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Abstract: In this paper, the functional dynamic equation of second order is studied on an arbitrary
time scale under milder restrictions without the assumed conditions in the recent literature.
The Nehari, Hille, and Ohriska type oscillation criteria of the equation are investigated. The presented
results confirm that the study of the equation in this formula is superior to other previous studies.
Some examples are addressed to demonstrate the finding.
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1. Introduction

In order to combine continuous and discrete analysis, the theory of dynamic equations on time
scales was proposed by Stefan Hilger in [1]. There are different types of time scales applied in many
applications (see [2]). The cases when the time scale T as an arbitrary closed subset is equal to the
reals or to the integers represent the classical theories of differential and of difference equations.
The theory of dynamic equations includes the classical theories for the differential equations and
difference equations cases and other cases in between these classical cases. That is, we are eligible
to consider the g-difference equations when T =¢™0 := {g* : k € Ny for 4 > 1} which has significant
applications in quantum theory (see [3]) and different types of time scales like T =hN, T = N? and
T = T}, (the set of the harmonic numbers) can also be applied. For more details of time scales calculus,
see [2,4,5]. The study of nonlinear dynamic equations is considered in this work because these
equations arise in various real-world problems like the turbulent flow of a polytrophic gas in a porous
medium, non-Newtonian fluid theory, and in the study of p—Laplace equations. Therefore, we are
interested in the oscillatory behavior of the nonlinear functional dynamic equation of second order
with deviating arguments

@y ()] + a5 (2(r(@)) =0 )

on an above-unbounded time scale T, where @, (u) := |u|*sgnu, « > 0; a and q are positive
rd-continuous functions on T such that

[ @

cﬁ(w)

and 77 : T — T is a rd-continuous function such that lim;_,, 7({) = 0.
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By a solution of Equation (1) we mean a nontrivial real-valued function z € C1,[(z, c0)t for some
- > (o with {o € T such that z%,a(0) ¢, (z*(7)) € CL4[Zz o)1 and z({) satisfies Equation (1) on
[C2, 00)1, where C,q is the space of right-dense continuous functions. It should be mentioned that in a
particular case when T = R then

b b

0(€) =& n(0) =080 =@, [ s@az= [ s,

and (1) turns as the nonlinear functional differential equation

[a(D) ey (2(2))] +a(D)ep (2(5(2))) = 0. ©)

The oscillation properties of Equation (3) and special cases were investigated by Nehari [6], Fite [7],
Hille [8], Wong [9], Erbe [10], and Ohriska [11] as follows: The oscillatory behavior of the linear
differential equation of second order

2"(0) +4q(0)z(g) =0, )
is investigated in Nehari [6] and showed that if
1 /¢ 1
liminf — 2g()dme > =, 5
minfz | ~a(=) 1 ®)

then all solutions of (4) are oscillatory. Fite [7] proved that if

/;qw)dw — (6)

0

then all solutions of Equation (4) are oscillatory. Hille [8] developed the condition (6) and illustrated
that if

Je'e) 1
lignlg}fé/g g(=)dme > 7 (7)
then all solutions of Equation (4) are oscillatory. For the delay differential equation

2"(2) +4(0)z(n(2)) =0, )

the Hille-type condition (7) is generalized by Wong [9], where #({) > y{ with 0 < ¢ < 1, and showed
that if

© 1
lim inf x)dw > —, 9
minf¢ |, q(~=) iy €)
then all solutions of (8) are oscillatory. Erbe [10] enhanced the condition (9) and examined that if
lign;i;lf@/é q(w)@doo > %, (10)

then all solutions of (8) are oscillatory where 77({) < ¢. Ohriska [11] proved that, if

1) e > 1, (11)

o

limsup{ ; g()

{—00

then all solutions of (8) are oscillatory.
When T = Z, then

b—1

o) =T+ 1, 1(0) = 1, £40) = £3(0), [ $(0AL= Y. 5(0),

a g:u
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and (1) turns as the nonlinear functional difference equation

Ala(Q) ey (Az(0))] +4q(0)ep (z(1(F))) = 0. (12)

