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Abstract: The present theoretical study investigates the influence of velocity slip characteristics on
the plane steady two-dimensional incompressible creeping Maxwell fluid flow passing through
a porous slit with uniform reabsorption. This two-dimensional flow phenomenon is governed by the
mathematical model having nonlinear partial differential equations together with non-homogeneous
boundary conditions. An analytical technique, namely the recursive approach, is used successfully to
find the solutions of the problem. The explicit expressions for stream function, velocity components,
pressure distribution, wall shear stress and normal stress difference have been derived. The axial flow
rate, leakage flux and fractional reabsorption are also found out. The points of maximum velocity are
identified. Non-dimensionalization is carried out and graphs are portrayed at different positions of
the channel to show the impact of pertinent parameters: slip parameter, Maxwell fluid parameter
and absorption parameter, on flow variables and found that the fluid velocity is affected significantly
due to these parameters. This study provides a mathematical basis to understand the physical
phenomenon for fluid flows through permeable boundaries which exists in different problems like
gaseous diffusion, filtration and biological mechanisms.

Keywords: creeping Maxwell fluid; uniform reabsorption; permeable slit; slip condition;
recursive approach

1. Introduction

Flow-through permeable boundaries have enormous importance from many decades due to their
tremendous applications in bio-sciences and engineering, such as processes like membrane filtration,
desalination processes using reverse osmosis, transpiration cooling, blood flow, renal proximal tubule
flow within a kidney and filtration of blood in hemodialysis of an artificial kidney are the key examples
related to flows in permeable boundaries [1–6]. Berman [7] presented the complete description of
the Newtonian fluid flow through a channel with permeable walls and the perturbation method is
employed to elaborate the wall permeability impact on velocity and pressure distribution. Sellars [8]
and Yuan [9] extended this work to discuss the channel flow problem for high suction Reynolds
number and for small and large seepage rates, respectively. Afterward, many researchers [10–12]
further investigated the flow-through channel with permeable walls.
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Due to the practical applications of creeping flow, many researchers studied the slow flow
of Newtonian as well as non-Newtonian fluids. Macey [4] considered blood as an incompressible
Newtonian fluid through the renal tubule and assumed creeping flow. Marshall [6] investigated
the slow flow through a porous channel and discussed the obtained approximate solutions for
ultrafiltration rate in flat plate hemodialyzer. Siddiqui and Haroon [13–16] considered different
absorption rates on walls of the permeable slit to analyze the creeping flow of a Newtonian fluid.
Rajagopal [17] considered the second order fluid to discuss the creeping flow. Ullah et al. [18,19]
discussed the slow flow by considering the slightly viscoelastic fluid with uniform reabsorption using
a recursive approach. Khashan et al. [20–22] also considered the creeping flow of micro-polar and
Jeffrey fluids through a porous channel. Motivated with this, we have considered the Maxwell fluid
to investigate the slow flow through permeable slit having wall slip with uniform reabsorption and
present the solutions using the recursive approach proposed by Langlois [23,24].

For many decades, authors have been interested with slip condition due to its practical
implications in the polymer industry (polymer melts) [25,26], which shows a macroscopic wall slip
and also it extends from technological applications to medical applications as it used in polishing
artificial heart valves. Beavers and Joseph [27] experimentally confirmed that the slip condition exists
at the porous boundary. Saffman [28] gave the mathematical justification to the study presented by
Beavers [27] and later, Beavers and Kohler [29,30] revealed that the already presented analytical results
and their experimental outcomes are in good agreement. Mikelic and Jager [31] presented the statistical
and mathematical analysis to discuss the slip above the porous surface. Rao et al. [32] discussed
the slippage effects on viscous fluid flow in the channel. Elshahed [33] considered the velocity slip
on membrane surface for blood flow in microcirculation. Singh et al. [34] showed the importance
of velocity slip on ultra-filtration. Makinde and Osalusi [35] has explained the slip effects on the
magnetohydrodynamic Newtonian fluid flow in a channel with porous walls. Eldesoky et al. [36]
investigated the magnetohydrodynamics and slip effects on pulsatile blood flow through a porous
medium having permeable walls and Elshehawy et al. [37] also discussed the velocity slip impact on
peristaltic flow of Maxwellian fluid. Ellahi et al. [38] considered the channel flow of non-Newtonian
fluid along with slip condition. Hron et al. [39] also considered the Naviers slip conditions at the
boundary and discussed its impact on non-Newtonian fluids. Hayat et al. [40] discussed the Oldroyd
6-constant fluid flowing between parallel plates under the influenced of slip condition.

