory, we previously
introduce the left exact functor of derivations, Der(M,−) : D(M)-Mod → Ab, and prove its
representability by showing that it is naturally isomorphic to the hom functor HomD(M)(IM,−)
provided by the (suitably defined) ideal augmentation IM of the presheafM. Then, we define the
simple cohomology theory ofM by the right derived functors

Hn
s (M,−) = Rn−1Der(M,−) = Extn−1

D(M)
(IM,−) (n ≥ 1). (3)

When C is the final category, then a presheaf of monoidsM on C is simply a monoid and the
Hn(M,−) above are just the cohomology functors of the monoidM by Leech [3,4]. Furthermore,
in this case, there are natural isomorphisms Hn(M,−) ∼= Hn

s (M,−) for all n ≥ 2, so that both
cohomology theories are essentially the same. However, in general the Hn(M,−) are different
of the simples ones Hn

s (M,−). For instance, when C = G is a group (regarded as an one-object
category) and M = H is a right G-group, then D(M) = H o G, the semidirect product group,
and the cohomology functors Hn(M,−) agree with the ordinary Eilenberg-Mac Lane cohomology
functors Hn(H o G,−), whereas the functors Hn

s (M,−) agree with the vector cohomology groups
Hn

n−1(G, H;−) by Whitehead [17]. A main result in this paper states that, for any presheaf of monoids
M on a small category C, there is a natural long exact sequence

· · · → Hn(M, A)→ Hn(Cop, A)→ Hn+1
s (M, A)→ Hn+1(M, A)→ Hn+1(Cop, A)→ · · · , (4)

for any D(M)-module A, connecting the cohomology groups ofM in both theories with those of
the category C with coefficients in the right module obtained by restricting the coefficients A to Cop

through its natural inclusion into D(M).
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Following general methods by Gerstenhaber-Schack and Gabriel-Zisman, we define, for every
presheafM and any D(M)-module A, cochain complexes of abelian groups C•(M, A) and C•s (M, A)

such that there are natural isomorphisms

Hn
s (M, A) ∼= HnC•s (M, A), (n ≥ 1), (5)

Hn(M, A) ∼= HnC•(M, A) ∼= Hn(hocolim NM, A), (n ≥ 0). (6)

When the category Cop is cohomologically trivial, for instance whenever C has a final object, we
deduce the existence of natural isomorphisms

Hn
s (M, A) ∼= Hn(M, A) ∼= Hn(hocolim NM, A), (n ≥ 2). (7)

These isomorphisms hold then in several relevant cases we have in mind, as for example when

(a) C = O(X), the category defined by the partially ordered set of open subsets of a topological space
X. That is, in the cohomology of presheaves of monoids (and presheaves of groups, then) on a
topological space.

(b) C = [1], the category defined by the ordered set {0 < 1}. That is, in the cohomology of pairs
of monoids.

(c) C = ∆, the simplicial category of finite ordered sets [p] = {0 < 1 < · · · < p}, with non-decreasing
maps between them as its morphisms. That is, in the cohomology of simplicial monoids.

(d) C = O(X) × ∆, where X is a topological space. That is, in the cohomology of presheaves of
simplicial monoids on a topological space (or, equivalently, of simplicial presheaves of monoids
on a topological space).

(e) C = Or(G)× ∆, where Or(G) is the orbit category of a group G, whose objects are the transitive
left G-sets G/H, for any subgroup H ⊆ G, and whose morphisms are the G-equivariant maps
between them. That is, in the (Borel) equivariant cohomology of simplicial monoids endowed
with a left G-action by automorphisms. Here, one regards such a simplicial monoidM as the
presheaf of monoids on Or(G)× ∆ such that (G/H, [p]) 7→ HomG(G/H,Mp) ∼=MH

p .

We dedicate much of the paper to show natural realizations for the cohomology classes in
H2

s (M, A) and H3
s (M, A). For any presheaf of monoids M on a small category C and any

D(M)-module A, we prove the existence of a natural bijection

Ext(M, A) ∼= H2
s (M, A), (8)

between the set of equivalence classes of extensions (aka coextensions) ofM by A and the second
simple cohomology group of M with coefficients in A. This classification result is showed to be
useful in the study of the structure ofH-extensions ofM with abelian kernel, that is, locally surjective
morphisms of presheaves of monoids f : E →M such that, for any objet U of C, the congruence kernel
of fU : E(U)→M(U) is contained in the Green’s relationH of E(U) and the Shützenberger groups
of the kernel classes are abelian. Following to Grillet [18] and Leech [3], we introduce a certain full
subcategory of D(M)-Mod, which we call the category of D(M)-modules, and we prove that when
the presheaf of monoidsM is locally regular then equivalence classes of H-extensions ofM with
abelian kernel correspond bijectively to the elements of H2

s (M, A).
Our results on the classification of prestacks on a small category C, that is, of contravariant

pseudo-functors from C to the 2-category of monoidal abelian groupoids, by the third simple
cohomology groups of presheaves of monoids on C, can be summarized as follows:

(i) IfM is a presheaf of monoids on C and A is D(M)-module, every simple 3-cocycle h ∈ Z3
s (M, A)

gives rise to a prestack P(M, A, h).
(ii) For any prestack P on C, there exist a presheaf of monoids M, a D(M)-module A, a simple

3-cocycle h ∈ Z3
s (M, A), and an equivalence P(M, A, h) ' P.
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(iii) If h ∈ Z3
s (M, A) and h′ ∈ Z3

s (M′, A′) are simple 3-cocycles, whereM andM′ are presheaves
of monoids, A is a D(M)-module, and A′ is a D(M′)-module, then there is an equivalence
P(M, A, h) ' P(M′, A′, h′) if and only if there are isomorphisms f :M′ ∼=M and F : A′ ∼= f∗A
such that [h′] = F−1

∗ f∗([h]) in H3
s (M′, A′).

Thus, prestacks on C are classified by triples (M, A, c) whereM is a presheaf of monoids on C,
A is a D(M)-module, and c ∈ H3

s (M, A).

1.2. Organization of The Paper

The plan of the paper is, briefly, as follows. After the first introductory and summary section,
the rest is organized in nine sections. Section 2 is preparatory and comprises some notations and a
review on cohomology of small categories. In Section 3 we analyze the coefficients we use for the
cohomology of presheaves of monoids. Section 4 is dedicated to the notion of derivation of presheaves
of monoids. The main Section 5 includes the definition of the cohomology groups Hn(M, A) and
Hn

s (M, A) and a first study of their properties. In particular, we state here the above mentioned
linking long exact sequences. The following Sections 6 and 7 are dedicated to cochains, cocycles,
and coboundaries. We provide in Section 6 of suitable cochain complexes C•(M, A) and C•s (M, A) for
computing the cohomology groups Hn(M, A) and Hn

s (M, A), and in the brief Section 7 we specify,
for future reference, what low dimensional simple cochains, cocycles, and coboundaries are. Section 8
is mainly devoted to state the classification of extensions of presheaves of monoids by means of the
groups H2

s (M, A), while the long Section 9 is entirely dedicated to show the classification of prestacks
by means of the cohomology groups H3

s (M, A). In the last Section 10, we analyze how our previous
results specialize when we focus on presheaves of groups.

2. Preliminaries on the Cohomology of Small Categories

Let K be a small category. A (left) K-module is a functor A : K→ Ab. The category of K-modules,
with morphisms the natural transformations, is denoted by K-Mod. We make reference to [19] (Chapter
VIII, §3) for formalities but point out that this is an abelian category with sufficiently many projective
and injective objects. For any two K-modules A and A′, the abelian group structure of HomK(A, A′) is
given by pointwise addition. The zero K-module is the constant functor given by the abelian group
0, and a sequence A → A′ → A′′ is exact if and only if it is locally exact, that is, every sequence of
abelian groups A(U)→ A′(U)→ A′′(U), U ∈ ObK, is exact. There is a free K-module functor,

F : Set↓ObK → K-Mod, (9)

from the slice category of sets over the set of objects of K to the category of K-modules. For every
S = (S, π : S 7→ ObK), the free K-module FS assigns to each U ∈ ObK the free abelian group on the
pairs (s, α) where s ∈ S and α ∈ HomK(πs, U). The homomorphism F (β) : F (U)→ F (V), induced
by a morphism β : U → V in K, is defined on generators by FS(β)(s, α) = (s, βα).

Proposition 1. For S = (S, π : S → ObK) any set over ObK and any K-module A, there is a natural
isomorphism of abelian groups

HomK(FS, A) ∼= ∏
s∈S

A(πs) , f 7→
(

fπs(s, 1πs)
)

s∈S. (10)

Proof. This is a straightforward consequence of Yoneda Lemma.

From the above, it is plainly seen that every free K-module is projective.

The cohomology groups of K with coefficients in a K-module A [20,21], denoted Hn(K, A), are
defined by

Hn(K, A) = Extn
K(Z, A). (11)
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Above Z : K→ Ab denotes the constant functor defined by the group of integers.
To exhibit an explicit cochain complex that computes the cohomology groups Hn(K, A), let NK

be the nerve of K. That is, the simplicial set whose p-simplices are sequences

β = (β0
β1→ · · ·

βp→ βp)

of p composable morphisms in K (objects β0 of K if p = 0), and whose face and degeneracy operators

Np+1K
di // NpK

sj // Np+1K

are defined by d0β = β1, d1β = β0, and s0β = 1β0 if p = 0, and for p ≥ 1 by

diβ =


(β2, . . . , βp) if i = 0,
(β1, . . . , βi+1βi, . . . , βp) if 0 < i < p,
(β1, . . . , βp−1) if i = p.

sjβ = (β1, . . . , β j, 1βj, β j+1, . . . , βp).

(12)

There is a canonical “last object” functor from the category of simplices of NK to K, ∆NK→ K,
β 7→ βp. Then, by composing with it, every K-module A defines a system of coefficients on NK [15])
and produces a cosimplicial abelian group, denoted C•(K, A), in which each Cp(K, A) is the abelian
group of those maps ϕ that assign to each p-simplex β ∈ NpK an element ϕ(β) ∈ A(βp). The coface
homomorphisms

di : Cp−1(K, A)→ Cp(K, A)

are given by

di ϕ(β) =

{
ϕ(diβ) if 0 ≤ i < p,

A(βp) ϕ(dpβ) if i = p.
di ϕ(β) =

{
ϕ(diβ) if 0 ≤ i < p,

A(βp) ϕ(dpβ) if i = p.
(13)

The so-called standard cochain complex of K with coefficients in A, also written as C•(K, A), is its
alternating sum faces cochain complex, whose coboundaries are

∂ =
p

∑
i=0

(−1)idi : Cp−1(K, A)→ Cp(K, A). (14)

We have the following (well-known) relevant fact.

Proposition 2. There are natural isomorphisms

Hn(K, A) ∼= HnC•(K, A), n = 0, 1, · · · . (15)

Proof. For each integer p ≥ 0, let π : NpK → ObK be the map given by π(β) = βp, and let Qp

be the free K-module on (NpK, π). Thus, for each U ∈ ObK, Qp(U) is the free abelian group with
generators those β = (β1, . . . , βp+1) ∈ Np+1K such that β(p + 1) = U, and for each arrow α : U → V
in K, the induced Qp(α) : Qp(U)→ Qp(V) is given on generators by Qp(α)(β) = (β1, . . . , βp, αβp+1).
These Qp define an augmented chain complex of projective K-modules,

Q• = Q•(K)
µ→ Z, (16)

whose differential, at any object U of K, ∂ : Qp(U) → Qp−1(U) is given on generators by the usual
boundary formula ∂(β) = ∑

p
i=0(−1)idi(β), and whose augmentation µ : Q0(U) → Z by µ(β) = 1.

Indeed, (16) is a projective resolution of Z since, at any object U of K, the augmented chain complex
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Q•(U)
µ→ Z : · · · → Q2(U)

∂−→ Q1(U)
∂−→ Q0(U)

µ−→ Z→ 0 (17)

has a contracting homotopy Φ, which is given on generators by Φ−1(1) = 1U , and Φp(β) =

(−1)p+1(β1, . . . , βp+1, 1U).
Therefore, for any K-module A, the cohomology groups Hn(K, A) can be computed as those of

the cochain complex HomK(Q•(K), A). As the isomorphisms (10) provide an isomorphism of cochain
complexes HomK(Q•(K), A) ∼= C•(K, A), the result follows.

We will use later the following (also well-known) consequence.

Proposition 3. Assume K has an initial object ∅. Then, for any K-module A,

Hn(K, A) =

{
0 if n > 0,

A(∅) if n = 0.
(18)

Proof. Let ∅U : ∅ → U denote the arrow from ∅ to an object U of K. For any K-module A,
the augmented cochain complex

0→ A(∅)
ε→ C0(K, A)

∂→ C1(K, A)
∂→ C2(K, A)→ · · · , (19)

where the coaugmentation is defined by ε(a)(U) = A(∅U)(a), has a contracting homotopy Φ, which
is defined by Φ−1(ϕ) = ϕ(∅) and, for p ≥ 0, Φp(ϕ)(β0→ · · · → βp) = ϕ(∅→ β0→ · · · → βp).

