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Abstract: Let f : M→ M be a diffeomorphism of a finite dimension, smooth compact Riemannian
manifold M. In this paper, we demonstrate that if a diffeomorphism f lies within the C1 interior of
the set of all chain recurrence class-topologically stable diffeomorphisms, then the chain recurrence
class is hyperbolic.
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1. Introduction

Through the paper we assume that M is a finite dimensional, smooth, compact, and boundaryless
Riemannian manifold and f : M → M is a C1 diffeomorphism. Let d be the distance in M induced
from a Riemannian metric ‖ · ‖ in the tangent bundle TM. A closed subset Λ of M is hyperbolic if Λ
is f -invariant and there is an invariant splitting Tx M = Es

x ⊕ Eu
x for each x ∈ Λ, a constant λ > 1

such that:

(a) ‖D fx(u)‖ ≤ λ−1‖u‖ for x ∈ Λ and u ∈ Es
x, and

(b) ‖D fx(v)‖ ≥ λ‖v‖ for x ∈ Λ and v ∈ Eu
x .

Notice that a diffeomorphism f of M is Anosov if M is hyperbolic for f . Let Hom(M) be the set of
all homeomorphisms of M. A diffeomorphism f is topologically stable if for any positive ε, there is a
δ > 0 such that any g ∈ Hom(M) with d0( f , g) < δ, there is a continuous map h : M→ M for which
h ◦ g = f ◦ h and d0(h, id) < ε, where d0( f , g) = sup{d( f (x), g(x)), d( f−1(x), g−1(x)) : x ∈ M},,
and id is the identity map. Note that if f , g : M→ M are Cr(r ≥ 1) diffeomorphisms then we define
the Cr distance between f and g to be:

dr( f , g) = sup{| f (x)− g(x)|, |D f (x)− Dg(x)|, . . . , |Dr f (x)− Drg(x)| : x ∈ M},

where | · | is the operator norm.
Walters [1] proved that if a diffeomorphism f is Anosov, then f is topologically stable. A periodic

point p with a period π(p) is hyperbolic if Dp f π(p) has no eigenvalues with a norm of 1. We define
C1 immersed manifolds Ws(p), which are called the stable manifolds of p, and Wu(p), which are
called the unstable manifolds of p, as follows: Ws(p) = {x ∈ M : f nπ(p)(x) → p as n → ∞} and
Wu(p) = {x ∈ M : f nπ(p)(x) → p as n → ∞}. P( f ) denotes the set of all periodic points of f .
A diffeomorphism f satisfies Axiom A if the non-wandering set Ω( f ) is hyperbolic and comprises the
closure of P( f ). A diffeomorphism f satisfies the strong transversality condition if for any hyperbolic
p, q ∈ P( f ), the stable and unstable manifolds Ws(p) and Wu(q) are transverse. A diffeomorphism
f is structurally stable if there is a C1 neighborhood U ( f ) such that there is a given g ∈ U ( f ), and
there is a homeomorphism h : M → M such that h ◦ f = g ◦ h. For the sake of simplicity, we
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write that any g C1 in the neighborhood of f , g is equivalent to f . Robinson proved in [2] that a
diffeomorphism f is structurally stable if and only if it satisfies Axiom A and the strong transversality
condition. Nitecki proved in [3] that if a diffeomorphism f is structurally stable, then f is topologically
stable. Moriyasu proved in [4] that if a diffeomorphism f lies within the C1 interior of the set of all
topologically stable diffeomorphisms, then it is structurally stable. If a diffeomorphism f satisfies
Axiom A, then Ω( f ) = Λ1 ∪Λ2 ∪ · · · ∪Λm, where Λi are closed, disjoint, and invariant sets, and each
Λi contains dense periodic orbits. The sets Λ1, . . . , Λm are referred to as basic sets.

We say that a diffeomorphism f is Ω-stable if for every diffeomorphism g in the neighborhood of f ,
g|Ω(g) is equivalent to f |Ω( f ), where f |Ω( f ) : Ω( f )→ Ω( f ). Smale [5] proved that if a diffeomorphism f
is Axiom A and has no-cycles, then it is Ω-stable. Conversely, Palis [6] proved that if a diffeomorphism
f is Ω-stable, then f is Axiom A and has no-cycles.