The significant importance of non-Newtonian fluid arises in plastic manufacturing, lubrication
theory, paint industry and in food processing. Most of the biologically important fluids are considered
as non-Newtonian due to their higher molecular weight. There are three categories of non-Newtonian
fluids, namely: differential, rate and integral type fluids. The models of rate type fluids [41] has its
importance and exhibits the stress relaxation aspects of polymer solutions. The expressions for stresses
in terms of velocity components can be easily found out due to the existence of their explicit expressions
in constitutive equations of differential type fluids, whether in the case of rate type fluids, there exits
an implicit relationship in constitutive equation and its difficult to express stresses in terms of velocity
components. This fact is the key reason for the lack of literature on the flow of rate type fluids through
the permeable slit in the two dimensional case. To contribute with this, we consider the slow flow of
Maxwell fluid in the two dimensional case through a permeable slit. An effort has been put by different
researchers to investigate the flow of an upper convected Maxwell fluid. Choi et al. [42] investigated the
combined effects of inertia, suction and viscoelasticity in a porous channel. Sadeghy et al. [43] studied
Sakiadis flow and showed that wall skin friction decreases when increasing the value of Deborah’s
number. Abbas et al. [44] also discussed the boundary layer magnetohydrodynamic Maxwell fluid
flow in a permeable channel.

We consider the creeping flow of Maxwell fluid through the permeable slit in accordance with
slip condition at porous walls and uniform reabsorption. The modeled nonlinear PDEs in accordance
with non-homogeneous boundary conditions are solved with the recursive approach proposed by
Langlois [23,24], who successfully implemented this approach for one-dimensional slow non-Newtonian
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fluid flows. Ullah et al. [18,19] used this technique for the first time to study two-dimensional creeping
flow of a slightly viscoelastic fluid through a permeable slit. Recently, Bhatti et al. [45] used this approach
to investigate the slow flow of a second order fluid through a uniformly permeable circular tube and
now we implement this approach to get solutions of creeping flow of a Maxwell fluid and discuss
combined effects of absorption parameter, viscoelasticity and slip parameter on flow variables involved
at different positions of the channel and also obtain the explicit expressions for axial and radial velocity
components, total pressure difference, mean pressure drop, normal stresses difference, wall shear
stress, leakage flux and fractional reabsorption.

2. Formulation of the Problem

A two-dimensional isothermal, steady, incompressible creeping Maxwell fluid flow through
a rectangular slit of length L, breadth W and width 2H is considered, with the x-axis taken along
the centerline of the rectangular slit and y-axis taken normal to it. The walls of the slit are porous
with a constant velocity of εV0 along the slit length, where ε is a small dimensionless parameter. A
slip condition is also considered at porous walls of the slit and we assumed a constant flow rate εQ0,
at x = 0, (see Figure 1).

In the proposed problem, the two-dimensional flow through the slit has the following
velocity profile,

V = (u(x, y), v(x, y)) (1)

The conservation of mass and momentum equations for a creeping two-dimensional Maxwell
fluid takes the form

∂u
∂x

+
∂v
∂y

= 0, (2)

∂p
∂x

=
∂τxx

∂x
+

∂τxy

∂y
, (3)

∂p
∂y

=
∂τxy

∂x
+

∂τyy

∂y
, (4)

τxx + λ(u
∂τxx

∂x
+ v

∂τxx

∂y
− 2τxx

∂u
∂x
− 2τxy

∂u
∂y

) = 2µ
∂u
∂x

, (5)

τxy + λ(u
∂τxy

∂x
+ v

∂τxy

∂y
− τxx

∂v
∂x
− τyy

∂u
∂y

) = µ(
∂u
∂y

+
∂v
∂x

), (6)

τyy + λ(u
∂τyy

∂x
+ v

∂τyy

∂y
− 2τyy

∂v
∂y
− 2τxy

∂v
∂x

) = 2µ
∂v
∂y

, (7)

where, (u, v) are axial and radial components of velocity, the constant λ is the fluid relaxation time and
µ is the viscosity of fluid. p and τ represent pressure and stresses of the Maxwell fluid, respectively.

The consequent boundary conditions are imposed as below by considering the upper half of the
slit as due to symmetry along the centerline of the slit.

u = −
√

k
γ

∂u
∂y

, v = εV0, at y = H, (8)

∂u
∂y

= 0, v = 0 at y = 0 (9)

εQ0 = W
∫ H
−H(u(0, y)) dy. (10)

where k represents the specific permeability of a porous medium and γ is a dimensionless constant.
Here, the boundary condition (8) is the well-known slip condition given by Beavers and Joseph [27].



Mathematics 2020, 8, 1852 4 of 22

Figure 1. Geometry of the problem.