3. Coefficients for the Cohomology of Presheaves Of Monoids

Let C be a fixed small category. A presheaf of monoids on C is a contravariant functor

M : Cop → Mon (20)

from C into the category of monoids. Thus,M provides a monoidM(U) to each object U of C, and a
homomorphism

M(σ) :M(U)→M(V), denoted by x 7→ xσ, (21)

to each arrow σ : V → U in C. IfM andM′ are presheaves of monoids on C, a morphism f :M→M′

is a natural transformation, so it consists of homomorphisms of monoids f = fU :M(U)→M′(U),
one for each object U of C, such that

f(xσ) = f(x)σ (22)

for any σ : V → U in C and x ∈ M(U). This defines the category Psh(C, Mon) of presheaves of
monoids on C.

The Leech category of factorizations of a monoid M, denoted by D(M), has objects the elements x ∈
M and morphisms (u0, u1) : x → y pairs of elements u0, u1 ∈ M satisfying u0 x u1 = y. Composition
of morphisms in D(M) is given by the formula (u′0, u′1)(u0, u1) = (u′0u0, u1u′1), and the identity of
an object x is the morphism (e, e) : x → x, where e is the identity of the monoid. The construction
M 7→ D(M) defines a functor

D : Mon→ Cat (23)

from the category of monoids to the category of small categories, which acts on monoid
homomorphisms in the natural way. By composing with D, every presheaf of monoidsM defines a
presheaf of categories DM : Cop → Cat. Let

D(M) (24)
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be the category obtained by applying the Grothendieck construction on DM. Its objects are then pairs
(U, x) where U ∈ ObC and x ∈ M(U), and an arrow (σ, v0, v1) : (U, x)→ (V, y), between two such
objects of D(M), consists of an arrow σ : V → U in C together with a pair of elements v0, v1 ∈ M(V)

such that v0 xσv1 = y. The composition in D(M) of two morphisms (σ, v0, v1) : (U, x)→ (V, y) and
(τ, w0, w1) : (V, y)→ (W, z) is defined in the evident way

(τ, w0, w1)(σ, v0, v1) = (στ, w0vτ
0 , vτ

1 w1), (25)

and the identities are (1, e, e) : (U, x) → (U, x), where 1 is the identity arrow of U in C and e is the
identity of the monoidM(U).

Notation 1. Let A : D(M) → Ab be a D(M)-module. For any U ∈ ObC and u, x ∈ M(U), the effect of
the homomorphism

A(1, u, e) : A(U, x)→ A(U, ux) is denoted by a 7→ ua, (26)

and the effect of the homomorphism

A(1, e, u) : A(U, x)→ A(U, xu) is denoted by a 7→ au. (27)

For any morphism σ : V → U in C and any x ∈ M(U), the effect of the homomorphism

A(σ, e, e) : A(U, x)→ A(V, xσ) is denoted by a 7→ aσ. (28)

Thus, for any morphism (σ, v0, v1) : (U, x) → (V, y) in D(M), the image of an a ∈ A(U, x) by
A(σ, v0, v1) : A(U, x)→ A(V, y) writes (v0 aσ) v1 = v0 (aσv1), so that we can omit the parenthesis and
write

A(σ, v0, v1)(a) = v0 aσ v1. (29)

In these terms, we can say that a D(M)-module A consists of the family of abelian groups A(U, x),
U ∈ ObC, x ∈ M(U), together with maps (26), (27) and (28) satisfying the equalities below, whenever
they make sense.

u(a + a′) = ua + ua′, (a + a′)u = au + a′u, (a + a′)σ = aσ + a′σ,

u′(ua) = (u′u)a, (ua)u′ = u(au′), (au)u′ = a(uu′), ea = a = ae,

(uau′)σ = uσaσu′σ, (aσ)τ = aστ , a1 = a.

(30)

Furthermore, a morphism of D(M)-modules F : A → A′ is a family of homomorphisms F =

F(U,x) : A(U, x)→ A′(U, x), U ∈ ObC, x ∈ M(U), such that

F(ua) = uF(a), F(au) = F(a)u, F(aσ) = F(a)σ. (31)

The following proposition justifies why the D(M)-modules naturally arise as coefficients for the
cohomology of a presheaf of monoids on C.

Proposition 4. There is an equivalence

Ab
(
Psh(C, Mon)↓M

)
' D(M)-Mod (32)

between the category of abelian group objects in the slice category of presheaves of monoids on C overM and the
category of D(M)-modules.
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Proof. This can be given paralleling the proof of Theorem 6 in [22] and we omit the details here but
briefly let us stress that the abelian group object corresponding to a D(M)-module A can be written as
E →M, where

- for each U ∈ ObC, E(U) = {(x, a) | x ∈ M(U), a ∈ A(U, x)} with multiplication
(x, a)(y, b) = (xy, x b + a y),

- for each arrow σ : V → U in C, the homomorphism ( )σ : E(U) → E(V) is given by
(x, a)σ = (xσ, aσ),

- for any U ∈ ObC, the homomorphism E(U)→M(U) is the projection (x, a) 7→ x,
- for any object U ∈ ObC, the internal group operation E(U)×M(U) E(U)

+→ E(U) is defined by
(x, a) + (x, b) = (x, a + b).

4. Derivations of Presheaves Of Monoids

Let M be a presheaf of monoids on C. If A is a D(M)-module, a derivation of M in A, d :
M→ A, is a function that assigns to each pair (U, x), where U ∈ ObC and x ∈ M(U), an element
d(U, x) ∈ A(U, x) satisfying

d(U, xy) = x d(U, y) + d(U, x) y, for any object U of C and x, y ∈ M(U), (33)

d(U, x)σ = d(V, xσ), for any morphism σ : V → U of C and x ∈ M(U). (34)

Under pointwise addition, the set of all derivations d :M→ A may be given an abelian group
structure. We denote this abelian group by Der(M, A). Note that for a D(M)-module morphism
F : A → A′ and a derivation d : M → A the “composition” Fd : M → A′, (U, x) 7→ F(d(U, x)),
again is a derivation. With this

Der(M,−) : D(M)-Mod→ Ab, (35)

becomes a functor. Next we prove that this functor is representable. Let

ZM (36)

be the D(M)-module which assigns to each object (U, x) of D(M) the abelian group ZM(U, x) which
is free on the set of pairs (x0, x1) of elements x0, x1 ∈ M(U) such that x0x1 = x, and, for each arrow
σ : V → U and v0, v1 ∈ M(V),

v0 (x0, x1)
σv1 = (v0 xσ

0 , xσ
1 v1). (37)

There is an augmentation morphism over the constant D(M)-module Z

ε : ZM→ Z (38)

which, at each object (U, x) of D(M), is the homomorphism ε : ZM(U, x)→ Z given on generators
by ε(x0, x1) = 1. We call the kernel of µ, denoted by IM, the augmentation ideal ofM. Thus, we have
the short exact sequence of D(M)-modules

0→ IM→ ZM→ Z→ 0. (39)

Notice that each IM(U, x) is the free abelian group on the set of generators{
(x0, x1)− (x, e) | x0, x1 ∈ M(U), x0x1 = x, (x0, x1) 6= (x, e)

}
, (40)

and for each arrow σ : V → U and v0, v1 ∈ M(V),
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v0
(
(x0, x1)− (x, e)

)σv1 =
(
(v0 xσ

0 , xσ
1 v1)− (v0 xσ, v1)

)
(41)

=
(
(v0 xσ

0 , xσ
1 v1)− (v0 xσv1, e)

)
−
(
(v0 xσ, v1)− (v0 xσv1, e)

)
.

Proposition 5. LetM be a presheaf of monoids on C. For any D(M)-module A, there is a natural isomorphism

Der(M, A) ∼= HomD(M)(IM, A). (42)

Proof. There is a derivation δ :M→ IM given, at each U ∈ ObC and x ∈ M(U), by

δ(U, x) = (e, x)− (x, e) (43)

and then a homomorphism HomD(M)(IM, A) → Der(M, A), F 7→ Fδ. In the other direction,
if d :M→ A is any derivation, there is a morphism of D(M)-modules Fd : IM→ A defined by the
homomorphisms

Fd : IM(U, x)→ A(U, x) (U ∈ ObC, x ∈ M(U)) (44)

which act on generators by
Fd
(
(x0, x1)− (x, e)

)
= x0 d(U, x1). (45)

So defined, Fd is actually a morphism of D(M)-modules. In effect, for any arrow σ : V → U in C,
v0, v1 ∈ M(V), and x0, x1 ∈ M(U), we have

Fd

(
v0
(
(x0, x1)− (x0x1, e)

)σ v1

)
(41)
= v0 xσ

0 d(V, xσ
1 v1)− v0 (x0x1)

σd(V, v1)

= v0 xσ
0 xσ

1 d(V, v1) + v0 xσ
0 d(V, xσ

1 ) v1 − v0 xσ
0 xσ

1 d(V, v1)

= v0 xσ
0 d(V, x1)

σ v1 = v0

(
Fd
(
(x0, x1)− (x, e)

))σ
v1.

A quite straightforward verification shows that both maps F 7→ Fδ and d 7→ Fd are mutually
inverse. For instance, FFδ = F since, for any U ∈ ObC and x0, x1 ∈ M(U),

FFδ

(
(x0, x1)− (x0x1, e)

)
= x0 Fδ(U, x1) = x0F

(
(e, x1)− (x1, e)

)
= F

(
x0(e, x1)− x0(x1, e)

)
= F

(
(x0, x1)− (x0x1, e)

)
.

5. Cohomologies for Presheaves Of Monoids

LetM be a presheaf of monoids on C. For any D(M)-module A and each integer n ≥ 0, we define
the n-th cohomology group ofM with coefficients in A by Hn(M, A) = Hn(D(M), A), that is,

Hn(M, A) = Extn
D(M)(Z, A). (46)

Also, for each n ≥ 1, we define the n-th simple cohomology group ofM with coefficients in a A by

Hn
s (M, A) = Rn−1Der(M,−)(A), (47)

where Rn−1Der(M.−) is the (n− 1)-th right derived functor of the left-exact functor of derivations (35)
or, equivalently, by Proposition 5, as

Hn
s (M, A) = Extn−1

D(M)
(IM, A) (48)
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(we refer the reader to Section 6, to justify the above terminology of “simple,” which is taken from
Gersterhaber and Schack [7]).

Example 1. Let Γ be a monoid, regarded as a small category with only one object, say ∗, in which the arrows are
the elements of Γ and the composition of two of them ∗ x→ ∗ y→ ∗ is given by the monoid multiplication ∗ xy→ ∗,
and the identity is e : ∗ → ∗. Then, a presheaf of monoidsM on Γ is the same thing as a monoid enriched with a
left Γ-action by endomorphisms, and the corresponding simple cohomology groups Hn

s (M, A) above are just the
equivariant cohomology groups of the Γ-monoidM introduced and studied recently in [23]. When both Γ and
M are groups, the cohomology groups Hn

s (M, A) agree with those Hn
n−1(Γ,M; A) introduced by Whitehead

in [17] on the cohomology of groups with operators, while the cohomology groups Hn(M, A) above agree with
the ordinary Eilenberg-Mac Lane cohomology groups Hn(Mo Γ, A) of the semidirect product group.

Example 2. If C = ∗, the final category, then a presheaf of monoids M on C is simply a monoid and the
Hn(M, A) above are just the cohomology groups of the monoid by Leech [3,4]. Furthermore, in this case, ZM
is a projective D(M)-module, as it is free on the inclusion map e = {e} →M = ObD(M), whence there are
natural isomorphisms

Hn(M, A) = Extn
D(M)(Z, A) ∼= Extn−1

D(M)
(IM, A) = Hn

s (M, A) (49)

for all n ≥ 2.

But notice that in general the cohomology groups Hn are different of the simple ones Hn
s , as the

following example shows.

Example 3. let e be the constant presheaf on a small category C defined by the trivial monoid. Then, D(e) ∼= Cop

and, for any Cop-module A, we have Hn(e, A) = Hn(Cop, A), whereas Hn
s (e, A) = 0 as Der(e,−) = 0. Let,

for instance, C = Ck be the finite cyclic group of order k (regarded as a category with only one object). Then
D(e) = Ck and, for the trivial Ck-module Z, we have H2(e,Z) = H2(Ck,Z) = Z/kZ, while H2

s (e,Z) = 0.