The oscillation of Equation (12) when a({) = 1, #({) = ¢, and v = B is the quotient of odd positive
integers was elaborated by Thandapani et al. [12] in which g({) is a positive sequence and showed
that every solution of (12) is oscillatory, if

We will examine that our results not only unite some of the known oscillation results for
differential and difference equations but they also can be applied on other cases in which the oscillatory

behavior of solutions for these equations on various types of time scales was not known. Note that,
if T =hZ,h > 0, then

o(Q) = C+h p(Q) = h, Q) = Myz(Q) = w
/b ()AL = ki g(a+kh)h,
! =0

and (1) turns as the nonlinear functional difference equation

Ay [a(0) @y (Biz(D))] + (D) pp (z(n(2))) = 0. (13)
Tf
T=q" ={7:7=4q" keNy, q>1},

then
o) =98 u@) = (g-17, 2%(0) = 8z2(0) = (2(90) —2()) /(- 1),
./;g(é)Aé = kfj g(q)u(d"),

where ty = 4", and (1) turns as the second order g—nonlinear difference equation

Ag [a(D) @y (842(0))] +9(D) e (2(3(0))) = 0. (14)
1f
T =N := {n?:nc Ny},

then
2(VT+1)?) —z(0)
1+2yC ’

7(8) = (VT+1)% u() =1+2v7, Anz(0) =

and (1) turns as the second order nonlinear difference equation

AN [a(8) ey (Anz(D)] +q(8)9p (2(1(8))) = 0. (15)

If T = {Hy, : n € No} where H, is the harmonic numbers defined by
|
Hy=0, H, = —, n €N,
0 n k:Zl k

then
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L Z
n+1’

and (1) turns as the second order nonlinear harmonic difference equation

o(Hy) = Hys1, p(Hy) = At) = Ap,z(Hy) = (n+1)Az(Hy),
An, [a(Hn) @y (Ap,z(Hn))] + q(Hn)@p (z(1(Hy))) = 0. (16)

For dynamic equations, Erbe et al. in [13,14] expanded the Hille and Nehari oscillation criteria to the
half-linear delay dynamic equation of second order

(@@ )M +a(0)2"(1(0) =0, (17)
where 7 is a quotient of odd positive integers,
10 <8 a0, [ a"(©a(6)a; = e (18)
0
The authors showed that if either of the following conditions holds
liminf¢” [~ (=) ULl VO (19)
imin — B r——
e Jo ! () 17 (y + 1)1’

or

s 'yoo 77("")7 ~-1€'y+1 77("")7 1
hgrig}fg /a(g)q(w)(a(w)) Aoo+l1€n;g)1f€ gow 9(~) () A$>l'r(“r+l)'

where [ := liminf; . aé), then all solutions of (17) are oscillatory. We refer the reader to related

results [15-35] and the references cited therein.

A natural question now is: Do the oscillation criteria (5), (6), (7) and (11) for the differential
equations of second order by Nehari, Fite, Hille and Ohriska extend to the nonlinear dynamic equation
of second order (1) without the restrictive condition (18) in both cases #({) < and ({) > ¢, and when
p>7yandp <.

The aim of this paper is to propose an obvious answer to the above question. We will establish
Nehari, Hille and Ohriska type oscillation criteria for (1) without imposing the restrictive condition
(18), which generalize and improve the aforementioned results in the literature.

2. Oscillation Criteria of (1) when 8 > ¢

In the subsequent results, we will use the subsequent notations

_ [ A~ g 0
A(Q) = 5 a%(w) and l.-llgrg}glfmgl,

and

- { 1, , () >¢,
$(0) =1 (A
( AQ) ) SR A

Furthermore, [ > 0 is assuming in the next results.
First, we derive Nehari type to the nonlinear dynamic equation of second order (1).

Theorem 1. Let (2) holds, and
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liminf /gfﬁ“ (=) p()q () Do > LI 0<y<1

ey A(Q) Jr Pi)a 17(r+1) yir+1)’ = 20)
1 /¢ Y

. r+1 _

hgnlg}f A0 Jr AT () () g(e) A > RO (7 11 v>1,

for enough large T € [{o, 00). Then all solutions of Equation (1) are oscillatory.