3. Solution of the Problem

The exact solution of the system of highly non-linear and coupled partial differential
Equations (2)–(7) having six unknowns, namely, u(x, y), v(x, y), p(x, y), τxy(x, y), τxx(x, y), τyy(x, y),
together with non-homogeneous boundary conditions (8)–(10) is quite impossible and even analytical
and numerical solutions of such equations are still a challenge for researchers. Here, we will use
a recursive approach suggested by Langlois [23,24], which linearizes the above equations; so for this,
we consider the flow field as a perturbation of a state of rest and the following is

V(x, y) = ∑
j=∞
j=1 εj V(j)(x, y), (11)

p(x, y) = Constant + ∑
j=∞
j=1 εj p(j)(x, y), (12)

τ(x, y) = ∑
j=∞
j=1 εj τ(j)(x, y). (13)

where ε is a small dimensionless number.
The above supposition set up a dynamical system of linear equations and boundary conditions

for each [uj, vj, pj, τ j], j = 1, 2, 3... and then [u, v, p, τ] can be found by Equations (11)–(13), which will
represent the solution for a creeping Maxwell fluid. The equations obtained for the first order
[u1, v1, p1, τ1] are identical to the Newtonian fluid flow. The expressions obtained at the second
order [u2, v2, p2, τ2] are similar with the exception that there exists non homogeneous terms depending
on [u1, v1, p1, τ1]. Likewise, [u3, v3, p3, τ3] are also similar but there also exits involvement of lower
order solutions [u1, v1, p1, τ1], [u2, v2, p2, τ2] and this process continues recursively. It is also observed
that a linear dynamical system of equations are formed at each stage of analysis and explicitly used
results from previous stages. There is not too much practical or conceptual difficulty arising in
extending the theory for higher orders.

In result of using Equations (11)–(13) into Equations (2)–(10) and comparing the coefficients of
like powers of ε, we get three sets of systems of PDEs at O(ε), O(ε2) and O(ε3).
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3.1. System of Equations for the 1st Order

The first order system of equations is obtained by comparing coefficients of ε, as

∂u(1)

∂x
+

∂v(1)

∂y
= 0, (14)

∂p(1)

∂x
=

∂τ
(1)
xx

∂x
+

∂τ
(1)
xy

∂y
, (15)

∂p(1)

∂y
=

∂τ
(1)
xy

∂x
+

∂τ
(1)
yy

∂y
, (16)

τ
(1)
xx = 2µ

∂u(1)

∂x
, τ

(1)
xy = µ

(
∂u(1)

∂y
+

∂v(1)

∂x

)
, τ

(1)
yy = 2µ

∂v(1)

∂y
. (17)

u(1) = −
√

k
γ

∂u(1)

∂y
, v(1) = V0, at y = H, (18)

∂u(1)

∂y
= 0, v(1) = 0, at y = 0, (19)∫ H

0 (u(1)(0, y)) dy =
Q0

2W
, at x = 0. (20)

Here, we consider ψ(1)(x, y) as

u(1) =
∂ψ(1)(x, y)

∂y
, v(1) = −∂ψ(1)(x, y)

∂x
. (21)

We found that in view of Equation (21), Equation (14) is satisfied identically and after elimination
of the pressure term, Equations (15), (16) and (18)–(20) in terms of ψ(x, y) become,

∇4ψ(1) = 0. (22)

∂ψ(1)

∂y
= −
√

k
γ

∂2ψ(1)

∂y2 ,
∂ψ(1)

∂x
= −v0, at y = H, (23)

∂2ψ(1)

∂y2 = 0,
∂ψ(1)

∂x
= 0, at y = 0, (24)

ψ(1)(0, H) =
Q0

2W
, ψ(1)(0, 0) = 0. (25)

The boundary conditions (23)–(25) suggest to consider ψ(1)(x, y) as

ψ(1)(x, y) = V0xM(1)(y) + N(1)(y). (26)

where M(1)(y) and N(1)(y) are unknowns, which can be obtained by using Equation (26) in
Equations (22)–(25) and ultimately we have

M(1)(y) =
1
2

b1

(
y3

H3 −
3b2y

H

)
, (27)

N(1)(y) =
(b1Q0)

4W

(
3b2y

H
− y3

H3

)
. (28)

where φ =
√

k
Hγ is the slip parameter and (b1 = 1

1+3φ ) and b2 = 1 + 2φ are functions of φ.
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Equation (26) in results of utilizing Equations (21), (27) and (28), we obtain

ψ(1) =
b1

2
(

Q0

2W
− xV0)(

3b2y
H
− y3

H3 ), (29)

u(1) =
3b1

2H
(

Q0

2W
− xV0)(b2 −

y2

H2 ), (30)

v(1) =
b1V0

2
(

3b2y
H
− y3

H3 ), (31)

Here, we observed that the obtained first-order solution is strongly dependent on φ and no
contribution of Maxwell fluid parameter δ is found. It is observed that the expressions for velocity
components at first order with (φ = 0) are similar to the results presented in [15].