The following property is naturally expected for the simple cohomology groups Hn
s (M, A) but it

is not satisfied by the cohomology groups Hn(M, A). Recall that the free presheaf of monoids on a set S
endowed with a map π : S→ ObC is defined to be

ä
s∈S

FHomC(−, πs) : Cop → Mon, (50)

where, for any set X, FX denotes the free monoid on X. For instance, the free presheaf on the empty
set is e, the constant presheaf on C defined by the trivial monoid e. As we showed in Example 3 above,
the cohomology groups of the free presheaf e are the same as the cohomology groups of the category
Cop which, obviously, do not vanish in general. However, for the simple cohomology groups, we have
the following.

Proposition 6. IfM is a free presheaf of monoids on C, then Hn
s (M,−) = 0 for n ≥ 2.

Proof. IfM is free on (S, π), for every D(M)-module A, we have an isomorphism

Der(M, A) ∼= ∏
s∈S

A
(
πs, (s, 1πs)

)
, d 7→

(
d
(
πs, (s, 1πs)

))
s∈S

. (51)

From this observation, it is easy to see that the functor Der(M,−) : D(M)-Mod→ Ab is right exact,
whence its right derived functors Hn+1

s (M,−) = RnDer(M,−) vanish for all n ≥ 1.
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IfM is a presheaf of monoids on C, for any D(M)-module A let

A(e) : Cop → Ab (52)

denote the presheaf of abelian groups on C (= Cop-module) which assigns to any U ∈ ObC the abelian
group A(U, e), and to any morphism σ : V → U of C the homomorphism (28)

A(U, e)→ A(V, e), a 7→ aσ. (53)

As we shall establish below, in Theorem 1, there is a natural long exact sequence linking the
cohomology groups Hn

s (M, A), Hn(M, A), and Hn(Cop, A). The proof is based on the following
auxiliary result. Recall the D(M)-module ZM constructed in Section 4.

Lemma 1. LetM be a presheaf of monoids on C. For any D(M)-module A, there are natural isomorphisms

Extn
D(M)(ZM, A) ∼= Hn(Cop, A(e)) (n ≥ 0). (54)

Proof. Below, we represent the p-simplices β of NCop as sequences β = (β0
β1← · · ·

βp← βp) of p
composable arrows in C.

For each integer p ≥ 0, let the set NpCop of p-simplices of the nerve of the category Cop be
endowed with the map π : Np(Cop) → ObD(M) given by π(β) = (βp, e), and let Qp denote the
free D(M)-module on (Np(Cop), π). Then, for each (U, x) ∈ ObD(M), Qp(U, x) is the free abelian
group with generators the triples (β; x0, x1) where β ∈ Np+1Cop and x0, x1 ∈ M(U) satisfy that
β(p + 1) = U and x0x1 = x. If (σ, v0, v1) : (U, x) → (V, y) is an arrow in D(M), the induced
homomorphism Qp(U, x)→ Qp(V, y) acts on generators by (recall notation (29))

v0 (β; x0, x1)
σ v1 = (β1, . . . , βp, βp+1 σ; v0 xσ

0 , xσ
1 v1). (55)

These Qp form an augmented complex of D(M)-modules

Q• → ZM : · · · → Q2
∂→ Q1

∂→ Q0
µ→ ZM, (56)

whose differential operators, at an object (U, x) of D(M), ∂ : Qp(U, x)→ Qp−1(U, x), are defined on
generators by ∂(β; x0, x1) = ∑

p
i=0(−1)i(diβ; x0, x1), and the augmentation µ : Q0(U, x)→ ZM(U, x)

by µ(β; x0, x1) = (x0, x1).
Every Qp is free, and therefore projective. Furthermore, Q• → ZM→ 0 is exact owing to, at any

object (U, x) of D(M), the augmented chain complex Q•(U, x) → ZM(U, x) has a contracting
homotopy Φ, which is given by the homomorphisms defined on generators by Φ−1(x0, x1) =

(1U , x0, x1) and, for p ≥ 0, Φp(β1, . . . , βp+1; x0, x1) = (β1, . . . , βp+1, 1U ; x0, x1). It follows that, for any
D(M)-module A, there are natural isomorphisms Extn

D(M)(ZM, A) ∼= HnHomD(M)(Q•, A). Now,
we have the isomorphisms of abelian groups

HomD(M)(Qp, A)
(10)∼= ∏

β∈NpCop
A(βp, e) = Cp(Cop, A(e)) (57)

which provide an isomorphism HomD(M)(Q•, A) ∼= C•(Cop, A(e)), whence the result follows from
Proposition 2.
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Theorem 1 (The linking long exact sequences). Let M be a presheaf of monoids on C. For any
D(M)-module A, there is a natural long exact sequence

0→ H0(M, A)→ H0(Cop, A(e))→ H1
s (M, A)→ H1(M, A)→ H1(Cop, A(e))→ · · ·

· · · → Hn(M, A)→ Hn(Cop, A(e))→ Hn+1
s (M, A)→ Hn+1(M, A)→ · · ·

Proof. The short exact sequence of D(M)-modules IM ↪→ ZM � Z, see (39), induces the long
exact sequence

· · · → Extn
D(M)(Z, A)→ Extn

D(M)(ZM, A)→ Extn
D(M)(IM, A)→ Extn+1

D(M)
(Z, A)→ · · · (58)

Since Extn
D(M)(Z, A) = Hn(M, A), by (46), Extn

D(M)(ZM, A) ∼= Hn(Cop, A(e)), by Lemma 1,

and Extn
D(M)(IM, A) = Hn+1

s (M, A), by (48), the claimed exact sequence follows.

Corollary 1. If C has a final object, then for any a presheaf of monoidsM on C and any D(M)-module A
there are natural isomorphisms

Hn
s (M, A) ∼= Hn(M, A) (n ≥ 2). (59)

Proof. This follows from the long exact sequence in Theorem 1 and Proposition 3.

6. Cochains, Cocycles, Coboundaries

In this section we provide suitable cochain complexes for computing the cohomologies of
presheaves of monoids.

Below we regard each monoid Γ as a small category with only one object, as in Example 1.
Then, the simplicial set NΓ is just its classifying space, that is, the reduced simplicial set whose

p-simplices τ = (∗ τ1→ · · ·
τp→ ∗) = (τ1, . . . , τp) are the elements of Γp.

Let M be a presheaf of monoids on C. By composing with the nerve functor, it gives rise
to a presheaf of simplicial sets NM : Cop → SSet. Let Ψ(M) denote the simplicial replacement
construction by Bousfield-Kan [14] on NM; that is, the bisimplicial set whose set of (p, q)-bisimplices is

Ψp,q(M) = ä
β∈NpCop

NqM(β0). (60)

Here, we represent the p-simplices β of NCop as sequences

β = (β0
β1← · · ·

βp← βp)

of p composable arrows in C (objects β0 of C if p = 0). The vertical face and degeneracy operators are
defined by those of the simplicial sets NM(β0), and the horizontal face operators by those of NCop,
except that dh

0 : Ψp,q(M)→ Ψp−1,q(M) is defined by dh
0(β; τ) = (d0β, τβ1).

There is a canonical functor ∆2Ψ(M) → D(M), from the category of bisimplices of Ψ(M) to
D(M), (β, τ) 7→ (βp, (τ1 · · · τq)

β1···βp). Then, by composition with it, every D(M)-module A defines
a system of coefficients on Ψ(M) and gives rise to a bicosimplicial abelian group, denoted

C•,•(M, A), (61)

in which each Cp,q(M, A) is the abelian group of all functions ϕ that assign to each (p, q)-bisimplex
(β, τ) ∈ Ψp,q(M) an element

ϕ(β, τ) ∈ A
(

βp, (τ1 · · · τq)
β1···βp

)
(∈ A(βp, e) if q = 0). (62)
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The horizontal and vertical coface homomorphisms

Cp−1,q(M, A)
di

h // Cp,q(M, A) Cp,q−1(M, A)
dj

voo (63)

are respectively given by

di
h ϕ(β, τ) =


ϕ(d0β, τβ1) if i = 0,

ϕ(diβ, τ) if 0 < i < p,

ϕ(dpβ, τ)βp if i = p,

(64)

dj
v ϕ(β, τ) =


τ

β1···βp
1 ϕ(β, d0τ) if j = 0,

ϕ(β, djτ) if 0 < j < q,

ϕ(β, dqτ) τ
β1···βp
q if j = q.

(65)

Let also write C•,•(M, A) for its alternating faces sum cochain bicomplex, whose horizontal and
vertical coboundaries are

∂h =
p

∑
i=0

(−1)idi
h : Cp−1,q(M, A)→ Cp,q(M, A), (66)

∂v = (−1)p
q

∑
j=0

(−1)jdj
v : Cp,q−1(M, A)→ Cp,q(M, A). (67)

Definition 1. LetM be a presheaf of monoids on C. We define the complex of cochains ofM with coefficients in
a D(M)-module A as C•(M, A) = TotC•,•(M, A), the total cochain complex of the bicomplex C•,•(M, A).
That is, C•(M, A) is given by

Cn(M, A) =
⊕

p+q=n
Cp,q(M, A), ∂ = ∂h + ∂v : Cn−1(M, A)→ Cn(M, A). (68)

Notice that the homotopy colimit of NM is the simplicial set diagonal of Ψ(M):

hocolim NM = diagΨ(M). (69)

Then, every D(M)-module A defines a coefficient system on hocolim NM and the corresponding
cohomology groups are justly calculated as

Hn(hocolim NM, A) = HnC•(hocolim NM, A), (70)

where C•(hocolim NM, A) is the alternating faces sum cochain complex of the diagonal cosimplicial
abelian group diagC•,•(M, A); that is,

Cn(hocolim NM, A) = Cn,n(M, A), ∂ =
n

∑
i=0

(−1)idi
hdi

v : Cn−1,n−1(M, A)→ Cn,n(M, A). (71)

Proposition 7. LetM be a presheaf of monoids on C. For any D(M)-module A, there are natural isomorphisms

HnC•(M, A) ∼= Hn(hocolim NM, A). (72)

Proof. This is a direct application of the generalized Eilenberg-Zilber theorem of Dold-Puppe (see,
e.g., Reference [24] (Chapter IV, Theorem 2.4), which shows that both cochain complexes C•(M, A)

and C•(hocolimNM, A) are cohomology equivalent in a natural way.
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A subcomplex of C•(M, A) plays an important role in our development. Following
Gerstenhaber-Schack [7], we establish the following

Definition 2. LetM be a presheaf of monoids. If A is a D(M)-module, we say that a n-cochain ϕ ∈ Cn(M, A)

is simple if ϕ(β, ∗) = 0 for every β ∈ NnCop, that is, if ϕ |Ψn,0
= 0. We denote the subcomplex of simple

cochains of C•(M, A) by
C•s (M, A), (73)

so that C0
s (M, A) = 0 and, for n ≥ 1,

Cn
s (M, A) =

⊕
p +q = n
q ≥ 1

Cp,q(M, A) =
⊕

p+q=n−1

Cp,q+1(M, A). (74)

Theorem 2. LetM be a presheaf of monoids on C. For any D(M)-module A there are natural isomorphisms

Hn
s (M, A) ∼= HnC•s (M, A), n ≥ 1, (75)

Hn(M, A) ∼= HnC•(M, A), n ≥ 0. (76)

Proof. To start, we construct a bisimplicial D(M)-module Q•,• and a simplicial D(M)-module B•,
as follows.

In Q•,•, each Qp,q is the free D(M)-module on the set Ψp,q(M), endowed with the map
π : Ψp,q(M)→ ObD(M) given by

π(β, τ) = (βp, (τ1 · · · τq)
β1···βp) ((βp, e) if q = 0). (77)

Thus, for each object (U, x) of D(M), Qp,q(U, x) is the free abelian group with generators
the quadruplets (β; τ; u0, u1) with β ∈ Np+1Cop, τ ∈ NqM(β0), and u0, u1 ∈ M(U), such that
β(p + 1) = U and

u0 (τ1 · · · τq)
β1···βp+1 u1 = x. (78)

If (α, v0, v1) : (U, x) → (V, y) is an arrow in D(M), the induced homomorphism Qp,q(U, x) →
Qp,q(V, y) acts on generators by (recall notation (29))

v0 (β; τ; u0, u1)
α v1 = (β1, . . . , βp, βp+1α; τ; v0uα

0 , uα
1v1). (79)

The horizontal and vertical face morphisms at an object (U, x) of D(M),

Qp−1,q(U) Qp,q(U)
dh

ioo
dv

j // Qp,q−1(U), (80)

are defined on generators by

dh
i (β; τ; u0, u1) =

{
(d0β, τβ1 ; u0, u1) if i = 0,

(diβ, τ; u0, u1) if 0 < i ≤ p,

dv
j (β; τ; u0, u1) =


(β; d0τ; u0 τ

β1···βp+1
1 , u1) if j = 0,

(β; djτ; u0, u1) if 0 < j < q,

(β; dqτ; u0, τ
β1 ...βp+1
q u1) if j = q.

