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Abstract: Let f : M — M be a diffeomorphism of a finite dimension, smooth compact Riemannian
manifold M. In this paper, we demonstrate that if a diffeomorphism f lies within the C! interior of
the set of all chain recurrence class-topologically stable diffeomorphisms, then the chain recurrence
class is hyperbolic.
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1. Introduction

Through the paper we assume that M is a finite dimensional, smooth, compact, and boundaryless
Riemannian manifold and f : M — M is a C! diffeomorphism. Let d be the distance in M induced
from a Riemannian metric || - || in the tangent bundle TM. A closed subset A of M is hyperbolic if A
is f-invariant and there is an invariant splitting TxM = E; @ E¥ for each x € A, a constant A > 1
such that:

@) |IDfe(u)|] < A71|u|| for x € Aand u € E, and
(b) [[Dfx(v)]| > Allv|| for x € Aand v € E%.

Notice that a diffeomorphism f of M is Anosov if M is hyperbolic for f. Let Hom (M) be the set of
all homeomorphisms of M. A diffeomorphism f is topologically stable if for any positive €, there is a
0 > 0 such that any ¢ € Hom(M) with dy(f,g) < J, there is a continuous map h : M — M for which
hog = fohanddy(h,id) < e, where dy(f,g) = sup{d(f(x),g(x)),d(f(x),g 1 (x)) : x € M},
and id is the identity map. Note that if f,¢: M — M are C"(r > 1) diffeomorphisms then we define
the C" distance between f and g to be:

dr(f,g) = sup{|f(x) = g(x)|,[Df(x) = Dg(x)l,...,|D"f(x) = D'g(x)| : x € M},

where | - | is the operator norm.

Walters [1] proved that if a diffeomorphism f is Anosov, then f is topologically stable. A periodic
point p with a period 7t(p) is hyperbolic if D, f™ (") has no eigenvalues with a norm of 1. We define
C! immersed manifolds W*(p), which are called the stable manifolds of p, and W*(p), which are
called the unstable manifolds of p, as follows: W¥(p) = {x € M : f""P)(x) — pasn — co} and
Wi(p) = {x € M : f""P)(x) — pasn — oo}. P(f) denotes the set of all periodic points of f.
A diffeomorphism f satisfies Axiom A if the non-wandering set Q( f) is hyperbolic and comprises the
closure of P(f). A diffeomorphism f satisfies the strong transversality condition if for any hyperbolic
p,q € P(f), the stable and unstable manifolds W*(p) and W*(q) are transverse. A diffeomorphism
f is structurally stable if there is a C! neighborhood U(f) such that there is a given ¢ € U(f), and
there is a homeomorphism & : M — M such that ho f = g o h. For the sake of simplicity, we
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write that any ¢ C! in the neighborhood of f, g is equivalent to f. Robinson proved in [2] that a
diffeomorphism f is structurally stable if and only if it satisfies Axiom A and the strong transversality
condition. Nitecki proved in [3] that if a diffeomorphism f is structurally stable, then f is topologically
stable. Moriyasu proved in [4] that if a diffeomorphism f lies within the C! interior of the set of all
topologically stable diffeomorphisms, then it is structurally stable. If a diffeomorphism f satisfies
Axiom A, then Q(f) = A; UAy U - - - U Ay, where A; are closed, disjoint, and invariant sets, and each
A; contains dense periodic orbits. The sets Ay, ..., Ay, are referred to as basic sets.

We say that a diffeomorphism f is ()-stable if for every diffeomorphism g in the neighborhood of f,
8la(e) isequivalent to f|q sy, where f|q5) : Q(f) — Q(f). Smale [5] proved that if a diffeomorphism f
is Axiom A and has no-cycles, then it is ()-stable. Conversely, Palis [6] proved that if a diffeomorphism
f is ()-stable, then f is Axiom A and has no-cycles.

Moriyasu [4] introduced the concept of ()-topological stability. We say that a diffeomorphism
f is Q-topologically stable if for any positive €, there is a positive § such that given ¢ € Hom (M)
with dy(f,g) < 6, one can choose a continuous map h : Q(g) — Q(f)(h(Q(g)) C Q(f)) such that
hog= fohonQ(g)anddy(h,id) < e.