3.2. System of Equations for the 2nd Order

On equating terms involving ε2, we have the following system of equations:

∂u(2)

∂x
+

∂v(2)

∂y
= 0, (32)

∂p(2)

∂x
=

∂τ
(2)
xx

∂x
+

∂τ
(2)
xy

∂y
, (33)

∂p(2)

∂y
=

∂τ
(2)
xy

∂x
+

∂τ
(2)
yy

∂y
, (34)

τ
(2)
xx + λ(u(1) ∂τ

(1)
xx

∂x
+ v(1)

∂τ
(1)
xx

∂y
− 2τ

(1)
xx

∂u(1)

∂x
− 2τ

(1)
xy

∂u(1)

∂y
) = 2µ

∂u(2)

∂x
, (35)

τ
(2)
xy + λ(u(1) ∂τ

(1)
xy

∂x
+ v(1)

∂τ
(1)
xy

∂y
− τ

(1)
xx

∂v(1)

∂x
− τ

(1)
yy

∂u(1)

∂y
) = µ(

∂v(2)

∂x
+

∂u(2)

∂y
), (36)

τ
(2)
yy + λ(u(1) ∂τ

(1)
yy

∂x
+ v(1)

∂τ
(1)
yy

∂y
− 2τ

(1)
yy

∂v(1)

∂y
− 2τ

(1)
xy

∂v(1)

∂x
) = 2µ

∂v(2)

∂y
, (37)

u(2) = −
√

k
γ

∂u(2)

∂y
, v(2) = 0, at y = H, (38)

∂u(2)

∂y
= 0, v(2) = 0, at y = 0, (39)∫ H

0 (u(2)(0, y)) dy = 0, at x = 0. (40)

We consider ψ(2)(x, y) as

u(2) =
∂ψ(2)(x, y)

∂y
, v(2) = −∂ψ(2)(x, y)

∂x
. (41)

Equation (32) is satisfied identically. Using the first order solution (29)–(31) in Equations (35)–(37)
and then eliminating pressure from Equations (33) and (34), the resulting equation in terms of stream
function becomes

∇4ψ(2) = 0, (42)
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The boundary conditions at this order take the following form

∂ψ(2)

∂y
= −
√

k
γ

∂2ψ(2)

∂y2 ,
∂ψ(2)

∂x
= 0, at y = H, (43)

∂2ψ(2)

∂y2 = 0,
∂ψ(2)

∂x
= 0, at y = 0, (44)

ψ(2)(0, H) = 0, ψ(2)(0, 0) = 0. (45)

The solution of the system of Equations (42)–(45) becomes zero due to the homogeneous boundary
conditions for any supposed form of ψ(2)(x, y). Therefore,

ψ(2) = 0, (46)

u(2) = 0, (47)

v(2) = 0, (48)

Thus, at this order, we do not see any contribution of Newtonian or viscoelastic effects towards
the velocity field.

3.3. System of Equations for the 3rd Order

Equating terms involving ε3 and the obtained system of equations along with boundary
conditions are

∂u(3)

∂x
+

∂v(3)

∂y
= 0, (49)

∂p(3)

∂x
=

∂τ
(3)
xx

∂x
+

∂τ
(3)
xy

∂y
, (50)

∂p(3)

∂y
=

∂τ
(3)
xy

∂x
+

∂τ
(3)
yy

∂y
, (51)

τ
(3)
xx + λ(u(1) ∂τ

(2)
xx

∂x
+ v(1)

∂τ
(2)
xx

∂y
− 2τ

(2)
xx

∂u(1)

∂x
− 2τ

(2)
xy

∂u(1)

∂y
+ u(2) ∂τ

(1)
xx

∂x
(52)

+v(2)
∂τ

(1)
xx

∂y
− 2τ

(1)
xx

∂u(2)

∂x
− 2τ

(1)
xy

∂u(2)

∂y
) = 2µ

∂u(3)

∂x
,

τ
(3)
xy + λ(u(1) ∂τ

(2)
xy

∂x
+ v(1)

∂τ
(2)
xy

∂y
− τ

(2)
xx

∂v(1)

∂x
− τ

(2)
yy

∂u(1)

∂y
+ u(2) ∂τ

(1)
xy

∂x
(53)

+v(2)
∂τ

(1)
xy

∂y
− τ

(1)
xx

∂v(2)

∂x
− τ

(1)
yy

∂u(2)

∂y
) = µ(

∂u(3)

∂y
+

∂v(3)

∂x
),

τ
(3)
yy + λ(u(1) ∂τ

(2)
yy

∂x
+ v(1)

∂τ
(2)
yy

∂y
− 2τ

(2)
yy

∂v(1)

∂y
− 2τ

(2)
xy

∂v(1)

∂x
+

∂τ
(1)
yy

∂x
(u(2)) (54)

+
∂τ

(1)
yy

∂y
(v(2))− 2τ

(1)
yy

∂v(2)

∂y
− 2τ

(1)
xy

∂v(2)

∂x
) = 2µ

∂v(3)

∂y
,

u(3) = −
√

k
γ

∂u(3)

∂y
, v(3) = 0, at y = H, (55)

∂u(3)

∂y
= 0, v(3) = 0, at y = 0, (56)∫ H

0 (u(3)(0, y)) dy = 0, at x = 0. (57)
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The ψ(3)(x, y) in the third order is define as

u(3) =
∂ψ(3)(x, y)

∂y
, v(3) = −∂ψ(3)(x, y)

∂x
. (58)

Equation (49) is satisfied identically. On substituting the first order solution (29)–(31) and the
second order solution (46)–(48) along with Equation (58) into the third order system (53)–(55) and then
eliminating the pressure by cross differentiation of Equations (50) and (51), we arrive at Equation (59).