(81)

In B•, each D(M)-module Bq assigns to an object (U, x) of D(M) the free abelian group Bq(U, x)
whose generators are those τ ∈ Nq+2M(U) such that τ1 · · · τq+2 = x. If (α, v0, v1) : (U, x)→ (V, y) is
an arrow in D(M), then
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v0 ταv1 = (v0 τα
1 , τα

2 , . . . , τα
q+1, τα

q+2 v1). (82)

At any (U, x), the face homomorphisms dj : Bq(U, x) → Bq−1(U, x), 0 ≤ j ≤ q, are induced by
the face maps dj+1 : Nq+2M(U)→ Nq+1M(U); that is, on generators,

dj(τ) = (τ1, . . . , τj+1τj+2, . . . , τq+2). (83)

Let us point out that, regarding B• as a constant in the horizontal direction bisimplicial
D(M)-module, a bisimplicial augmentation

µ : Q•,• → B• (84)

is determined by the morphisms µ : Q0,q → Bq which, at each object (U, x) of D(M), consist of the
homomorphisms µ : Q0,q(U, x)→ Bq(U, x) defined on generators by

µ(β; τ; u0, u1) = (u0, τ
β1
1 , . . . , τ

β1
q , u1). (85)

Now, let also write Q•,• for its associated alternating faces sum chain bicomplex, in which the
horizontal and vertical boundaries are

∂h
p,q =

p

∑
i=0

(−1)idh
i : Qp,q → Qp−1,q, ∂v

p,q = (−1)p
q

∑
j=0

(−1)jdv
j : Qp,q → Qp,q−1, (86)

and let TotQ•,• be its total complex. Thus,

TotnQ•,• =
⊕

p+q=n
Qp,q, ∂ = ∂h + ∂v : TotnQ•,• → Totn−1Q•,•. (87)

Hence, if we denote also by B• to its associated alternating faces sum chain complex, in which the
boundaries are ∂q = ∑

q
j=0(−1)jdj : Bq → Bq−1, we have an augmented morphism of chain bicomplexes

of D(M)-modules µ : Q•,• → B•, were B• is here view as bicomplex concentrated in degree zero in
the horizontal direction, which, we claim, induces a homology equivalence between the associated
total complexes Tot Q•,• → Tot B• = B•, and therefore natural isomorphisms

HnTot Q•,• ∼= HnB•, n ≥ 0. (88)

In effect, it suffices to prove that, for any q ≥ 0, the augmented chain complex of D(M)-modules

Q•,q
µ→ Bq → 0 is exact. But this holds since, at any object (U, x) of D(M), the augmented chain

complex of abelian groups

· · · ∂h
→ Q2,q(U, x) ∂h

→ Q1,q(U, x) ∂h
→ Q0,q(U, x)

µ→ Bq(U, x)→ 0 (89)

admits a contraction Φ, which is given by the homomorphisms defined on generators by{
Φ−1(τ) = (1U ; τ2, . . . , τq+1; τ1, τq+2),

Φp(β; τ; u0, u1) = (−1)p+1(β1, . . . , βp+1, 1U ; τ; u0, u1), p ≥ 0.
(90)

Let us now compute the homology of the complex B•: There is an augmentation over the constant
D(M)-module Z, ε : B• → Z, given by the morphism of D(M)-modules ε : B0 → Z which, at any
object (U, x) of D(M), consists of the homomorphism ε : B0(U, x) → Z defined on generators by
ε(τ) = 1. The resulting augmented complex B• → Z→ 0 is exact due to, for any object (U, x) ∈ D(M),
the augmented chain complex



Mathematics 2020, 8, 116 16 of 35

· · · ∂→ B2(U, x) ∂→ B1(U, x) ∂→ B0(U, x) ε→ Z→ 0 (91)

has a contracting homotopy defined by the homomorphisms Ψq, which act on generators by{
Ψ−1(1) = (x, e),

Ψq(τ) = (τ1, . . . , τq+2, e), q ≥ 0.
(92)

Therefore, H0B• ∼= Z and HqB• = 0 for all q ≥ 1.
It follows that H0Tot Q•,• ∼= Z and HnTot Q•,• = 0 for all n ≥ 1. Since, at every degree

n ≥ 0, TotnQ•,• =
⊕

p+q=n Qp,q is a projective D(M)-module, we conclude that Tot Q•,• is actually a
projective resolution of the constant D(M)-module Z. Therefore, for any D(M)-module A, there are
natural isomorphisms

Hn(M, A) = Extn
D(M)(Z, A) ∼= HnHomD(M)

(
Tot Q•,•, A

)
. (93)

Now, there are isomorphisms

HomD(M)(Qp,q, A)
(10)∼= Cp,q(M, A) (94)

which, as a direct and straightforward verification shows, provide a natural isomorphism of cochain
complexes HomD(M)

(
Tot Q•,•, A

) ∼= TotC•,•(M, A) = C•(M, A). Thus, we conclude the claimed
isomorphisms (76), namely

Hn(M, A) ∼= HnC•(M, A). (95)

To show the remaining isomorphisms (75), let Q̂•,• be the chain bicomplex of D(M)-modules
obtained from Q•,• by taking Q̂p,q = Qp,q+1, with coboundaries ∂̂h

p,q = ∂h
p,q+1 and ∂̂v

p,q = ∂v
p,q+1, let also

B̂• be the chain complex constructed from B• by taking B̂q = Bq+1 and coboundary ∂̂q = ∂q+1, and let
µ̂ : Q̂•,• → B̂• be the augmentation obtained from µ by taking µ̂q = µq+1. Then, as every augmented
chain complex µ̂ : Q̂•,q → B̂q → 0 is exact, there are induced natural isomorphisms HnTotQ̂•,• ∼= Hn B̂•.
Now, for q ≥ 1, we have Hq(B̂•) = Hq+1(B•) = 0. To compute H0(B̂•), notice that B0 = ZM and that

the morphism ε : B0 → Z above is just the augmentation ε : ZM→ Z in (38). Then, as B•
ε→ Z→ 0

is exact,

H0(B̂•) = Coker(B2
∂→ B1) = Ker(B0

ε→ Z) (39)
= IM, (96)

the augmentation ideal ofM. It follows that H0TotQ̂•,• ∼= IM and, for n ≥ 1, HnTotQ̂•,• = 0, whence
we can conclude that TotQ̂•,• is a projective resolution of IM. Therefore, for any D(M)-module A
and n ≥ 1, there are natural isomorphisms

Hn
s (M, A) = Extn−1

D(M)
(IM, A) ∼= Hn−1HomD(M)(Tot Q̂•,•, A). (97)

Finally, as we have the isomorphisms

HomD(M)(Totn−1 Q̂•,•, A) =
⊕

p+q=n−1

HomD(M)(Q̂p,q, A) =
⊕

p+q=n−1

HomD(M)(Qp,q+1, A)

(94)∼=
⊕

p+q=n−1

Cp,q+1(M, A)
(74)
= Cn

s (M, A),

which are compatible with the coboundaries (recall that C0
s (M, A) = 0), we conclude the claimed

isomorphisms Hn
s (M, A) ∼= HnC•s (M, A).
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Corollary 2. If C has a final object, for any presheaf of monoidsM on C and any D(M)-module A, there are
natural isomorphisms

Hn
s (M, A) ∼= Hn(hocolim NM, A) (n ≥ 2). (98)

7. Low Dimensional Simple Cochains, Cocycles And Coboundaries

In the rest of the paper we will only use the simple cohomology groups Hn
s (M, A) for n ≤ 3.

Therefore, for future reference we specify below the relevant truncated subcomplex of the complex
C•s (M, A), namely

0→ C1
s (M, A)

∂→ C2
s (M, A)

∂→ C3
s (M, A)

∂→ C4
s (M, A) (99)

where:

� A 1-cochain f ∈ C1
s (M, A) is a map assigning an element

f (U; x) ∈ A(U, x), to every U ∈ ObC and x ∈ M(U). (100)

� A 2-cochain g ∈ C2
s (M, A) is a function assigning elements{

g(U; x, y) ∈ A(U, xy), to each U ∈ ObC and x, y ∈ M(U),

g(α; x) ∈ A(U1, xα), to every arrow U0
α← U1 of C and x ∈ M(U0).

(101)

� The coboundary ∂ : C1
s (M, A)→ C2

s (M, A) acts on an 1-cochain f by

(∂ f )(U; x, y) = x f (U; y)− f (U; xy) + f (U; x)y, (102)

(∂ f )(α; x) = f (U1; xα)− f (U0; x)α. (103)

� A 3-cochain h ∈ C3
s (M, A) is a function assigning elements

h(U; x, y, z) ∈ A(U, xyz), to every U ∈ ObC and x, y, z ∈ M(U),

h(α; x, y) ∈ A(U1, xαyα), to every arrow U0
α← U1 of C and x, y ∈ M(U0),

h(α, β; x) ∈ A(U2, xαβ), to each arrows U0
α← U1

β← U2 of C and x ∈ M(U0).

(104)

� The coboundary ∂ : C2
s (M, A)→ C3

s (M, A) acts on a 2-cochain g by

(∂g)(U; x, y, z) = x g(U; y, z)− g(U; xy, z) + g(U; x, yz)− g(U; x, y) z, (105)

(∂g)(α; x, y) = g(U1; xα, yα)− g(U0; x, y)α − xαg(α; y) + g(α; xy)− g(α; x) yα, (106)

(∂g)(α, β; x) = g(β; xα)− g(αβ; x) + g(α; x)β. (107)

� A 4-cochain ϕ ∈ C4
s (M, A) is a function assigning elements

ϕ(U; x, y, z, t) ∈ A(U, xyzt), to each U ∈ ObC and x, y, z, t ∈ M(U),

ϕ(α; x, y, z) ∈ A(U1, xαyαzα), to every arrow U0
α← U1 of C and x, y, z ∈ M(U0),

ϕ(α, β; x, y) ∈ A(U2, xαβyαβ), to each arrows U0
α← U1

β← U2 of C and x, y ∈ M(U0).

ϕ(α, β, γ; x) ∈ A(U3, xαβγ), to each arrows U0
α← U1

β← U2
γ← U3 of C and x ∈ M(U0).

(108)
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� The coboundary ∂ : C3
s (M, A)→ C4

s (M, A) acts on a 3-cochain h by

(∂h)(U; x, y, z, t) = x h(U; y, z, t)− h(U; xy, z, t) + h(U; x, yz, t)− h(U; x, y, zt) (109)

+ h(U; x, y, z) t,

(∂h)(α; x, y, z) = h(U1; xα, yα, zα)− h(U0; x, y, z)α − xαh(α; y, z) + h(α; xy, z) (110)

− h(α; x, yz) + h(α; x, y)zα,

(∂h)(α, β; x, y) = h(β; xα, yα)− h(αβ; x, y) + h(α; x, y)β + xαβh(α, β; y) (111)

− h(α, β; xy) + h(α, β; x) yαβ,

(∂h)(α, β, γ; x) = h(β, γ; xα)− h(αβ, γ; x) + h(α, βγ; x)− h(α, β; x)γ. (112)

As usually, we write Zn
s (M, A) and Bn

s (M, A) for the respective groups of n-cocycles and
n-coboundaries of the cochain complex C•s (M, A), and refer to them as the abelian groups of simple
n-cocycles and simple n-coboundaries of the presheaf of monoidsM with coefficients in the D(M)-module
A, respectively.

A direct comparison shows that simple 1-cocycles are the same as derivations, that is

Z1
s (M, A) = Der(M, A). (113)

In the next sections we give natural interpretations to simple 2- and 3-cocycles.

8. Extensions of Presheaves Of Monoids

If M is a presheaf of monoids on C, by an extension (or coextension) of M we shall mean a
morphism of presheaves of monoids f : E → M which is locally surjective, that is, for any U ∈ ObC,
the homomorphism fU : E(U) → M(U) is surjective. If A is a D(M)-module, an extension Ē =

(E , f,+) ofM by A is an extension f : E → M ofM endowed, for each U ∈ ObC and x ∈ M(U),
with a simply-transitive action

+ : A(U, x)× f−1
U (x)→ f−1

U (x), (a, w) 7→ a + w, (114)

of the group A(U, x) on the fibre f−1
U (x) ⊆ E(U) of fU : E(U)→M(U) at x, such that the following

two conditions hold:

(i) for any object U of C, ω ∈ f−1
U (x), ω′ ∈ f−1

U (x′), a ∈ A(U, x), and a′ ∈ A(U, x′),

(a + w)(a′ + w′) = a x′ + x a′ + ww′, (115)

(ii) for any arrow σ : V → U of C, ω ∈ f−1
U (x), and a ∈ A(U, x),

(a + w)σ = aσ + wσ. (116)

Two such extensions of M by A, say Ē and Ē ′, are equivalent if there is an isomorphism of
presheaves of monoids g : E ∼= E ′ such that f′g = f and gU(a + w) = a + gU(w), for any U ∈ ObC,
w ∈ E(U) and a ∈ A(U, fU(w)). Let

Ext(M, A) (117)

denote the set of equivalence classes [Ē ] of extensions Ē ofM by A.
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The classification result we show in Theorem 3 below, for extensions of a presheaf of monoids
M by D(M)-modules, is useful to analyze the structure ofH-extensions ofM with abelian kernel, that
is, extensions f : E → M such that, for every object U of C, the congruence kernel of the surjective
homomorphism fU : E(U)→M(U) is included in the Green’s relationH of E(U) and, for any element
x ∈ M(U), the (left) Schützenberger group of the kernel class f−1

U (x) is abelian. The results by Grillet
in [18] and, mainly, by Leech in References [3,4] on group extensions of monoids lie behind the content
of the next proposition, where by a D(M)-module we mean a D(M)-module A which restricts to a
D(M(U))-module [3] for every object U of C, that is, such that for any x, u0, u1, u′0, u′1 ∈ M(U) with
u0x = u′0x and xu1 = xu′1, the equality u0 a u1 = u′0 a u′1 holds for all a ∈ A(U, x).