Proof. Assume z (t) is a nonoscillatory solution of Equation (1) on [{p, ). Thus, without loss of
generality, let z({) > 0 and z(77({)) > 0 on [{p, o). Since g € Cq ([{o, o)1, RT) and then

[e@y (2©)]" <0 forg >0

Hence z2() > 0, otherwise, it leads to a contradiction. Define

W0 - <a<a>¢w<zﬁ<a>>>/3

= — 53 [2@0r (2@)] @)

From (1) and the definition of w({), we have

sp (2@ E@)®
() = () 1 @00 - E w0,

Since z% > 0, then z () > z({g) for { > {o and so

Therefore,

P=7(0) > 2P7(gy) = k>0 for > (.
@)\ @)
i (FEEY ) - EXE 0.

Let { € [Co, o)1 be fixed. If #({) > , then z( (7)) > z(Q) by the fact that z* > 0. Now the case
1(¢) < {is considered. Since (a ¢, (z A)) < 0 on [gp, o), we achieve

20 2 20 -2(0) = [ 2)ae

> QA /; Are
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Therefore

< 0 g € gO/ OO)T'
So there exists a {1 € (o, o)t such that #(Z) € (Lo, c0)7 for { > {7 and so

z(n(Q) o A((L))
= A

Q) = A st
In both cases and from the definition of ¢({) we have that
2(n(0)
(FUE) =000 @)
and so A
@0 < k(@) — L0 0@©), T o @)

Then by using the Potzsche chain rule ([2], Theorem 1.90), we get that

@@ = ([ o+ me2] ) 20

7 ([ 10wz + i@ an) 2

{ v (@(2)) 28 (D), 0<y<1
1282 (D), v>1

If0 < v <1, then

A
W (@) < k9@ -1 2 (20 T o0

and if v > 1, then
Z2(0) z(0())
T20@) =@ ¢

Note that z* > 0 and (a ¢, (ZA))A < 0on [{1,)T, we see for 7 > 0,

A
WO < kPN 7 (0O

< —kp(Q)q(Q) —ya QW T (0(0), € (G, (24)

wh(Z) < —k ¢(2)q(Z) —

Multiplying both sides of (24) by A7*! ({) and integrating from s to { € [{2,0)T, we get

éA'Y“(oO)wA(oO)Aoo < —k éAVH(oo)cp(w)q(rw)Aoo

) 0
1 [ (A7 (< () T

By integration by parts, we have
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Using the Potzsche chain rule, we arrive

A 1 !
(A7) = () [ TAG) + () AN s
1
= D) [ 1) AG) 4 A ()] s

AT (0(<)) -

< V=T

Hence

AT Qw(@) < A"“(@z)W(éz)—/;A”“(WW(*M(W)A*

¢ 1 AR
+(’y+l)/§2 al/'Y(oo)[ A() ] AY()w (o(»)) A

¢ 1 A ( +1 A
— . — o ®))) T Ane.
v [} s (AT ) e (o)
It follows that w?(Z) < 0 on [{1,0)7. Let & > 0, then we choose {» € [{1,00), enough large, so for

g € [€2/ OO)T/

AT (Qw(o(f)) = as—¢, (26)
and AQ)
Al =" )
where a, is defined by
4y = lignian'y(é)w (c()) < 1. (28)

By (27), we then get that

A Qw(D) < AT ()w(Ta) — k /j AT (o) () () e

F+1

+/gj al/vl(oo) {(7_—:;7 AT () w (0(*)) =7 (AT () w (0(<))) 7 | A

Using the inequality
pan ,YW yr+1
Yu—Xu 7 < (y+ 1)+ X7

(29)

v+1
(I—¢)"

withX =9,Y = and u = A7 (=) w (0()), we get
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AT Qw@) < ATTHG)w(l2) —k ;A”l(*)(P(*)q(*)A*
1

+W [A(Q) — A(G2)]-

Dividing both sides by A((), we obtain

w ATTH@)w(@2) k[ 1y (o) (o) A
a@ie) < MG S A ) pn)n
1 {1_1‘1(52)]
(1—¢)70r*D AQ) |