∇4ψ(3) = −
72b1

3λ2V2
0

H2

(
Q0

2W
− xV0

)(
y3

H7

)
, (59)

Similarly,

∇4ψ(3) = −72b1
3δ2
(

Q0

2W
− xV0

)(
y3

H7

)
, (60)

where δ = λV0
H is the Maxwell fluid parameter. The boundary conditions at this order are

∂ψ(3)

∂y
= −
√

k
γ

∂2ψ(3)

∂y2 ,
∂ψ(3)

∂x
= 0, at y = H, (61)

∂2ψ(3)

∂y2 = 0,
∂ψ(3)

∂x
= 0, at y = 0, (62)

ψ(3)(0, H) = 0, ψ(3)(0, 0) = 0. (63)

For the solution of Equations (60)–(63), we supposed the ψ(3) as

ψ(3) = −72b1
3δ2(

Q0

2W
− xV0)

(
M(3)(y)

)
+
(

N(3)(y)
)

, (64)

where M(3)(y) and N(3)(y) are unknowns and obtained after considerable calculations in utilizing
Equation (64) in Equations (60)–(63) as

M(3)iv
(y) =

y3

H7 , (65)

M(3)(0) = M(3)(H) = M(3)
′′
(0) = 0, M(3)

′
(H) = −

√
k

γ
M(3)

′′
(H), (66)

N(3)iv
(y) = 0. (67)

N(3)(0) = N(3)(H) = N(3)
′′
(0) = 0, N(3)

′
(H) = −

√
k

γ
N(3)

′′
(H). (68)

Solving Equations (65)–(68), we obtain

M(3)(y) =
1

840

( y
H

)7
− 3b1b3

840

( y
H

)3
+

2b1b4

840

( y
H

)
, (69)

N(3)(y) = 0. (70)

where b3 = 1 + 7φ, b4 = 1 + 9φ.
Using Equations (69) and (70) in Equation (64), ultimately, we have

ψ(3) = − 3
35

b1
3δ2(

Q0

2W
− xV0)

(( y
H

)7
− 3b1b3

( y
H

)3
+ 2b1b4

( y
H

))
, (71)
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u(3) = − 3
35H

b1
3δ2(

Q0

2W
− xV0)

(
7
( y

H

)6
− 9b1b3

( y
H

)2
+ 2b1b4

)
, (72)

v(3) = − 3
35

b1
3δ2V0

(( y
H

)7
− 3b1b3

( y
H

)3
+ 2b1b4

( y
H

))
, (73)

The contribution of δ is observed in the solution obtained in the third order for velocity field,
which is the key parameter of investigation of the present study.

Summing up all the obtained solutions, we have

ψ =
1

35
( Qo

2W
− xV0

)(
− 3b1

3δ2
( y

H

)7
+
(
− 35b1

2
+ 9b1

4b3δ2)( y
H
)3 (74)

+
(105b1b2

2
− 6b1

4b4δ2)( y
H
))

,

u =
1

35H
( Qo

2W
− xV0

)(
− 21b1

3δ2
( y

H

)6
+ 3
(
− 35b1

2
+ 9b1

4b3δ2)( y
H
)2 (75)

+
(105b1b2

2
− 6b1

4b4δ2)),

v =
V0

35

(
− 3b1

3δ2
( y

H

)7
+
(
− 35b1

2
+ 9b1

4b3δ2)( y
H
)3 (76)

+
(105b1b2

2
− 6b1

4b4δ2)( y
H
))

,

Equations (75)–(77) give the expression of velocity profile strongly influenced by slip parameter φ

and Maxwell parameter δ for creeping Maxwell fluid flow through a permeable slit.
Here, we present the expressions for remaining flow properties.