Proposition 8. LetM be a presheaf of monoids on C.

(i) AnyH-extension ofM with abelian kernel is an extension ofM by a D(M)-module.
(ii) If, for any object U of C, the monoidM(U) is regular, then every extension ofM by a D(M)-module is

anH-extension ofM with abelian kernel.

Proof. (i) Suppose f : E →M is anH-extension ofM with abelian kernel. Let us recall that, for each
U ∈ ObC and x ∈ M(U), the kernel group Σ(U, x) of fU at x, is the quotient of the submonoid
{a ∈ E(U) | fU(a) x = x} ⊆ E(U) by the congruence in which a ≡ a′ if a ωx = a′ ωx for some
(then, for any) ωx ∈ f−1

U (x). By [3] (Lemma 2.4) or [4] (Chapter V, Lemma 1.7), there is a canonical
simply-transitive left action

+ : Σ(U, x)× f−1
U (x)→ f−1

U (x), ([a], ωx) 7→ [a] + ωx = a ωx. (118)

By [3] (Lemma 2.28) or [4] (Chapter V, Theorem 1.15), the assignment (U, x) 7→ Σ(U, x), for each
U ∈ ObC and x ∈ M(U), is the correspondence on objects of a D(M)-module Σ (the kernel of f),
which applies a morphism (σ, v, v′) : (U, x) → (V, y) in D(M) to the homomorphism Σ(U, x) →
Σ(V, y) that carries each [a] ∈ Σ(U, x) to the element v [a]σv′ ∈ Σ(V, y) satisfying

v [a]σv′ + ωvωσ
x ωv′ = ωv aσωσ

x ωv′ (119)

for some (and then by any) ωx ∈ f−1
U (x), ωv ∈ f−1

V (v), and ωx ∈ f−1
U (x).

The extension f : E →M is recognized to be an extension ofM by the its D(M)-module kernel
Σ thanks to the simply-transitive actions (118).

(ii) At any object U of C, every extension ofM by a D(M)-module is an extension of the regular
monoidM(U) by an D(M(U))-module. Hence, the result follows from Leech’s Theorems 3.9 and
5.18 in Reference [3].

Theorem 3. LetM be a presheaf of monoids on C. For any D(M)-module A there is a natural bijection

Ext(M, A) ∼= H2
s (M, A). (120)

Proof. This falls naturally into three parts.
1. The natural a map F : Ext(M, A) → H2(M, A). Let Ē = (E , f,+) be an extension ofM by A.

For each object U of C, the homomorphism fU : E(U) �M(U) is surjective, so we can choose a family
of section maps S = (SU :M(U) → E(U)), one for each U ∈ ObC, such that fUSU = idM(U). Then,
a 2-cocycle

g = gĒ ,S
∈ Z2

s (M, A) (121)

is defined as follows:
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- for any object U of C and x, y ∈ M(U), let g(U; x, y) be the element of A(U, xy) determined by
the equation

SU(xy) = g(U; x, y) + SU(x) SU(y). (122)

- for each arrow U0
α← U1 of C and x ∈ M(U0), let g(α; x) be the element of A(U1, xα) determined

by the equation
(SU0(x))α = g(α; x) + SU1(xα). (123)

To verify the cocycle condition (∂g)(U; x, y, z) = 0, see (105), we see that

SU((xy)z)
(122)
= g(U; xy, z) + SU(xy)SU(z)

(122)
= g(U; xy, z) +

(
g(U; x, y) + SU(x)SU(y)

)
SU(z)

(115)
= g(U; xy, z) + g(U; x, y) z + SU(x)SU(y)SU(z),

SU(x(yz))
(122)
= g(U; x, yz) + SU(x)SU(yz)

(122)
= g(U; x, yz) + SU(x)

(
g(U; y, z) + SU(y)SU(z)

)
(115)
= g(U; x, yz) + x g(U; y, z) + SU(x)SU(y)SU(z),

and by comparison the result follows. Analogously, the cocycle condition (∂g)(α; x, y) = 0, see (106),
follows from the equality xαyα = (xy)α, since

SU1

(
(xy)α

) (123)
= −g(α; xy) + (SU0(xy))α (123)

= −g(α; xy) +
(

g(U0; x, y) + SU0(x)SU0(y)
)α

(116)
= −g(α; xy) + g(U0; x, y)α + (SU0(x))α(SU0(y))

α

(123)
= −g(α; xy) + g(U0; x, y)α +

(
g(α; x) + SU1(xα)

)(
g(α; y) + SU1(y

α)
)

(115)
= −g(α; xy) + g(U0; x, y)α + g(α; x) yα + xα g(α : y) + SU1(xα)SU1(y

α),

SU1(xαyα)
(122)
= g(U1; xα, yα) + SU1(xα)SU1(y

α),

while the cocycle condition (∂g)(α, β; x) = 0, see (107), follows from the equality xαβ = (xα)β:

SU2

(
(xα)β

) (123)
= −g(β; xα) + (SU1(xα))β (123)

= −g(β; xα) +
(
− g(α; x) + (SU0(x))α

)β

(116)
= −g(β; xα)− g(α; x)β + (SU0(x))αβ,

SU2(xαβ)
(123)
= −g(αβ; x) + (SU0(x))αβ.

The cohomology class [gĒ ,S
] ∈ H2(M, A) does not depend on the choice of the sections maps SU :

M(U) → E(U): Suppose maps S′U :M(U) → E(U), one for each U ∈ Ob(C), with fUS′U = idM(U).
Then, let f ∈ C1(M, A) be the 1-cochain where, for any U ∈ ObC and any x ∈ M(U), the element
f (U; x) ∈ A(U, x) is determined by the equation f (U; x) + S′U(x) = SU(x). For any x, y ∈ M(U),
if we compute SU(xy) ∈ E(U) in the following two ways

SU(xy)
(122)
= gĒ ,S

(U; x, y) + SU(x)SU(y)
= gĒ ,S

(U; x, y) +
(

f (U; x) + S′U(x)
)(

f (U; y) + S′U(y)
)

(115)
= gĒ ,S

(U; x, y) + f (U; x) y + x f (U; y) + S′U(x)S′U(y),

SU(xy) = f (U; xy) + S′U(xy)
(122)
= f (U; xy) + gĒ ,S′ (U; x, y) + S′U(x)S′U(y),
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it follows, by comparison, that gĒ ,S′ (U; x, y) = (gĒ ,S
+ ∂ f )(U; x, y), see (102). Similarly, for any arrow

α : U1 → U0 in C and any x ∈ M(U0), we can compute (SU0(x))α ∈ E(U1) in two ways

(SU0(x))α (116)
= gĒ ,S

(α; x) + SU1(xα) = gĒ ,S
(α; x) + f (U1; xα) + S′U1

(xα),

(SU0(x))α = ( f (U0; x) + S′U0
(x))α (116)

= f (U0; x)α + (S′U0
(x))α

(123)
= f (U0; x)α + gĒ ,S′ (α; x) + S′U1

(xα),

whence it follows that gĒ ,S′ (α; x) = (gĒ ,S
+ ∂ f )(α; x), see (103). Thus, gĒ ,S′ = gĒ ,S

+ ∂ f and
[gĒ ,S

] = [gĒ ,S′ ].
Furthermore, for an equivalence g : E ∼= E ′ of extensions Ē and Ē ′ ofM by A we easily see that

gĒ ′ ,gS
= gĒ ,S

, and therefore we have a map

F : Ext(M, A)→ H2
s (M, A), [Ē ] 7→ [gĒ ,S

]. (124)

2. The map F is surjective: For every g ∈ Z2(M, A), an extension Ēg = (Eg, f,+) ofM by A can be
constructed as follows. For each object U of C, we define

Eg(U) =
{
(x, a) | x ∈ M(U), a ∈ A(U, x)

}
(125)

with multiplication
(x, a)(y, b) = (xy,−g(U; x, y) + x b + a y). (126)

A straightforward verification shows that this multiplication (126) is associative thanks to the
cocycle condition (∂g)(U; x, y, z) = 0 in (105). Moreover, from equations (∂g)(U; x, e, e) = 0 and
(∂g)(U; e, e, x) = 0 we get x g(U; e, e) = g(U; x, e) and g(U; e, e) x = g(U; e, x), whence it is easy to see
that the multiplication (126) is unitary, with identity (e, g(U; e, e)). Hence, Eg(U) is actually a monoid.
For any arrow α : U1 → U0 of C, the homomorphism ( )α : Eg(U0)→ Eg(U1) is given by

(x, a)α = (xα, g(α, x) + aα). (127)

This is actually a homomorphism of monoids, since, for any (x, a), (y, b) ∈ Eg(U0), the equality(
(x, a)(y, b))α = (x, a)α(y, b)α follows from the 2-cocycle condition (∂g)(α; x, y) = 0 in (106); while the

requirement (e, g(U0, e, e))α = (e, g(U1; e, e)) holds owing to the 2-cocycle condition (∂g)(α; e, e) = 0.

If U2
β→ U1

α→ U0 are any two composable arrows in C, the equality ((x, a)α)β = (x, a)αβ, for any
(x, a) ∈ Eg(U0), follows from the 2-cocycle condition (∂g)(α, β; x) = 0 in (107), whereas the condition
(∂g)(1U0 , 1U0 ; x) = 0 gives the equality (x, a)1U0 = (x, a). Thus, Eg is a presheaf of monoids on C.

The locally surjective morphism f : Eg → M is defined, at each U ∈ ObC, by the projection
homomorphism fU : Eg(U)→M(U), fU(x, a) = x. For any x ∈ M(U), the simply transitive action
+ : A(U, x)× f−1

U (x)→ f−1
U (x) is given by b + (x, a) = (x, b + a). Conditions (115) and (116) are easily

verified, so that Ēg = (Eg, f,+) is actually an extension ofM by A.
Now, for each U ∈ ObC, let SU :M(U)→ Eg(U) be the obvious section map with SU(x) = (x, 0).

Then, the equalities, for any x, y ∈ M(U) and α : U1 → U0,

(xy, 0) = g(U; x, y) + (x, 0)(y, 0), (x, 0)α = g(α; x) + (xα, 0), (128)

show that gĒg ,S
= g, and therefore F[Ēg] = [g].
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3. The map F is injective: For any extension Ē = (E , f,+) ofM by A and any family of section
maps S = (SU : M(U) → E(U))U∈ObC, there is an isomorphism of extensions ĒgĒ ,S

∼= Ē which is
locally defined by the isomorphisms of monoids

EgĒ ,S
(U) ∼= E(U), (x, a) 7→ a + SU(x). (129)

Furthermore, if g, g′ ∈ Z2(M, A) are cohomologous, say g′ = g + ∂ f for some f ∈ C1(M, A),
then there is an isomorphism of extensions Ēg ∼= Ēg′ which is defined by the isomorphisms of monoids

Eg(U) ∼= Eg′(U), (x, a) 7→ (x, f (U; x) + a). (130)

Hence, the injectivity of F follows.

9. Prestacks of Monoidal Abelian Monoids

To start, we fix some notation. Recall that a groupoid G is termed abelian whenever its
automorphism groups AutG(x), x ∈ ObG, are abelian. We shall use additive notation for them.
Thus, if a : x → y, b : y → z are morphisms an abelian groupoid G, their composite is written as
b + a : x → z, the identity morphism of an object x is denoted by 0x, and the inverse of a : x → y is
−a : y→ x.

If C is any fixed small category, by a prestack of monoidal abelian groupoids on C we mean a
contravariant pseudo-functor from C to the 2-category of monoidal abelian groupoids, see Reference [1]
for instance. Thus, such a prestack P consists of the data (PDi) and axioms (PAj) that follow.