_|_

Since w” () < w({) we get

AT G)w(l) k[t
A(() CAQ) e,

1 A(G2)
+( g)7(r 1) [1 A(C)]

AY(Qw (e(g) < AT () () () A

Taking the lim sup of both sides as { — co we get

ko 1
Av < ~liminf o /é AT a0 bt
where
Ay :=limsup A" (Q)w (¢(0)) -
{—o0
Since k, € > 0 are arbitrary constants, we obtain
g
Ay < — ligrr_lglfAzg) . AT (o) () () A + Z”Y(“Y%l) (30)
Now, multiplying both sides of (24) by A7*1(7), we get
AL QA (Q) < —k AT Q) (D)g(Q) — ya VIOAT (@) W' (0(D))
= —ATH) ¢(0a(D)
ya QAT (§)w (0(Z)) A(Q)wT (0(0)).
Using (26) gives
AT wh(Q) < —k ATTH(Q) 9(0)q(0) — 8~V 7(Q), € (G2 00), (31)

where ¢ = 7 (a, — e)1+%. Integrating the inequality (31) from ¢, to { € [{2, o)1, we get

4 4 ¢
AT () B () A < —k : AT (%) P(=)q(=)An — 0 : a_1/7(o0)Aoo.
02 2 2

Using integrating by parts, we get
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AT Q) < A @@+ [ 47 ()] e () ae

k ; AT () p()q () — BA() — A(L)]. 2)

We consider the forthcoming two cases:

(I) When 0 < v < 1. Using the product rule, we have

471 ()] = (47 (%) A (2)]* = (A7 ()] A () + AT (0 () A® ().

Again use the Potzsche chain rule, we get

(A7 (%) = 'r(/; [A () + () AL (w)rldh> AP ()
= ([ 10-1 A=) +hA ()7 dn) A% (<)
< gAY () AR ().
Then A
(A7 ()] < (7T (%) + AT (0 (%)) A% ().
and so
AT Q@) < AT (G) wh(G)
+ [ AT () 4 A7 (0 () A% (<) 0 (<)) b

_k/ AT (00) () () Are — B [A(T) — A(L2)]
= AT () wh (%)

(0 (=)
+/€2 (w{ yies } )AA(oo) AT (%) (0 () A
k[ AT () p(q)0%) — BA() - A(G)
AT (@) wh(Ga) + 1+ gy | (A +9) QD) — A(Ga)

IN

kLA ) p(q()0) — 9 1A() - A G

Dividing both sides by A({), we have
AT (L) wh(8a)

A
g e - 46

k z A((2)
_@/z AT (0) () () Ao — O {1 -5 } .

Taking the lim sup of both sides as { — oo and using (2), we get

AT (Qw (@) < AT (Dw(l) <
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1 .. k ¢
Ay < [’Y + M] (Ax+¢) — hgn;g}fm /2 AT+ () ¢()g(=)Ax — 0.

Since k and € > 0 are arbitrary constants, we achieve the demanded inequality

liérgglngg) /j AT (0) ()q() A < A, [’y 14 H e

1
v

From (30) and (33), we obtain

1t 1 i
s e L r+1 < —
hgrii?fA(g) . AT (o) () g(me) Are < ey (1 YT T 1) ,

which contradicts the condition (20) if 0 < y < 1.
(I) When y > 1. Using the product rule, we have

A

(A7 ()] = [A7 (%) A (#)]* = [A7 (#)]* A (0 (%)) + AT (%) A% ().

Again by the Pttzsche chain rule we obtain
A 1 A 71 A
(AT (=) = 7 /0 [A (o) + hp()A (00)} dh ) A% (=)

- (/01 [(1—h) A(=)+hA (a(w))]v—ldh> AB ()
< AT (0 () AR ().
Then A
(A1 ()] < (vAT (0 () + A7 () A® ().

and so

AT w@) < AT () wh(0)
+ /; (YA (0 () + AT (%)) A% (%) w (07 (%)) A

k[ AT () ()0 — BA) - A
= AT() wh (%)
CCTALEDTT 1 48 ) AT ) (o) A
(7| AEE] )t a7 e (e

© it
—k | AT () p(=)g(=) D) =B [A(L) — A(G2)]

0
<A@ @) + (gl +1) (4 + 9 1A - A
k[T () 90 = BIA() - AG).