(a) The axial velocity is maximum along the center line of the slit as

umax =
1

35H

(
Q0

2W
− xV0

)(
105b1b2

2
− 6b1

4b4δ2
)

. (77)

(b) The maximum radial velocity occurs at the slit walls, i.e.,

vmax =
V0b1

70

(
− 35 + 105b2 + 6b1

2(−1 + 3b1b3 − 2b1b4)δ
2
)

. (78)

(c) The axial flow rate is obtained using the summarized solution as

Q(x) = 2W
∫ H

0
(u(x, y))dy,

=
b1(Q0 − 2WV0x)

70
(
− 35 + 105b2 + 6b1

2(−1 + 3b1b3 − 2b1b4)δ
2). (79)

Here, the dependence of Q(x) on δ is only due to the presence of φ, if φ = 0 then

Q(x) =
(
Q0 − 2WV0x

)
(d) The leakage flux q(x) is obtained as

q(x) = −dQ
dx

,

=
b1WV0

35

(
−35 + 105b2 + 6b1

2(−1 + 3b1b3 − 2b1b4)δ
2)
)

. (80)



Mathematics 2020, 8, 1852 10 of 22

(e) The fractional reabsorption Fa is obtained as

Fa =
1

Q(0)
(
Q(0)−Q(L)

)
,

=
2LWV0

Q0
. (81)

The contribution of δ in leakage flux q(x) is only due to φ and Fa is only influenced by
absorption parameter.

(f) Pressure Distribution

Here, we will find out the pressure for each order by utilizing Equations (30) and (31) into
Equations (15)–(17) to get the pressure for the first order

∂p(1)

∂x
= −3b1µ (Q0 − 2WxV0)

2H3W
, (82)

∂p(1)

∂y
= −3b1µyV0

H3 . (83)

Equation (82) on integration with respect to x yields

p(1) = −
3b1µ

(
xQ0 −Wx2V0

)
2H3W

+ B(y), (84)

where the unknown function B(y) is to be determined as follows:
Differentiating Equation (84) with respect to y, and on comparing with Equation (83), gives

B′(y) = −3b1µyV0

H3 , (85)

Then, Equation (84) becomes

p(1) − p(1)0 = −
3b1µ

(
xQ0 −Wx2V0

)
2H3W

− 3b1µy2V0

2H3 , (86)

where p(1)0 = p(0, 0) is the pressure at (x, y) = (0, 0), i.e., the entrance region of the slit.
The mean pressure is obtained as

p̄(1)(x) =
1
H

∫ H

0
(p(1) − p(1)0 )dy,

=
b1µ

2H

(
3x (WxV0 −Q0)

H2W
−V0

)
, (87)

The pressure drop over slit length L is obtained as

∆ p̄1(L) =
(

p̄1(0)− p̄1(L)
)
,

=
3b1µL (Q0 − LWV0)

2H3W
. (88)
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Similarly, we can obtain

p(2) − p(2)0 =
3b2

1δµ

2H

(
3b2x (−Q0 + Wxv0)

H2W
− 3b2v0

( y
H

)2
+ 2v0

( y
H

)4
)

, (89)

p̄(2)(x) =
3b2

1δµ

10H

(
15b2x (−Q0 + Wxv0)

H2W
+ (2− 5b2)v0

)
, (90)

∆ p̄2(L) =
9b12b2Lδµ (Q0 − LWv0)

2H3W
(91)

p(3) − p(3)0 =
9b3

1δ2µ

70H

(
− 28V0

( y
H
)6

+ (3
(
−35b2

2 + 2b1b3

)
V0)

( y
H

)2

− 3x (Q0 −WxV0)

H2W
(
(

35b2
2 − 2b1b3

)
)

)
, (92)

p̄(3)(x) =
9b3

1δ2µ

70H

(
3x (Q0 −WxV0)

H2W
(−35b2

2 + 2b1b3) +
(
− 4

−35b2
2 + 2b1b3

)
V0

)
(93)

∆ p̄3(L) =
27b3

1Lδ2µ (Q0 − LWv0)

70H3W

(
35b2

2 − 2b1b3

)
(94)

Here, we note that the pressure field has considerable contribution from viscoelastic effect for
the second order even though the velocity field had zero contribution at that order.

The summarized forms of total pressure difference, mean pressure and pressure drop are given as

p(x, y)− p(0, 0) =
3b1µv0

70H

(
− 84b1

2δ2
( y

H

)6
+ 70b1δ

( y
H

)4
+
(
− 35− 105b1b2δ

+
(
−315b1

2b2
2 + 18b1

3b3

)
δ2)) ( y

H

)2
)
+

3b1xµ (Q0 −Wxv0)

70H3W

(
− 35− 105b1b2δ +

(
−315b1

2b2
2 + 18b1

3b3

)
δ2
)

(95)

p̄(x) = b1µ

(
3x (Q0 −Wxv0)

70H3W
(
− 35− 105b1b2δ +

(
− 315b1

2b2
2

+ 18b1
3b3
)
δ2)+ v0

70H
(
− 35 + (42b1 − 105b1b2)δ + 9b1

2(− 4− 35b2
2

+ 2b1b3
)
δ2)) (96)

∆ p̄(L) =
3b1Lµ (−Q0 + LWv0)

70H3W

(
− 35− 105b1b2δ +

(
− 315b12b22

+ 18b13b3
)
δ2
)

(97)

We noticed that p(x, y), ∆ p̄(L) and p̄(x) are varying with slip coefficient φ, and Maxwell
parameter δ. In the limiting case, when φ = 0, δ = 0, we recovered the exact expressions
of p(x, y), ∆ p̄(L) and p̄(x) of a Newtonian fluid [15].