Moriyasu [4] introduced the concept of Ω-topological stability. We say that a diffeomorphism
f is Ω-topologically stable if for any positive ε, there is a positive δ such that given g ∈ Hom(M)

with d0( f , g) < δ, one can choose a continuous map h : Ω(g) → Ω( f )(h(Ω(g)) ⊂ Ω( f )) such that
h ◦ g = f ◦ h on Ω(g) and d0(h, id) < ε.

Nitecki proved in [3] that if a diffeomorphism f is Axiom A and has no-cycles, then it is
Ω-topologically stable. Conversely, Moryasu proved in [4] that if a diffeomorphism f lies within
the C1 interior of the set of all Ω-topologically stable diffeomorphisms, then it is Axiom A and
has no-cycles.

For a given δ > 0, a bi-sequence of points {xi}i∈Z of M is said to be a δ-pseudo orbit of f if
d( f (xi), xi+1) < δ ∀i ∈ Z. For a given x, y ∈ M, we denote x  y if for any δ > 0, there is a finite
δ-pseudo orbit (or δ-chain from x to y) {xi}n

i=0(n ≥ 1) of f such that x0 = x and xn = y. We denote
x ! y if x  y and y  x. The set {x ∈ M : x ! x} is referred to as the chain recurrent set of
f and is denoted as R( f ). It is seen that P( f ) ⊂ Ω( f ) ⊂ R( f ). The relationship ! induces an
equivalence relationship onR( f ), whose classes are called chain recurrence classes of f and are denoted
as C f . In general, a chain recurrent class C f is a closed and f -invariant set. It is known that ifR( f ) is
hyperbolic, thenR( f ) = P( f ). Therefore, if the chain recurrent setR( f ) is hyperbolic, then it satisfies
Axiom A.

Let C f (p) = {x ∈ M : x ! p}. Note that if a hyperbolic p ∈ P( f ), then there exist a C1

neighborhood U ( f ) of f and a neighborhood U of p such that there is a given g ∈ U ( f ), the maximal
invariant set

⋂
n∈Z gn(U) of f in U consists of a single hyperbolic pg ∈ P(g), which it has the same

period of p and index(p) = index(pg), where P(g) is the set of periodic points of g.
Wen and Wen [7] introduced a local version of structural stability. We say that a chain recurrence

class C f (p) is C1-structurally stable if there is a C1 neighborhood U ( f ) of f such that any g ∈ U ( f ),
one can take a homeomorphism h : C f (p) → Cg(pg) such that h ◦ f = g ◦ h on C f (p), where pg is
a continuation of p and Cg(pg) is the chain recurrence class of g associated with pg. Furthermore,
they proved that if the codimension one-chain recurrence class C f (p) is C1-structurally stable, then it
is hyperbolic. Wang [8] proved that if a chain recurrence class C f (p) is C1-structurally stable, then it
is also hyperbolic, which is a generalization of the result presented by Wen and Wen [7]. Based on
the definition below, we consider a local version of the topological stability of the chain recurrence
class C f (p).

For a hyperbolic p ∈ P( f ), and a closed f -invariant set Λ ⊂ M, we say that a diffeomorphism f is
chain recurrence class C f (p)-topologically stable if for a given positive ε, there is a positive δ such that
there is a given g ∈ Hom(M) with d0( f , g) < δ, there is a continuous surjective map h : Λ → C f (p)
for which h ◦ g = f ◦ h on Λ, where d(h(x), x) < ε for all x ∈ Λ.

Remark 1. In the above notion, Λ is a chain recurrence class for g. For any point x ∈ C f (p), let {xi : x0 =

x, xn = p, x2n = x} ⊂ C f (p) be a δ-chain from x to x. Since h(Λ) = C f (p), for any xi ∈ C f (p), there is a
yi ∈ Λ such that h(yi) = xi for all i = 0, 1, . . . , 2n, where y0 = y. Therefore, we know that:

d( f (xi), xi+1) = d( f (h(yi)), h(yi+1)) = d(h(g(yi)), h(yi+1)),
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for all i = 0, 1, . . . , 2n. Since d(h(x), x) < ε, one can see that d(g(yi), yi+1) < 3ε and {yi}2n
n=0 ⊂ Λ, meaning

{yi}2n
n=0 is an 3ε-chain from y to y. Therefore, Λ is a chain recurrence class for g.