Dividing both sides by A((), we have

10 of 19

(33)
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ATTH(Z) wh(2) Y _A)
AT Q) < oL +(( +1) (4 +e) [1- Z&)]

_AZ{C) /; AT (00) (o) () Aot — B [1 _ ‘Z(%] .

Taking the lim sup of both sides as { —+ o0 and by (2), we obtain

¢
Ay < <(l’)/€>,y + 1> (Asx+¢) — lign_l}i{)lfAl(}) /Cz AT (0) () g() A — 8.

Since k, € > 0 are arbitrary constants, we reach the demanded inequality

¢ 1
liminf s [ AT () gl )q(o2) e < 7 (‘;‘7 - ai**) | (34)

From (30) and (34), we get

L < ,
(oo A(D) o — O (y +17)

which is in contrast to the condition (20) if v > 1. The proof is accomplished. O

Theorem 2. Let (2) holds, and

1 ¢ 1 1
ligrgg}fm/T A7+1(oo)¢(w)q(w)Aoo > G (1 — T 1) , (35)

for enough large T € [{o, 00). Then all solutions of Equation (1) are oscillatory.

Proof. Assume z is a nonoscillatory solution of Equation (1) on [{p, o). Thus, without loss of
generality, let z({) > 0 and z((g)) > 0 on [, o°)T. As shown in the proof of Theorem 1, we obtain

A Q) £ A @ @)+ [ [ ()] wio () ae

k ; AT () p()q () A — DA() — AZ2)], 36)

where ¢ = v (a, — €)1+% . In addition, we have
A
(A1 ()]" < (r+ 1) AT () a7 (). (37)
Substituting (37) into (36) we get

AT w(@) < ATTH(Z) wt(l2)

IA
b
i)
+
—_
&
g
>
o~
o
+

B gf AT (00) () q() Ao = B[A(Z) — A(32)]-
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Dividing both sides by A((), we have

AT(2) wP(00)

AT (Qw(e(f) < AT(Qw(C) <

A(Q)
(v+1) A
Ny (a: +¢) {1 A(g)}
_A?C) /f AT () () g() A — B {1 B zjlq((%)]

Taking the lim sup of both sides as { — oo and by (2), we obtain

(v+1)

L <
=

1 g
(0 +¢) = liminf s /2 71 () ¢(0) () A — B,

Since k, € > 0 are arbitrary, we get the required inequality

¢ 1
nminfi/ AT (00) (o) () Are < s {7;1 - 1} e T, (38)

From (30) and (38), we obtain

1 e 1 1
. y+1 < —
Bmin g [, AT 8 < e (1257 ).

which is in contrast to the condition (35). The proof is accomplished. [

Example 1. Consider the nonlinear dynamic equation of second order

1y
_ A o T
v—1 A =
700 (2O) | + S a8 G0@) = 0, (39)
where vy, B, and & are positive constants with B > «. Here a({) = {771, and q() = %, then the
condition (2) holds since
®© A ® A
/ TN / [
a () =
by Example 5.60 in [5]. In addition, a straightforward computation yields that
liminfL /5 AT () () g() A = (5liminfL /C A )
(e A(D) Jg 7 (oo A(Q) Jo et

By Theorem 2, every solution of (39) is oscillatory if

5># 1_L
[r(r+1) y+1)°

We present a Fite-Wintner type oscillation criterion for (1). The proof is similar to that in [7],
and hence is omitted.

Theorem 3. Let (2) holds, and
/ () Are = oco. (40)
0

Then every solution of Equation (1) is oscillatory.
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From Theorem 3, we assume without loss of generality that

/:oq)(w)q(oo)Aoo < 00.

Otherwise, we have that (40) holds due to ¢({) < 1, which implies that Equation (1) is oscillatory
by Theorem 3. The next theorem is generalized Hille type to the second order nonlinear dynamic
Equation (1).

Theorem 4. Let (2) holds, and

o e 7y
liminf A7 (¢) ./a(;) ¢ () (=) A > o (41)

Then every solutions of Equation (1) is oscillatory.