(g) The wall shear stress is obtained as

τw = −τxy|y=H =
3b1µ (Q0 − 2WxV0)

70H2W
(
35 + 35b1(−4 + 3b2)δ + 9b1

2(28 + 35b2
2

− 2b1b3
)
δ2). (98)
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(h) The expressions for normal stress differences are given as

τn = τxx − τyy =
3b1µv0

70H

(
1596b1

2δ2( y
H
)6 − 35b1

(
− 4δ + 144b1b2δ2

+
9b1δ2(Q0 − 2Wxv0

)2

H2W2v02

)( y
H
)4

+
(
140− 420b1b2δ− 72b1

2(− 70b2
2

+b1b3
)
δ2 +

105b1δ
(
Q0 − 2Wxv0

)2

H2W2v02

)
( y

H
)2 − 140b2 − 4b1

2(315b2
3 − 4b1b4

)
δ2
)

(99)

τn|y=H =
3b1µv0

70H

(
− 140(−1 + b2) + 140b1(1− 3b2)δ + 4b1

2(399

− 315(−2 + b2)
2b2 − 18b1b3 + 4b1b4

)
δ2

−105b1δ(−1 + 3b1δ) (Q0 − 2Wxv0)
2

H2W2v2
0

)
, (100)

τn|y=0 =
3b1µv0

70H

(
− 140b2 + 4b1

2
(
−315b2

3 + 4b1b4

)
δ2
)

. (101)

4. Discussion

In the present article, we have successfully implemented the recursive approach to linearize
the full momentum equations describing the incompressible slow flow of a Maxwell fluid between
two porous walls and analytical solutions for stream function, velocity components, total pressure
difference, explicit expressions for normal and shear stresses, volumetric flow rate, fractional absorption
and leakage flux are calculated. To predict the impact of pertinent parameters like absorption parameter
K, slip parameter φ and Maxwell fluid parameter δ on flow variables, we first used the following
dimensionless parameters and then we established different graphs after removing star along the three
different places along slit length, i.e., entrance region (x = 0.1), middle region (x = 0.5) and exit region
(x = 0.9).

x∗ =
x
H

, ζ =
y
H

, u∗ =
u

Q0/WH
, v∗ =

v
Q0/WH

,

p∗ =
p

µV0/H
, τ∗ ij =

τij

µV0/H
K = 2HWV0

Q0
, Q∗(x) = Q(x)

Q0
.

(102)

Figures 2–4 are drawn to see the impact of porosity K on u(ζ) for the creeping flow of Newtonian
and non-Newtonian (Maxwell) fluids. It is justified that when we increase the value of porosity K,
the wall permeability increases and more fluid passed through the slit walls which causes an increase
in magnitude of the seepage velocity. Keeping this fact in mind, we see that these figures depicted
a decrease in axial velocity u(ζ) on increasing porosity K and the magnitude of axial velocity also
reduces downstream throughout the channel. For large values of K, a reversal flow may occur near the
exit region of the slit. A standard parabolic velocity profile for Poiseuille flow in the absence of porosity
throughout the channel is also observed in Figure 2. An increase is also observed in magnitude of axial
velocity profile due to the presence of φ in Figure 4. A clear difference can be observed in velocity
profiles for slow flow of Newtonian and Maxwell fluids in Figures 3 and 4.
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Figure 2. Behavior of u(ζ) with K at (a) x = 0.1, (b) x = 0.5, (c) x = 0.9, when φ = δ = 0.0.
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Figure 3. Behavior of u(ζ) with K at (a) x = 0.1, (b) x = 0.5, (c) x = 0.9, when φ = 0.2, δ = 0.0.

Figures 5 and 6 show the impact of Maxwell fluid parameter δ on the axial velocity u(ζ) of
creeping Maxwell fluid with and without slip parameter, keeping K = 0.2. It is viewed that on
increasing value of δ, the shear thickening property is observed along the centerline of the slit as axial
velocity u(ζ) decreases along the centerline of the slit and due to reabsorption and slip effects on the
slit wall, the shear thinning property of the fluid near the wall is observed as u(ζ) increases near the
slit wall. An increase in the magnitude of u(ζ) can be seen due to parameter φ in Figure 6.
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Figure 4. Behavior of u(ζ) with K at (a) x = 0.1, (b) x = 0.5, (c) x = 0.9, when φ = δ = 0.2.
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Figure 5. Behavior of u(ζ) with δ at (a) x = 0.1, (b) x = 0.5, (c) x = 0.9, when K = 0.2, φ = 0.0.