(PD1) a monoidal abelian groupoid P(U) = (P(U),⊗, ι, a, l, r), for each object U of C; that is,
an abelian groupoid P(U) enriched with a tensor product ⊗ : P(U)×P(U)→ P(U), a unit
object ι, and natural morphisms

ax,y,z : (x⊗ y)⊗ z→ x⊗ (y⊗ z), lx : ι⊗ x → x, rx : x⊗ ι→ x, (131)

satisfying the commutativity of the diagrams

((x⊗ y)⊗ z)⊗ t a //

a⊗0
��

(x⊗ y)⊗ (z⊗ t) a // x⊗ (y⊗ (z⊗ t))

(x⊗ (y⊗ z))⊗ t a // x⊗ ((y⊗ z)⊗ t)

0⊗a

OO
(x⊗ ι)⊗ y a //

r⊗0   

x⊗ (ι⊗ y)

0⊗l~~
x⊗ y

ax,y,z⊗t + ax⊗y,z,t = (0x⊗ay,z,t) + ax,y⊗z,t + (ax,y,z⊗0t), (132)

(0x⊗ly) + ax,ι,y = rx⊗0y. (133)

(PD2) a monoidal functor ( )α = (( )α, φα, φα
?) : P(U0) → P(U1), for each arrow U0

α← U1 of
C; that is, a functor between the underlying groupoids endowed with natural morphisms
φα

x,y : xα ⊗ yα → (x⊗ y)α and a morphism φα
? : ι→ ια, satisfying the commutativities

(xα ⊗ yα)⊗ zα
φα⊗ 0 //

a
��

(x⊗ y)α ⊗ zα
φα

// ((x⊗ y)⊗ z)α

aα

��
xα ⊗ (yα ⊗ zα)

0⊗φα

// xα ⊗ (y⊗ z)α
φα

// (x⊗ (y⊗ z)α
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xα ⊗ ι
0⊗φα

? //

r
��

xα ⊗ ια

φα

��

ι⊗ xα
φα
?⊗ 0 //

l
��

ια ⊗ xα

φα

��
xα (x⊗ ι)αrα
oo xα (ι⊗ x)αlα

oo

φα
x,y⊗z + (0xα⊗φα

y,z) + axα ,yα ,zα = (ax,y,z)
α + φα

x⊗y,z + (φα
x,y⊗ 0zα) , (134)

(rx)
α + φα

x,ι + (0xα⊗φα
?) = rxα , (lx)

α + φα
ι,x + (φα

?⊗ 0xα) = lxα , (135)

(PD3) a monoidal transformation θα,β : (( )α)β ⇒ ( )αβ, for each two arrows U0
α← U1

β← U2 of C;
that is, a family of natural morphisms θ

α,β
x : (xα)β → xαβ, making commutative the diagrams

(xα)β ⊗ (yα)β
φβ

//

θα,β⊗θα,β

��

(xα ⊗ yα)β
(φα)β

// ((x⊗ y)α)β

θα,β

��
xαβ ⊗ yαβ

φαβ

// (x⊗ y)αβ

ι
φ

β
? //

φ
αβ
?
��

ιβ

(φα
?)

β

��
ιαβ (ια)βθα,β
oo

φ
αβ
x,y + (θ

α,β
x ⊗ θ

α,β
y ) = θ

α,β
x⊗y + (φα

x,y)
β + φ

β
xα ,yα , (136)

θ
α,β
ι + (φα

?)
β + φ

β
? = φ

αβ
? . (137)

(PD4) a monoidal transformation θU : idP(U) ⇒ ( )1U , for each object U of C; that is, a family of
natural morphisms θU

x : x → x1u making commutative the diagrams

x⊗ y id

θU⊗θU

��

x⊗ y

θU

��
x1u ⊗ y1u

φ1u
// (x⊗ y)1u

ι
φ1u
?

��
id

ι
θU

ι // ι1u

θU
x⊗y = φ1u

x,y + (θU
x ⊗ θU

y ), (138)

θU
ι = φ1u

? . (139)

All these data are subject to the following two coherence conditions:

(PA1) for any three composable arrows U0
α← U1

β← U2
γ← U3 of C and x ∈ ObP(U0), the square

(
(xα)β

)γ (θα,β)γ

//

θβ,γ

��

(xαβ)γ

θαβ,γ

��
(xα)βγ θα,βγ

// xαβγ

commutes, that is,
θ

α,βγ
x + θ

β,γ
xα = θ

αβ,γ
x + (θ

α,β
x )γ. (140)
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(PA2) for each U0
α← U1 in C and x ∈ ObP(U0), both inner triangles in the square

xα θU1 //

(θU0 )α

��

id

(xα)1U1

θα,1

��
(x1)α

θ1,α
// xα

commute, that is,
θ

1U0 ,α
x = −(θU0

x )α, θ
α,1U1
x = −θU1

xα . (141)

If P and P′ are two such prestacks on C, then an equivalence F : P → P′ is a pseudo-natural
equivalence, in other words it consists of the following data

(EPD1) a monoidal equivalence FU = (FU , ΨU , ΨU
? ) : P(U) → P′(U), for each object U of C; that

is, an equivalence between the underlying groupoids FU : P(U) → P′(U) enriched with
natural morphisms ΨU

x,y : FU(x) ⊗ FU(y) → FU(x ⊗ y) and a morphism ΨU
? : ι → FU(ι),

satisfying

ΨU
x,y⊗z + (0FU(x)⊗ΨU

y,z) + aFU(x),FU(y),FU(z) = FU(ax,y,z) + ΨU
x⊗y,z + (ΨU

x,y⊗ 0FU(z)) , (142)

FU(rx) + ΨU
x,ι + (0FU(x)⊗ΨU

? ) = rFU(x), FU(lx) + ΨU
ι,x + (ΨU

? ⊗ 0FU(x)) = lFU(x) . (143)

(EPD2) a monoidal transformation

P(U0)
( )α

//

FU0

��

Γα

⇒

P(U1)

FU1

��
P′(U0)

( )α

// P′(U1)

for each morphism U0
α← U1 of C; that is, a family of natural morphisms

Γα
x : (FU0(x))α → FU1(xα) (144)

making commutative the diagrams

(FU0(x))α ⊗ (FU0(y))α
φα

//

Γα⊗ Γα

��

(FU0(x)⊗ FU0(y))α
(ΨU0 )α

// (FU0(x⊗ y))α

Γα

��
FU1(xα)⊗ FU1(yα)

ΨU1 // FU1(xα ⊗ yα)
FU1 (φα) // FU1((x⊗ y)α)

ι
φα
? //

Ψ
U1
?
��

ια
(Ψ

U0
? )α

// (FU0(ι))α

Γα

��
FU1(ι)

FU1 (φα
?) // FU1(ια)

FU1(φα
x,y) + Ψ

U1
xα,yα + (Γα

x ⊗ Γα
y) = Γα

x⊗y + (ΨU0
x,y)

α + φα
FU0 (x),FU0 (y), (145)

Γα
ι + (ΨU0

? )α + φα
? = FU1(φα

?) + Ψ
U1
? . (146)

All subject to the following two axioms:
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(EPA1) for any two composable arrows U0
α← U1

β← U2 of C and x ∈ ObP(U0), the diagram

((FU0(x))α)β

θα,β

��

(Γα)β

// (FU1(xα))β Γβ
// FU2((xα)β))

FU2 (θα,β)
��

(FU0(x))αβ Γαβ
// FU2(xαβ)

commutes, that is,
Γ

αβ
x + θ

α,β
FU0 (x)

= FU2(θ
α,β
x ) + Γ

β
xα + (Γα

x)
β. (147)

(EPA2) for any objects U of C and x of P(U), the triangle below commutes.

FU(x)
θU

||

FU(θU)

  
(FU(x))1U Γ1U // FU(x1U )

Γ
1U
x + θU

FU(x) = FU(θU
x ). (148)

The following is an useful result about transporting prestack structure.

Lemma 2. Suppose P′ is a prestack of monoidal abelian groupoids on C, and FU : P(U) → P′(U) is a
ObC-indexed family of equivalences of groupoids. Then, there is a prestack of monoidal abelian groupoids P and
an equivalence F : P→ P′ which agrees on the underlying groupoids with the given functors FU .

Proof. Notice that to provide the datum (PD1) in the construction of our prestack P, we can
simultaneously provide the datum (EPD1) for the construction of F, since FU and FU × FU are
equivalences: For each object U of C, let us select objects x⊗ y and ι in P(U) together with morphisms
ΨU

x,y : FU(x)⊗ FU(y) → FU(x⊗ y) and ΨU
? : ι → FU(ι) in P′(U). Then, there is a unique monoidal

structure on P(U) such that FU together with the morphisms ΨU
x,y and ΨU

? turns to be a monoidal
equivalence. The tensor product f ⊗ f ′ : x⊗ y→ x′ ⊗ y′ of morphisms f : x → y and f ′ : x′ → x′ in
P(U) is determined by the commutativity of the diagram

FU(x)⊗ FU(y)

FU( f )⊗FU( f ′)
��

ΨU
x,y // FU(x⊗ y)

FU( f⊗ f ′)
��

FU(x′)⊗ FU(y′)
ΨU

x′ ,y′ // FU(x′⊗ y′),

the unit object is ι, and the structure constraints a, l and r are uniquely determined by Equations (142)
and (143). Similarly, (EPD2) tell us how to satisfy (PD2): For each arrow α : U1 → U0 in C, let us
choose objects xα in P(U1) together with morphisms Γα

x : (FU0(x))α → FU1(xα). Then, the assignment
x 7→ xα is the function on objects of the functor ( )α : P(U0) → P(U1), whose effect on a morphism
f : x → y of P(U0) is the morphism f α : xα → yα determined by the commutative square

(FU0(x))α Γα
x //

(FU0 ( f ))α

��

FU1(xα)

FU1 ( f α)
��

(FU0(y))α
Γα

y // FU1(yα).
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This functor ( )α becomes a monoidal functor in a unique way such that Γα turns to be a
monoidal transformation, since its structure constraints φα and φα

? are uniquely determined by the
Equations (145) and (146). Finally, axiom (EPA1) uniquely determines the datum (PD3) for P, while
(EPA2) do the same with the datum (PD4). All the requirements (132)–(141) for P are consequence of
the corresponding ones for P′ since the FU are faithful. In getting P we have also got the equivalence
F : P→ P′.

Theorem 4 below shows a classification for equivalence classes of prestacks of monoidal abelian
groupoids on C by means of triads (M, A, c), where M is a presheaf of monoids on C, A is a
D(M)-module, and c is a cohomology class c ∈ H3

s (M, A). Previously, we show how every 3-cocycle
h ∈ Z3

s (M, A) gives rise to a prestack of monoidal abelian groupoids on C

P(M, A, h) (149)

which, for abbreviation, we also denote by Ph. Its data are as follows:
(PD1) For each object U of C, the underlying groupoid Ph(U) has as set of objects the elements of

the monoidM(U). If x 6= y are different elements ofM(U), then HomPh(U)(x, y) = ∅, whereas its
isotropy group at an x is AutPh(U)(x) = A(U, x), the abelian group that A attaches to the object (U, x)
of D(M). Its tensor product is given by

(x a // x)⊗ (y b // y) = (xy
x b+a y // xy) . (150)

The identity of the monoidM(U) provides the unit object, that is, ι = e, and the associativity and
unit constraints are

ax,y,z = h(U; x, y, z) : (xy)z→ x(yz), (151)

lx = −h(U; e, e, x) :ex → x, rx = h(U; x, e, e) : xe→ x, (152)

which are easily seen to be natural since the A(U, x) are abelian groups. Equation (132) hold thanks
to the 3-cocycle condition ∂h = 0 in (109). Besides, if we take y = e = z and replace t with y in (109),
we get

h(U; x, e, e) y = h(U; x, e, y)− x h(U; e, e, y) (153)

which just is (133).
(PD2) For each arrow U0

α← U1 of C, the functor ( )α : Ph(U0)→ Ph(U1) acts by

(x a−→ x)α = (xα aα

−→ xα), (154)

and its monoidal structure constraints are defined by

φα
x,y =− h(α; x, y) : xαyα → (xy)α (155)

φα
? = h(α; e, e) : e→ eα. (156)

The 3-cocycle condition ∂h = 0 in (110) directly provides the verification of (134). If, firstly,
we take y = e = z in (110) and, secondly, we take x = e = y and then we replace z with x also in (110),
we get the equalities

h(U1; xα, e, e) = h(U0; x, e, e)α − h(α; x, e) + xαh(α, e, e), (157)

−h(U1; e, e, xα) = −h(U0; e, e, x)α − h(α; e, x) + h(α, e, e) xα, (158)

which tell us that the requirements in (135) hold.