Proof. Assume z () be a nonoscillatory solution of Equation (1) on [{p, o). Thus, without loss of
generality, let z({) > 0 and z(#({)) > 0 on [{p, o)T. As depicted in the proof of Theorem 1, we obtain
(24) for { > {1, for some {1 € (o, o)1 such that () € (Lo, o0)T for { > {y. Also for ¢ > 0, then we
can pick {p € [{1,00)T, sufficiently large, so that (26) and (27) for { € [2, o). Replacing { by ~ in the
inequality (24) and then integrating it from ¢({) > {» to v € [, c0) and using the fact w > 0, we have

1

< ok [ e by [T 0 (o) A
Taking v — oo we obtain
—w@@) <k [ 90 an—y [ a1 0T o) A 02)

Multiplying both sides of (42) by A" ({), we obtain

o

AT @Qule@) < KATE) [ gl (<) A

—AT(Q) [ a1 0l (o) A

[o0]

= kAT [ 9l (=) A

oo A " )
,’)/Ary (é) /g(g) ISH((#)J) [A’Y(oo)w (O'(oo))]l'*'? A,

It follows from (26) that

(e )

—AT@Qwe@) £ —KAT@) [ p(e)a(x)a
o(0)
5 A7 © L AN) )
—(a.—¢) () /U(Q“Ym .

By Potzsche chain rule, we reach

m AR ! dh A® < A” 44
Ar *7/0 [A + hpt() A+ =T (“44)
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Then from (43) and (44), we have

AT Que@) < KATQ) [ s (0. —et [AEL]
< RATQ) [ gl ae — (1= ) (a2 ),
which yields
KAT(Q) [ glela()ae < AT (@) w(o(©) ~ (1) 0.~ )"

By taking the lim inf of both sides as { — oo we obtain that

limintk A7 (©) [ pl)q(x)am < 0. = (1= 5)7 (a. 0"

Since k and € > 0 are arbitrary, we achieve the following inequality

o 1
liminf A7 (g)/ $()q(o) Do < ay — 17 as 7.
(e o(¢)

Using the inequality (29) with z = [7, Y = 1 and u = a,, we get the desired inequality

o o ¥
’y e
hgng}fA () /a(g) P(=)g(=) A < 172(7 1)7“,

which is in contrast to the condition (41). The proof is accomplished in Theorem 4. [

Example 2. Consider the nonlinear second order dynamic equation

[0 ()" + s lr@) =0 (5)

7
where vy, B, x are positive constants, and L = liminf;_,, <(7(€§)> with B > «. Herea(g) =1,1(¢) > ¢
and q(g) = TY _ then the condition (2) holds, A({) = ¢ — go and ¢(Q) = 1. In addition,

- Lg’yﬂ’
minf A7 (0) [ = i) [7 70
AT #e = TR @) [ S
s B A
> Elirnian“Y(é)/ <1> Ao
L 7—eo o(2) 2
K. . 4 Co >7
= —liminf| Y — 2 =
L (e <0(C) o (Z)
. ! Then by Th 4, all soluti 45 llatory i i
> : T Py 1)
ifx 17 (7 +1)7+1 en by Theorem 4, all solutions of (45) are oscillatory if x 17 (y + 1)7+1

Remark 1. We could refer to the recent results due to [13,14] and others do not apply to Equations (39) and (45).

Theorem 5. Let (2) hold, and

limsup A7(Q) /;oqb(w)q(oo)Aoo > 1. (46)

{—o0
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Then all solutions of Equation (1) oscillate.

15 0f 19

Proof. Assume z (t) is a nonoscillatory solution of Equation (1) on [{p, o)r. Thus, without loss of
generality, let z({) > 0 and z(#({)) > 0 on [{p, o0) . Integrating both sides of the dynamic Equation (1)

from { to v € [{p, o)1, we obtain

/;‘7("‘“)2*3(’7(*))A°° =a(0)(z%(8))" — a(0)(2"(2))" < a(g)(z*(0)"-

(47)

As shown in the proof of Theorem 1, there exists {1 € ({p, o) satisfying #({) € (o, 00)r for { > {1

such that for ¢ > {4
2P(1(2)) 2 k9(2)27(0)

and y
21(2) 2 a(2) (z42)) " A7(0).
From (47) and (48), we obtain

: /gv4’(°°)61('>°)Z”(°°)A°o <a(@) ()

Since z2(Z) > 0, we get that

From (49) and (50), we get
Taking v — oo, we have

Since k > 0 is arbitrary, we have

which gives us the contradiction

limsup A7(Q) /;o P(=)q(=) A < 1.