Remark 2. In the above notion, because h : Λ → C f (p) is a continuous surjective map, h(Λ) = C f (p),
h ◦ g = f ◦ h on Λ, and d(h(x), x) < ε for all x ∈ Λ, meaning we have h−1(p) 6= ∅. Therefore, one can take
q ∈ h−1(p). However, q ∈ h−1(p) is not unique. It is clear that the point q is a periodic point of g. Therefore,
we set q = pg. Furthermore, we define Cg(pg), which is the chain recurrence class of g associated with pg.
Here pg is not the continuation of p but an element of h−1(p).

For the property of a continuation, we can see in [7,9]. According to Remark 2, the definition can
be written as follows.

Definition 1. Let p ∈ P( f ) be hyperbolic. We say that a diffeomorphism f is chain recurrence class
C f (p)-topologically stable if for a given positive ε, there is a positive δ such that given g ∈ Hom(M)

with d0( f , g) < δ, there is a continuous subjective map h : Cg(pg)→ C f (p) for which h ◦ g = f ◦ h on
Cg(pg), where d(h(x), x) < ε for all x ∈ Cg(pg).

T S(C f (p)) denotes the set of all chain recurrence class C f (p)-topologically stable diffeomorphism.
We say that a diffeomorphism f lies within the C1 interior of the set of all C f (p)-topologically stable
diffeomorphisms if there exists a C1 neighborhood U ( f ) of f such that given g ∈ U ( f ), g is
Cg(pg)-topologically stable, where Cg(pg) is the chain recurrence class of g and pg is the continuation
of p. Here, since g is a diffeomorphism, it guarantees that pg is the continuation of p. Note that in the
definition above, g is a homeomorphism, it does not belong to intT S(Cg(pg))).

It is known that if C f (p) is C1-structurally stable then C f (p) ix topologically stable (see [8]).
But, the converse is not true. So, we consider the C1 interior elements of C f (p)-topologically
stable diffeomorphisms.

intT S(C f (p)) denotes the set of C1 interior elements of T S(C f (p)). The following theorem is
the main conclusion of our research.

Theorem A Let p ∈ P( f ) be hyperbolic. If a diffeomorphism f ∈ intT S(C f (p)), then C f (p) is hyperbolic
for f .

2. Proof of Theorem A

Let M be defined as shown previously and let Diff(M) be the set of all diffeomorphisms of M.
For a closed f -invariant set A ⊂ M, A is called normally hyperbolic for f if there is a D f -invariant
splitting TΛ M = Es ⊕ Eu ⊕ TA and λ ∈ (0, 1) such that for all x ∈ A:

‖Dx f |Es
x‖ < λ, ‖Dx f−1|Eu

x ‖ < λ, and

‖Dx f |Es
x‖ · ‖D f (x) f−1|D f (x)A‖ < λ, ‖Dx f−1|Eu

x ‖ · ‖D f−1(x) f |D f−1(x)A‖ < λ.

It is known that if x ∈ M \ A then x is hyperbolic point of f .

Remark 3. For a closed f -invariant set L ⊂ M, if the derivative map Dx f has an eigenvalue λ (x ∈ L) such
that |λ| = 1, then for some g C1 close to f , we can construct a small closed curve J such that g|J : J → J is
the identity map, meaning J is a normally hyperbolic set of g.

Regarding Remark 3, we have the following.

Lemma 1. For a diffeomorphism f : M → M, if a closed f -invariant set I ⊂ C f (p) is normally hyperbolic
and f |I : I → I is the identity map, then f is not C f (p)-topologically stable.
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Proof. To derive a contradiction, we assume that f is C f (p)-topologically stable. Let diamI = l and
take 0 < ε < l/8. Since f is C f (p)-topologically stable, there is a C0 neighborhood U0( f ) of f such that
given g ∈ U0( f ), there is a continuous surjective map h : Cg(pg)→ C f (p) for which h ◦ f = g ◦ h on
Cg(pg) and d(h(x), x) < ε for all x ∈ Cg(pg). For any x ∈ I , there is a y ∈ Cg(pg) such that h(y) = x.
Since f |I : I → I is the identity map, for any x ∈ I , one can see that f i(x) = x for all i ∈ Z.

We take c, d ∈ Cg(pg) such that (i) d(c, d) < ε/4, (ii) h(c) ∈ I , and h(d) ∈ C f (p) \ I , and (iii)
d(gk(c), gk(d)) < ε for some k ∈ Z.