Mathematics 2020, 8, 116 27 of 35

(PD3) For each U0
α← U1

β← U2 in C, the monoidal transformation θα,β : (( )α)β ⇒ ( )αβ is defined,
at each object x ofM(U0), by

θ
α,β
x = h(α, β; x) : (xα)β → xαβ. (159)

The coherence condition (136) holds owing to the cocycle condition ∂h = 0 in (111). Furthermore,
taking x = y = e in (111) we obtain

h(αβ; e, e) = h(α, β; e) + h(α; e, e) + h(β; e, e) (160)

which just reads the requirement (137).
(PD4) For each object U of C, the monoidal transformation θU : idPh(U) ⇒ ( )1U is given, at each

object x, by
θU

x = −h(1U , 1U ; x) : x → x1U . (161)

Taking α = 1U = β in (111) we obtain

h(1U , 1U ; xy) = h(1U ; x, y) + x h(1U , 1U ; y) + h(1U , 1U ; x) y (162)

which, taking opposites, says that (138) holds. Even more, taking x = e = y in the above equation,
we obtain

h(1U ; e, e) = −h(1U , 1U ; e), (163)

that is, (139) is satisfied.
Finally, we verify axioms (PA1) and (PA2) for Ph: Here (140) reads

h(α, βγ) + h(β, γ; xα) = h(αβ, γ; x) + h(α, β; x)γ, (164)

which follows directly from the cocycle condition ∂h = 0 in (112). But we have even more, since if we
take β = 1U1 = γ in the above equality we get

h(α, 1U1 , x) = h(1U1 , 1U1 ; xα), (165)

while taking α = 1U0 = β and then replacing γ by α we obtain

h(1U0 , α; x) = h(1U0 , 1U0 , x)α, (166)

and these last two equalities just mean that (141) holds.
In the theorem below, we will use that the cohomology groups of presheaves of monoids

Hn
s (M, A) are functorial in the usual way, contravariant inM and covariant in A.

Theorem 4. (i) For any prestack of monoidal abelian groupoids P, there exist presheaf of monoids M,
a D(M)-module A, a 3-cocycle h ∈ Z3

s (M, A), and an equivalence

P(M, A, h) ' P.

(ii) Let h ∈ Z3
s (M, A) and h′ ∈ Z3

s (M′, A′) be 3-cocycles, whereM andM′ are presheaves of monoids,
A is a D(M)-module, and A′ is a D(M′)-module. There is an equivalence

P(M, A, h) ' P(M′, A′, h′)

if and only if there are isomorphisms f :M′ ∼=M and F : A′ ∼= f∗A such that

[h′] = F−1
∗ f∗([h]),
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in H3
s (M′, A′).

Proof. (i) Let P be a prestack of monoidal abelian groupoids on C. By Lemma 2, we can assume
that for any object U of C the groupoid P(U) is skeletal, that is, there is no morphisms between
different objects. Then, we can construct a presheaf of monoidsM, a D(M)-module A, a 3-cocycle
h ∈ Z3

s (M, A), and an equivalence P(M, A, h) = Ph ' P as follows:

� The presheaf of monoidsM: For any object U of C, letM(U) = ObP(U) be the set of objects of the
monoidal abelian groupoid P(U). The effect on objects of tensor functor ⊗ : P(U)×P(U) →
P(U) gives a multiplication onM(U), simply by putting xy = x⊗ y, which is associative and
unitary, with identity e = ι, the unit object of P(U), since being P(U) skeletal the existence of
the structure constraints ax,y,z, lx, and rx forces the equalities (xy)z = x(yz) and ex = x = xe.
Thus,M(U) is a monoid. For each arrow α : V → U of C, the function on objects of the monoidal
functor ( )α : P(U) → P(V) in (PD2) gives a homomorphism of monoidsM(α) : M(U) →
M(V), x 7→ xα. The equalities e = eα and (xy)α = xαyα follow from the presence of the structure
morphisms φα

x,y and φα
?, since P(V) is skeletal. Furthermore, if β : W → V is any other arrow

C, the equality M(αβ) = M(β)M(α), that is xαβ = (xα)β for any x ∈ M(U), holds due to
M(W) is skeletal and we have the structure morphisms θ

α,β
x in (PD3). Similarly, we see that

M(1U) = idM(U) because we have the morphisms θU
x : x → x1U as data in (PD4). Thus,M is a

presheaf of monoids.
� The D(M)-module A: For any object U of C and each x ∈ M(U), let A(U, x) =

AutP(U)(x) the abelian group of automorphisms of x in P(U). For any other u ∈ M(U),
the homomorphisms (26), A(U, x)→ A(U, ux), and (27), A(U, x)→ A(U, xu), are respectively
defined by the functors u⊗− : P(U) → P(U) and −⊗ u : P(U) → P(U); that is, for every
a ∈ A(U, x), u a = 0u⊗ a and a u = a⊗ 0u. If α : V → U is an arrow in C, the homomorphism (28),
A(U, x) → A(V, xα), a 7→ aα, is defined by the monoidal functor ( )α : P(U) → P(V).
For u, x, u′ ∈ M(U) and a ∈ A(U, x), the equality (ua)u′ = u(au′) holds since the naturality
of associativity constraint au,x,u′ of P(U) tell us that, in the abelian group A(U, uxu′), we have
u(au′) + au,x,u′ = au,x,u′ + (ua)u′. Similarly, the equality ea = a = ae follows from the naturality
of the unit constraints lx and rx, which imply the equalities lx + ea = a + lx and rx + ae = a + rx,
and the abelianity of the group A(U, x). If α : V → U is an arrow in C, the naturality of the
structure morphisms φα

u,x and φα
x,u, in (PD2), gives the equalities (ua)σ + φα

u,x = φα
u,x + uσaσ

and (au)σ + φα
x,u = φα

x,u + aσuσ. Then, as the group A(U, xα) is abelian, we conclude that
(ua)α = uαaα and (au)α = aαuα. If β : W → V is any other arrow C, the equalities (aα)β = aαβ are
consequence of being the group A(U, xαβ) abelian and the naturality of the structure morphisms
θ

α,β
x in (PD3), which tell us that (aα)β + θ

α,β
x = θ

α,β
x + aαβ. Similarly, the equality a1u = a follows

from the naturality of the morphisms θU
x , which says that θU

x + a1U = a + θU
x , and the abelianity

of the group A(U, x). Thus, all the requirements in (30) are verified and we conclude that A is
actually a D(M)-module.

� The 3-cocycle h ∈ Z3
s (M, A): This is defined by

h(U; x, y, z) = ax,y,z, for each object U of C and x, y, z ∈ M(U),

h(α; x, y) = −φα
x,y, for each arrow U0

α← U1 of C and x, y ∈ M(U0),

h(α, β; x) = θ
α,β
x , each each arrows U0

α← U1
β← U2 of C and x ∈ M(U0).

(167)

The 3-cocycle conditions ∂h = 0 in (109), (110), (111), and (112) follow directly from the coherence
Equations (132), (134), (136), and (140), respectively.

� The equivalence Ph ' P: Previously to show such an equivalence, it is worth analyzing Ph in
relation to P:
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Concerning the data in (PD1), a direct comparison shows that, for each object U of C, both
monoidal groupoids Ph(U) and P(U) have the same underlying groupoid and the same tensor
product, as for any a ∈ AutP(U)(x) and b ∈ AutP(U)(y), x⊗ y = xy and

a⊗ b = (a + 0x)⊗ (0y + b) = (a⊗ 0y) + (0x ⊗ b) = a y + x b, (168)

as well as the same associativity constraint a and the same unit object ι. However, they have different
left and right unit constraints, since in the original P(U) they are lx : ι⊗ x = x → x and rx : x⊗ ι =

x → x, whereas in Ph(U) they are respectively defined as{
−aι,ι,x : ι⊗ x = (ι⊗ ι)⊗ x = x → ι⊗ (ι⊗ x) = x,

ax,ι,ι : x⊗ ι = (x⊗ ι)⊗ ι = x → x⊗ (ι⊗ ι) = x,
(169)

With regards to the data in (PDA2), a direct comparison shows that, for any arrow α : U1 → U0

in C, both monoidal functors ( )α : Ph(U0)→ Ph(U1) and ( )α : P(U1)→ P(U0) coincide on objects
and on morphisms, as well as they have the same structure morphisms φα

x,y : xα ⊗ yα → (x ⊗ y)α.
But they have different unit structure morphism since, while in the original P it is φα

∗ : ι → ια = ι,
in Ph it is −φα

ι,ι : ι = ια ⊗ ια → (ι⊗ ι)α = ι. Similarly, we see that the data in (PDA3) and in (PDA4)
for both Ph and P are given by the same monoidal transformations θα,β and the same morphisms
θU

x : x → x1U = x (for these last, note that the equalities θU
x = −θ

1U ,1U
x follow from (141) by taking

α = 1U therein).
Then, an equivalence FU : Ph → P is defined by the following data:
(EPD1) For each object U of C, the monoidal functor FU : Ph(U) → P(U) acts between the

underlying groupoids as the identity, that is, FU(x a→ x) = (x a→ x). Its structure morphisms
ΨU

x,y : x⊗ y→ x⊗ y are all identities, that is, ΨU
x,y = 0x⊗y, and the structure morphism ΨU

? : ι→ ι is
defined by ΨU

? = lι : ι⊗ ι = ι → ι (= rι, see Proposition 1.1 in Reference [25]), the unit constraint of
P(U) at the unit object ι.

(EPD2) For any arrow α : U1 → U0, the monoidal transformation Γα is the identity transformation
on the functor ( )α : P(U0)→ P(U1), that is, Γα

x = 0xα for any object x of P(U0).
Notice that, for any object U of C, the naturality of the morphisms ΨU

x,y = 0x⊗y simply means that
the tensor product ⊗ is the same in both Ph(U) and P(U), which is true as we commented before,
and the coherence condition (142) is obviously satisfied, since the associativity constraints also agree
in both monoidal groupoids. Here, the requirements in (143) read

ax,ι,ι + (0x ⊗ lι) = rx, −aι,ι,x + (rι ⊗ 0x) = lx. (170)

To verify them, first observe that, by naturality, we have the equalities rx + (rx ⊗ 0ι) = rx + rx⊗ι

and lx + (0ι ⊗ lx) = lx + lι⊗x, whence rx ⊗ 0ι = rx⊗ι = rx and 0ι ⊗ lx = lι⊗x = lx. Then, taking y = ι

in (133) we obtain the equality (0x ⊗ lι) + ax,ι,ι = rx ⊗ 0ι = rx, while taking x = ι and replacing y
with x in (133) we obtain (rι ⊗ 0x)− aι,ι,x = 0ι ⊗ lx = lx. Hence, Equation (170) hold since the group
AutP(U)(x) is abelian.

Checking the remaining requirements, we see that Equations (145), (147) and (148) obviously
hold, while (146) reads (rι)α + φα

? = −φα
ι,ι + rι. To its verification, note that, by naturality, we have the

equality rι + (0ι ⊗ φα
?) = φα

? + rι. Hence, 0ι ⊗ φα
? = φα

? since the group AutP(U)(ι) is abelian. Then,
taking x = ι in (135), we obtain the required equality in the equivalent form (rι)α + φα

ι,ι + φα
? = rι.

(ii) Notice that Ph = P(M, A, h) and Ph′ = P(M, A, h′) are equivalent if and only if they are
isomorphic since, for any object U of C, both groupoids Ph(U) and Ph′(U) are skeletal.
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Suppose first that f :M′ ∼=M an isomorphism of presheaves and F : A′ ∼= f∗A an isomorphism
of D(M′)-modules such that f∗([h]) = F∗([h′]). This means that there is a 2-cochain g ∈ C2(M′, f∗A)

such that the equations below hold.

F(h′(U; x, y, z)) = h(U; f(x), f(y), f(z)) + f(x)g(U; y, z)− g(U; xy, z) + g(U; x, yz) (171)

− g(U; x, y)f(z),

F(h′(α; x, y)) = h(α; f(x), f(y)) + g(U1; xα, yα)− g(U0; x, y)α − f(x)αg(α; y) (172)

+ g(α; xy)− g(α; x)f(y)α,

F(h′(α, β; x)) = h(α, β; f(x)) + g(β; xα)− g(αβ; x) + g(α, x)β. (173)

Then, we can define an isomorphism F : Ph′
∼= Ph by the following data:

(EPD1) For each object U of C, the monoidal isomorphism FU : Ph′(U)→ Ph(U) acts, at the level
of the underlying groupoids, by FU(a : x → x) = (F(a) : f(x) → f(x)), and its structure constrains
are respectively defined by ΨU

x,y = g(U; x, y) : f(x)f(y) = f(xy) → f(xy) and ΨU
∗ = −g(U, e, e) : e →

f(e) = e.
(EPD2) For each arrow α : U1 → U0 of C, the monoidal transformation Γα is given by

Γα
x = −g(α; x) : f(x)α = f(xα)→ f(xα). (174)

So defined, it is plain to see that every FU is an isomorphism of groupoids. The naturality of the
isomorphisms ΨU

x,y holds since F is a morphism of D(M)-modules and the groups A(U, f(xy)) are
abelian. Equation (171) directly provides the verification of the coherence condition (142), as well as
that of (143) just by taking y = e = z therein. Similarly, the naturality of the morphisms Γα

x follows from
being F a morphism of D(M)-modules and the groups A(U, f(x)) abelian, whereas Equation (172)
implies conditions (145) and (146), taking x = e = y for the last one. Finally, say that (147) holds thanks
to (173), from which one verifies also (148) by taking α = 1U = β therein.