{—o0
The proof of Theorem 5 is accomplished. [J

3. Oscillation Criteria of (1) when 8 < ¢

Assume that

2() > 0, 2(9(8) > 0, 22(0) > 0, [a(Q)gy (2(0))]" <0

(48)

(49)

(50)

eventually. Integrating Equation (1) from ¢ to v € [{, o) and then using (22) and the fact that z8 >0,

we obtain
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~a(©)gy (2©) +aQps (2(©0) = ["a ()05 (201 (<) e

> /g'v4><»«>q<»«>qo,5<z<w>>m«
> 05(2(0) /g P(=)q (=) Aot

and a(v) g, (z(v)) > 0 gives

209y (40) = 95 () | 9(=)q (<) A

Hence by taking limits as v — oo we have
[e]

@@y (0)) = 95(2(@)) [ 92 (=) A 1)

Since [a(7) ¢, (z2(C ))]A < 0 eventually, then

1Dy (20)) < a(@)gy (&) =0 forl >0,

and hence from (51), we have

[e0)

b>a(@)gy (40) = p(=(@) [ 9l () b

and so

o

. 8
10) = [op ()] T > ¢ [ [ ot Ao«] "

B~
wherec:=b # > 0. Combining all these we see that for every arbitrary ¢ > 0,

() > Ug

(e}

WTZﬁ
P(=) (=) Aoo] , 52)

eventually. Let

=

y—

‘m‘

Q=10 | [~ 9 (=) 8%]

Therefore, by (52) and the definition of Q (), as direct consequence of Theorems 1, 2, 4 and 5, we get
oscillation criteria for Equation (1) with g < «.

Theorem 6. Let (2) hold, and

1 4 1 I
s 7+1 _
llgglfA(g) /T AT () () Q() A > ) (1 T 1> , 0<y <, -
. 1 ¢ v
_— 7+l I —
hgrgglf A0 Jr AT (00) p(¢) Q) Are > Ao (g 1 17 v=1,

for enough large T € [{o, 00). Then all solutions of Equation (1) oscillate.
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Theorem 7. Let (2) holds, and

1 v
L 11 (o _
hgnlggf / A (»)Q(m) A > D) (1 ~ 1) ,

for enough large T € [Co, c0). Then all solutions of Equation (1) oscillate.

Theorem 8. Let (2) holds, and

0 Y
liminf A () / P()Q() b > T

{—0c0

Then all solutions of Equation (1) oscillate.

Theorem 9. Let (2) holds, and

limsup A7(Q) /;0 P()Q(=)A > 1.

{—0o0
Then all solutions of Equation (1) oscillate.

4. Conclusions

(1) In this paper, several Nehari, Hille and Ohriska type oscillation criterion have been given.
The applicability of these criteria for (1) on an arbitrary time scale is achieved. The reported
results have extended related findings to the differential and dynamics equations of second order

as follows:

() Condition (41) reduces to (7) inthe case if T =R,y = =1,a({) =1,and  ({) = ;
(i)  Condition (41) reduces to (10) in the case when T =R,y =B =1,a({) = 1,and g (¢) < {;
(iii)  Condition (41) reduces to (19) under the assumptions that y = [3 a® () >0,and g ({) < ;
(iv)  Conditions (46) reduces to (11) supposing that T =R, ¥ = /3 1,a(f)=1and g({) <.

(2) Several oscillation criteria for (1) have been derived in the cases: #({) < ¢, 7(C) > ¢, B > 7,
and B < . In contrast to [13,14], the restrictive condition (18) is not imposed in the oscillation
results of the presented case-study. This leads to a great improvement in comparison with the
proceeding results.
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