Let h(c) = a and h(d) = b. Since I ⊂ C f (p) is normally hyperbolic and b ∈ C f (p) \ I ,
by hyperbolicity of b there is a j ∈ Z such that d( f j(b), a) = 8ε. Since h ◦ f = g ◦ h on Cg(pg)

and d(h(x), x) < ε for all x ∈ Cg(pg), we have:

8ε = d( f j(b), a) = d( f j(b), f j(a)) = d( f j(h(d)), f j(h(c))) = d(h(gj(d)), h(gj(c)))

≤ d(h(gj(d)), gj(d)) + d(gj(d), gj(c)) + d(gj(c), h(gj(c)))

< ε + ε + ε = 3ε.

This creates a contradiction. Therefore, f is not C f (p)-topologically stable if I ⊂ C f (p) is normally
hyperbolic and f |I : I → I is the identity map.

The following lemma is called the Franks’ lemma [10]. It plays an essential role in our proofs.

Lemma 2. For any C1 neighborhood U ( f ) of f , one can take a positive ε and C1 neighborhood U0( f ) ⊂ U ( f )
of f such that given g ∈ U0( f ), there exists a finite set S = {x1, x2, · · · , xN}, neighborhood U of S, and linear
maps Li : Txi M → Tg(xi)

M for which ‖Li − Dxi g‖ ≤ ε ( 1 ≤ i ≤ N), one can find a diffeomorphism
g1 ∈ U ( f ) such that:

(a) g1(x) = g(x) if x ∈ S ∪ (M \U) and
(b) Dxi g1 = Li for all 1 ≤ i ≤ N.

Lemma 3. Suppose that a diffeomorphism f ∈ intT S(C f (p)). Then, every periodic point q ∈ C f (p) is hyperbolic.

Proof. Let f ∈ intT S(C f (p)) and let U ( f ) be a C1 neighborhood of f . Suppose that there are g ∈ U ( f )
and a periodic point q ∈ Cg(pg) such that q is not hyperbolic. For simplicity, we can assume that
g(q) = q (other cases are similar). Since q is not hyperbolic, there is an eigenvalue λ of Dqg such
that |λ| = 1. Note that if all eigenvlaues of Dqg are one then we can get a similar result as this proof.
Let Ec

q be the eigenspace corresponding to λ. Then we have a splitting Td M = Es
q ⊕ Ec

q ⊕ Eu
q , where Es

q
associated to all eigenvlaues that are less than one and Eu

q associated to all eigenvalues that are greater
than one.

First, we consider dimEc
q = 1. The case means that the eignevlaue λ is real. For simplicity,

we assume that λ = 1 (other cases are similar). Then, by Lemma 2, there is a α > 0 and g1 ∈ U0( f ) ⊂
U ( f ) with the following properties:

(i) g1(q) = g(q) = q,
(ii) g1(x) = expq ◦ Dqg ◦ exp−1

q (x) for x ∈ Bα(q), and
(iii) g1(x) = g(x) for x 6∈ B4α(q), where Bα(q) is an α neighborhood of q.

Consider α1 < α and define Ec
q(p, α1) = Ec

q ∩ Tq M(α1). Here, Tq M(α1) = {v ∈ Tq M : ‖v‖ ≤ α1}.
Therefore, it is clear that g1|expq(Ec(q,α1))

is the identity map of expq(Ec(q, α1)).

Since g1 is a diffeomorphism and pg is a hyperbolic periodic point of g, we have pg1 ∈ P(g1) and
we can define the chain recurrence class Cg1(pg1) associated with pg1 . Since g1 ∈ T S(Cg1(pg1)),
according to Definition 1.4, for any ε > 0, there is a δ > 0 such that for any g2 ∈ Hom(M)

with d0(g1, g2) < δ, there is a continuous map h : Cg2(pg2) → Cg1(pg1) such that d(h(x), x) < ε,
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and g2 ◦ h = h ◦ g1 for all x ∈ Cg2(pg2), where pg2 ∈ h−1(pg1) and Cg2(pg2) is the chain recurrence
class associated with pg2 .

Let Jq = expq(Ec(q, δ1)). Since g1|Jq is the identity map, every point in Jq is chain transitive,
meaning its points are mutually chain equivalent. Therefore, we know that Jq ⊂ Cg1(pg1).
Furthermore, by Remark 3, we can see that Jq is a normally hyperbolic set.