Figures 7 and 8 reveal the impact of parameter φ on u(ζ) in Newtonian and non-Newtonian cases.
It is viewed that the velocity of fluid at the boundary is not the same velocity with fluid particles closet
to the wall. In both cases with increasing the slip parameter φ, u(ζ) increases. The variation in the
radial velocity component v(ζ) can be seen in Figure 9 and we have observed that v(ζ) increases as we
increased the parameters K and φ, whereas it is decreasing due to δ.
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Figure 6. Behavior of u(ζ) with δ at (a) x = 0.1, (b) x = 0.5, (c) x = 0.9, when K = 0.2, φ = 0.1.
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Figure 7. Behavior of u(ζ) with φ at (a) x = 0.1, (b) x = 0.5, (c) x = 0.9, when K = 0.2, δ = 0.0.
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Figure 8. Behavior of u(ζ) with φ at (a) x = 0.1, (b) x = 0.5, (c) x = 0.9, when K = 0.2, δ = 0.2.
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Figure 9. Behavior of v(ζ) with (a) K when φ = δ = 0.2, (b) δ when K = φ = 0.2, (c) δ when
K = φ = 0.2.

Figures 10–12 are drawn to show the impact of pertinent parameters on pressure p(x, y),
shear stress τw and normal stress difference τn of a creeping Maxwell fluid. It is noted that in Figure 10,
the pressure difference is increasing due to K and decreasing downstream on increasing δ and φ,
whereas Figure 11 illustrate that the wall shear stress τw has opposite effects as compared to pressure
difference due to these parameters.
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Figure 10. Behavior of p(x, 0)− p(0, 0) due to (a) K when φ = δ = 0.2, (b) δ when K = δ = 0.2, (c) φ

when K = δ = 0.2.
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Figure 11. Behavior of τw with (a) K when φ = δ = 0.2, (b) δ when K = δ = 0.2, (c) φ when K = δ = 0.2.

It is also noted in Figure 12a that porosity K does not affect the normal stress difference τn away
from boundaries but τn decreases near the walls with K and also in Figure 12b,c τn decreases on
increasing δ and φ. Figure 13 shows the variation of Q(x) and it is depicted that Q(x) decreases as we
increased porosity K whereas it is increasing as we increase parameters δ and φ.
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Figure 12. Behavior of τn due to (a) K when φ = δ = 0.2, (b) δ when K = δ = 0.2, (c) φ when
K = δ = 0.2.
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Figure 13. Behavior of Q(x) due to (a) K when φ = δ = 0.2, (b) δ when K = δ = 0.2, (c) φ when
K = δ = 0.2.

5. Conclusions

In this article, we have presented the slow flow of a Maxwell fluid through the permeable slit
under the influence of a slip condition and the recursive approach is consider to get an analytical
solution. The key features of the current investigation were the impact of parameters K, φ and δ on
flow variables involved. Moreover, the recursive approach is used for the first time to deal with a rate
type Maxwell fluid creeping flow and the obtained results are very similar to existing results presented
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by [15] in a limiting case with certain restricted conditions. The following outcomes are drawn from
this study:

1. If the Maxwell fluid parameter δ = 0 and slip parameter φ = 0, then results obtained by Haroon [15]
are recovered.

2. The axial velocity u(ζ) of creeping Maxwell fluid decreases downstream along the slit length on
increasing porosity K and also for increasing values of K, backward flow can be seen near the exit
region of the slit.

3. The axial velocity profile has an increasing behavior near the slit walls and its decreasing trend is
observed along the centerline of the slit with increasing δ.

4. The shear thickening and thinning behavior of the Maxwell fluid is observed along centerline
and near the walls of the slit, respectively.

5. Along the slit length, the magnitude of u(ζ) decreases as the fluid moves from the entrance to
exit region of the slit.

6. An increase in axial velocity of a creeping Maxwell fluid is observed due to the increasing value
of φ.

7. The slip parameter φ significantly influenced the magnitude of axial and radial velocities in
comparison to other parameters.

8. A decreasing trend in pressure profile for increasing values of φ and δ, whereas pressure is
increasing with increasing porosity parameter K.

9. The wall shear stress τw is increasing significantly by increasing δ and φ, but with K and τw

decreasing.
10. The contribution of δ in axial flow rate and leakage flux is only due to the presence of a slip

parameter φ.
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Abbreviations

The following abbreviations are used in this manuscript:

u, v Components of velocity field
x, y Cartesian coordinates
L Length of the slit
H Width of slit
W Breadth of slit
V0 Uniform velocity
Q Axial flow rate at any point x
µ Coefficient of viscosity
λ fluid relaxation time
δ Maxwell fluid parameter (Deborah number)
K Porosity parameter
φ Slip parameter
ψ Stream function
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p(x, y) Pressure in the slit
τw Wall shear stress
τn Normal stresses difference
q(x) Leakage flux
Fa Fractional reabsorption
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