Finally, we can prove the converse simply by retracting our above steps: Suppose we have an
isomorphism F : Ph′

∼= Ph. Then, for each U of C, let f = FU : M′(U) →M(U) be the function on
objects of the monoidal isomorphism FU : Ph′(U)→ Ph(U). Since Ph(U) is skeletal, the existence of
the morphisms data ΨU

x,y and ΨU
∗ in (EPD1) forces the equalities f(xy) = f(x)f(y) and f(e) = e. Similarly,

for each α : U1 → U0 in C, the presence of the morphisms Γα
x in the data (EPD2) implies the equalities

f(xα) = f(x)α. Thus f : M′ → M is an isomorphism of presheaves of monoids. Now, if for each
object U of C and x ∈ M′(U), we define the isomorphism F : A′(U, x)→ A(U, f(x)) by F(a) = FU(a),
the naturality of the morphisms ΨU

x,y and Γα
x just tell us that F : A′ → f∗A is an isomorphism of

D(M′)-modules. Finally, if we take the 2-cochain g ∈ C2(M′, f∗A) defined by g(U; x, y) = ΨU
x,y and

g(α; x) = Γα
x, we easily see that that the coherence conditions (142), (145) and (147) imply the equalities

in (171), (172), and (173), respectively. Thus, we have F∗(h′) = f∗(h) + ∂g, whence F∗([h′]) = f∗([h])
in H3

s (M′, f∗A), and therefore [h′] = F−1
∗ f∗([h]) in H3

s (M′, A′).

10. The Particular Case Where the Monoids Are Groups

In this section, we review how our results above specialize when we limit our attention to
presheaves of groups G : Cop → Gp.

10.1. the Coefficients for the Cohomology of a Presheaf Of Groups

The coefficients for the cohomology of a presheaf of groups admit an easier description than that
given in Section 3 for the coefficients for the cohomology of a presheaf of monoids. This is as follows.

Definition 3. Let G be a presheaf of groups on C. A G-module is a presheaf of abelian groups on C
(= Cop-module) A such that for each object U of C the abelian group A(U) is a left G(U)-module and for
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each arrow σ : V → U of C the induced homomorphism ( )σ : A(U)→ A(V) is compatible with the modules
structures via the group homomorphism ( )σ : G(U)→ G(V); that is, for x ∈ G(U) and a ∈ A(U)

(x · a)σ = xσ · aσ. (175)

In other words, such that the action maps G(U) × A(U) → A(U), (x, a) 7→ x · a, define a natural
transformation G × A → A. A morphism A → A′ of G-modules is a morphism of presheaves of abelian
groups such that, for each object U of C, the homomorphism A(U)→ A′(U) is of G(U)-modules.

Let G-Mod denote the category of G-modules. There is a full and faithful embedding

G-Mod ↪→ D(G)-Mod (176)

which identifies each G-module A to the D(G)-module, equally denoted by A, such that
A(U, x) = A(U) for each object U of C and x ∈ G(U), and v0 aσv1 = v0 · aσ, for each σ : V → U in C
and v0, v1 ∈ G(V).

Proposition 9. For any presheaf of groups G, the embedding (176) above is an equivalence of categories.

Proof. Let A be a D(G)-module. Define A(e) to be the G-module whose underlying presheaf A(e) :
Cop → Ab assigns to each U ∈ ObC the abelian group A(U, e) and to each morphism σ : V → U
of C the homomorphism ( )σ : A(U, e) → A(V, eσ = e). For each object U of C, the G(U)-action on
A(U, e) is given by u · a = u a u−1. Then, an isomorphism of D(G)-modules A(e) ∼= A is given by the
isomorphisms F : A(U, e) ∼= A(U, x) defined by F(a) = a x, for any U ∈ ObC and x ∈ G(U).

It follows that there is no loss of generality in assuming that the coefficients for the cohomology
groups of a presheaf of groups G are G-modules. For these, all our constructions and results rewrite
more simply and revisit those established in Reference [26]. Notice that, when we plug an G-module
A into the complex of cochains C•s (G, A) of Section 6, we just obtain (up to normalization) the cochain
complex shown in Reference [26] to compute the cohomology groups of G with coefficients in A.

10.2. Derivations of Presheaves Of Groups

Let G be a presheaf of groups on C. By definition,

Hn
s (G,−) = Rn−1Der(G,−) : G-Mod→ Ab. (177)

Here, a derivation of G in a G-module A, say d : G → A, simply consists of a natural family
of ordinary derivations dU : G(U) → A(U), one for each U ∈ ObC. That is, the maps dU satisfy
dU(xy) = x · dU(y) + dU(y) and, for any σ : V → U in C, the equalities dU(x)σ = dV(xσ) hold.

The G-module ZG in (36) assigns to each object U of C the underlying group of the ordinary
integral group ring ZG(U) = Z{x | x ∈ G(U)} turned into an G(U)-module in the obvious way and,
if σ : V → U is a morphism of C, the corresponding homomorphism ( )σ : ZG(U)→ ZG(V) is just the
induced by ( )σ : G(U)→ G(V). Then, the isomorphism in Proposition 5 reads

Der(G, A) ∼= HomG(IG, A), (178)

where IG = Ker(ZG → Z) is the G-module assigning to each object U of C the ordinary ideal
augmentation IG(U) of the group G(U).
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10.3. Singular Extensions of Presheaves Of Groups

The main result in Section 8 particularizes here by giving the cohomological classification of short
exact sequences of presheaves of groups on C

0→ A i→ E f→ G → 1 (179)

in which A is of abelian groups. Such a short exact sequence determines a G-module structure on A in
which, for each object U of C, the action of the group G(U) on the abelian group A(U) is determined
by the formula iU(x · a) = w iU(a) w−1, where w ∈ f−1

U (x) is an (any) element of the fibre of the
epimorphism fU : E(U)→ G(U) at x. If A is a G-module, we define a singular extension of G by A as a
short exact sequence (179) such that the induced G-module structure on A is the given one.

Proposition 10. A singular extension of a presheaf of groups G by a G-module A is the same thing as an
extension of G by A (as defined in Section 8).

Proof. Suppose first that (E , f,+) is an extension of G by A. Then, we claim, every monoid E(U),
U ∈ ObC, is a group. In effect, let w ∈ E(U) and suppose that fU(w) = x. Let us choose any
w′ ∈ f−1

U (x−1). Since ww′ ∈ f−1
U (e), we can write ww′ = a + e for some a ∈ A(U). Then,

w(−x−1 · a + w′)
(115)
= −(xx−1) · a + ww′ = −a + a + e = e,

so that w−1 = −x−1a + w′ is an inverse of w in E(U). Now, the bijections i : A(U) ∼= f−1
U (e) = Ker(fU),

i(a) = a + e, define an isomorphism of presheaves of groups i : A ∼= Ker(f) since, for any U ∈ ObC,

iU(a) iU(a′) = (a + e)(a′ + e)
(115)
= (a + a′ + e) = iU(a + a′),

and, for any σ : V → U in C,

iV(aσ) = aσ + e = aσ + eσ (116)
= (a + e)σ = iU(a)σ.

Thus, 0→ A i→ E f→ G → 1 is an extension, which is singular since, for any U ∈ ObC, a ∈ A(U)

and w ∈ f−1
U (x),

w iu(a)w−1 = w(a + e)w−1 (115)
= (x · a + w)w−1 (115)

= x · a + e = iU(x · a).

Conversely, any singular extension 0 → A i→ E f→ G → 1 can be regarded as an extension,
where the simply-transitive actions + : A(U) × f−1

U (x) → f−1
U (x) are given by a + w = iU(a)w.

The requirements in (115) and (116) are satisfied, since

(a + w)(a′ + w′) = iU(a)w iU(a′)w′ = iU(a)w iU(a′)w−1 w w′ = iU(a) iU(x · a′)w w′

= iU(a + x · a′)w w′ = a + x · a′ + ww′,

(a + w)σ = (iU(a)w)σ = iU(a)σ wσ = iV(aσ)wσ = aσ + wσ.

When two singular extensions 0 → A i→ E f→ G → 1 and 0 → A i′→ E ′ f′→ G → 1 are viewed
as extensions, they are isomorphic if and only if there is an isomorphism of presheaves of groups
g : E ∼= E ′ such that f′ g = f and gi = i′. Then, Theorem 3 rewrites as follows (cf. Theorem 7.2 in
Reference [26]).
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Theorem 5. The isomorphism classes of singular extensions of a presheaf of groups G by a G-module A
correspond bijectively to the elements of H2

s (G, A).

10.4. Prestacks of Categorical Groups

The results in Section 9 specialize here by giving the cohomological classification of prestacks
of categorical groups. Let us recall that a categorical group (aka Gr-category or 2-group) is a monoidal
groupoid G = (G,⊗, ι, a, l, r) such that, for any object x, the endofunctor x ⊗ − : G → G is an
autoequivalence [5,25,27,28].

Lemma 3. In any categorical group, the underlaying groupoid is abelian.

Proof. Let G be a categorical group. The group AutG(ι) is abelian since the multiplication

AutG(ι)×AutG(ι)→ AutG(ι), (a, b) 7→ rι(a⊗ b)r−1
ι , (180)

is a group homomorphisms [29]. For any object x, the group AutG(x) is also abelian, since we have the
group isomorphism AutG(ι) ∼= AutG(x), a 7→ rx(idx ⊗ a)r−1

x .

The 2-category of categorical groups is then a full 2-subcategory of the 2-category of monoidal
abelian groupoids and therefore, for any small category C, the 2-category of prestacks of categorical
groups on C is a full 2-subcategory of the 2-category of prestacks of monoidal abelian groupoids on
C. In particular, two prestacks of categorical groups are equivalent if and only if they are equivalent
as prestacks of monoidal abelian groupoids. In order to their classification, recall that a monoidal
groupoid (G,⊗, ι, a, l, r) is a categorical group if and only if every object x has a quasi-inverse with
respect to the tensor product, that is, there is an object x′ with an arrow x ⊗ x′ → ι. Then, for any
presheaf of groups G, any G-module A and any 3-cocycle h ∈ Z3(G, A), the prestack of monoidal
abelian groupoids P(G, A, h) built as in (149) is easily recognized to be a prestack of categorical groups.
Then, Theorem 4 particularizes as follows (cf. Theorem 8.5 in Reference [26]).

Theorem 6. (i) For any prestack of categorical groups P, there exist presheaf of groups G, a G-module A,
a 3-cocycle h ∈ Z3

s (G, A) and an equivalence

P(G, A, h) ' P.

(ii) Let h ∈ Z3
s (G, A) and h′ ∈ Z3

s (G ′, A′) be 3-cocycles, where G and G ′ are presheaves of groups, A is a
G-module and A′ is a G ′-module. There is an equivalence

P(G, A, h) ' P(G ′, A′, h′)

if and only if there is an isomorphism of presheaves of groups f : G ′ ∼= G and a isomorphism of G ′-modules
F : A′ ∼= f∗A such that the equality of cohomology classes in H3

s (G ′, A′) below holds.

[h′] = F−1
∗ f∗([h])

Proof. (i) Let P be a prestack of categorical groups on C. By Theorem 4(i), there are a presheaf of
monoidsM, a D(M)-module A, a 3-cocycle h ∈ Z3

s (M, A) and an equivalence P(M, A, h) = Ph '
P. Then, Ph is a prestack of categorical groups as P is; that is, Ph(U) is a categorical group, for every
object U of C. Therefore, for any x ∈ M(U) = ObPh(U) it must exist another x′ ∈ M(U) with a
morphism x ⊗ x′ = xx′ → ι = e in Ph(U). As the groupoid Ph(U) is skeletal, necessarily xx′ = e
inM(U), which means that x′ is an inverse of x in the monoidM(U). Therefore, everyM(U) is a
group and G =M is actually a presheaf of groups.
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Now, by Proposition 9, there is a G-module A′ with an isomorphism of D(G)-modules F : A′ ∼= A.
Then, Theorem 4(ii) gives the existence of an equivalence P(G, A, h) ' P(G, A′, F−1

∗ (h)), whence an
equivalence P(G, A′, F−1

∗ (h)) ' P follows.
(ii) This follows directly from Theorem 4(ii).
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