Therefore, according to Lemma 1, g1 is not Cg1(pg1)-topologically stable. This creates a contradiction.
Finally, we consider dim Ec

q = 2. The case means that the eigenvalue λ is complex. In this case,
to avoid notational complexity, we can assume that g(q) = q for some g ∈ U ( f ). Then, similar to
the proof of the first case, we can take ε0 > 0 and g1 C1 close to g with the following properties:
(i) g1(q) = g(q) = q and (ii) g1 has a small arc Lq, where Lq = expq({t · v0 : 1 ≤ t ≤ 1 + ε0/4}) for
some ε0 > 0. The small arc Lq has the following properties for g1:

(a) gi
1(Lq) ∩ gj

1(Lq) = ∅ for 0 ≤ i 6= j < l − 1,
(b) gl

1(Lq) = Lq for some l > 0, and
(c) gl

1|Lq is the identity map.

Since gl
1|Lq is the identity map, we can easily show that Lq ⊂ Cg1(pg1). Let gl

1 = g1. Then, just as
in the argument for the first case, we can derive a contradiction. Therefore, Lemma 3 is proved.

Let p and q be hyperbolic periodic points. We say that q is homoclinically related to p if Ws(p) t
Wu(q) 6= ∅ and Wu(p) t Ws(q) 6= ∅. Then, Ws(p) t Wu(q) 6= ∅ and Wu(p) t Ws(q) 6= ∅
are denoted by p ∼ q. Next, we define H f (p) = {q ∈ Ph( f ) : q ∼ p}, where Ph( f ) is the set of all
hyperbolic periodic points of f .

Let p be a periodic point with a period π(p) of a diffeomorphism f . If λ1, λ2, . . . , and λd are
the eigenvalues of Dp f π(p), then the numbers χi =

1
π(p) log |λi|(i = 1, . . . , d) are called the Lyapunov

exponents of p.

Lemma 4. A diffeomorphism f in a dense Gδ subset G in Diff(M) has the following properties:

(a) A chain recurrence class C f (p) is a homoclinical class H f (p) for some hyperbolic periodic point p (see [11]);
(b) If a homoclinical class H f (p) is not hyperbolic, then one can find a periodic point q that is homoclinically

related to p and has a Lyapunov exponent arbitrarily close to 0 (see [8]).

Lemma 5. Let p be a hyperbolic periodic point of f . If the point q is homoclinically related to p and has a
Lyapunov exponent arbitrarily close to 0, then there is a g C1 close to f such that Dqg gπ(q) has an eigenvalue λ

such that |λ| = 1.

Proof. Suppose that there is a periodic point q that is homoclinically related to p and has a Lyapunov
exponent arbitrarily close to 0. Then, we know that there is an eigenvalue λi of Dq f π(q) such that λi is
close to 1 for some i = 1, . . . , d. From Lemma 2, there is a g C1 close to f such that Dqg gπ(qg) has an
eigenvalue µi such that |µi| = 1.

Proof of Theorem A. By contradiction, suppose that C f (p) is not hyperbolic. Let U ( f ) be a C1

neighborhood of f ∈ Diff(M). Since f ∈ intT S(C f (p)), there is a g ∈ U ( f ) ∩ G with the following
properties:

(i) g ∈ T S(Cg(pg)),
(ii) Cg(pg) = Hg(pg), and

(iii) There is a hyperbolic periodic point q ∈ Cg(pg) with a Lyapunov exponent arbitrarily close to 0
such that q ∼ pg.

Since q has a Lyapunov exponent arbitrarily close to 0, from Lemma 5, there is a g1 ∈ U (g) ⊂
U ( f ) ∩ G such that Dqg1

g
π(qg1 )

1 has an eigenvalue λ such that |λ| = 1. Just as in the proof of Lemma 3,
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there is a g2 ∈ U (g1) ⊂ U ( f ) ∩ G such that g2 has a small arc Jqg2
centered at qg2 . Then, we have that

g
π(qg2 )

2 is ±id on Jqg2
and Jqg2

⊂ Cg2(pg2), where id is the identity map. Additionally, Jqg2
is normally

hyperbolic. From Lemma 1, this creates a contradiction. Therefore, if f ∈ intT S(C f (p)), then C f (p)
is hyperbolic. �
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