Nitecki proved in [3] that if a diffeomorphism f is Axiom A and has no-cycles, then it is
(O-topologically stable. Conversely, Moryasu proved in [4] that if a diffeomorphism f lies within
the C! interior of the set of all O-topologically stable diffeomorphisms, then it is Axiom A and
has no-cycles.

For a given 6 > 0, a bi-sequence of points {x;};cz of M is said to be a J-pseudo orbit of f if
d(f(x;),xi+1) < 0 Vi € Z. For a given x,y € M, we denote x ~~ y if for any 6 > 0, there is a finite
d-pseudo orbit (or é-chain from x to y) {x;}/;(n > 1) of f such that xy = x and x,, = y. We denote
x e yif x ~» yand y ~» x. The set {x € M : x «~ x} is referred to as the chain recurrent set of
f and is denoted as R(f). It is seen that P(f) C Q(f) C R(f). The relationship « induces an
equivalence relationship on R(f), whose classes are called chain recurrence classes of f and are denoted
as Cy. In general, a chain recurrent class Cy is a closed and f-invariant set. It is known that if R(f) is
hyperbolic, then R(f) = P(f). Therefore, if the chain recurrent set R (f) is hyperbolic, then it satisfies
Axiom A.

Let C¢(p) = {x € M : x «~ p}. Note that if a hyperbolic p € P(f), then there exist a C!
neighborhood U ( f) of f and a neighborhood U of p such that there is a given ¢ € U(f), the maximal
invariant set ,,cz ¢" (U) of f in U consists of a single hyperbolic p, € P(g), which it has the same
period of p and index(p) = index(pg), where P(g) is the set of periodic points of g.

Wen and Wen [7] introduced a local version of structural stability. We say that a chain recurrence
class Cf(p) is Cl-structurally stable if there is a C' neighborhood U(f) of f such that any g € U(f),
one can take a homeomorphism h : Cs(p) — Cq(pg) such that ho f = goh on C¢(p), where pg is
a continuation of p and C¢(pg) is the chain recurrence class of g associated with pg. Furthermore,
they proved that if the codimension one-chain recurrence class C¢(p) is Cl-structurally stable, then it
is hyperbolic. Wang [8] proved that if a chain recurrence class C¢(p) is Cl-structurally stable, then it
is also hyperbolic, which is a generalization of the result presented by Wen and Wen [7]. Based on
the definition below, we consider a local version of the topological stability of the chain recurrence
class C¢(p).

For a hyperbolic p € P(f), and a closed f-invariant set A C M, we say that a diffeomorphism f is
chain recurrence class Cy(p)-topologically stable if for a given positive €, there is a positive J such that
there is a given ¢ € Hom(M) with do(f,g) < 4, there is a continuous surjective map i : A — C¢(p)
for whichhog = fohon A, where d(h(x),x) < e forall x € A.

Remark 1. In the above notion, A is a chain recurrence class for g. For any point x € Cy(p), let {x; : xo =
X, xn = p,Xon = x} C Cs(p) be a -chain from x to x. Since h(A) = C¢(p), for any x; € C¢(p), thereis a
yi € A such that h(y;) = x; foralli =0,1,...,2n, where yy = y. Therefore, we know that:

d(f(xi),xit1) = d(f (h(yi)), h(yisa)) = d(h(Q (i), 1 (Yis1)),
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foralli=0,1,...,2n. Since d(h(x),x) < €, one can see that d(g(y;),yi+1) < 3€ and {y;}>", C A, meaning
{y;}2", is an 3e-chain from y to y. Therefore, A is a chain recurrence class for g.

Remark 2. In the above notion, because h : A — Cy(p) is a continuous surjective map, h(A) = Cy(p),
hog= fohonA, andd(h(x),x) < € forall x € A, meaning we have h~1(p) # @. Therefore, one can take
q € h=Y(p). However, g € h=1(p) is not unique. It is clear that the point q is a periodic point of g. Therefore,
we set q = pg. Furthermore, we define Cq(py), which is the chain recurrence class of g associated with pq.
Here pg is not the continuation of p but an element of h=1(p).

For the property of a continuation, we can see in [7,9]. According to Remark 2, the definition can
be written as follows.

Definition 1. Let p € P(f) be hyperbolic. We say that a diffeomorphism f is chain recurrence class
C¢(p)-topologically stable if for a given positive ¢, there is a positive  such that given ¢ € Hom(M)
with dy(f,g) < 4, there is a continuous subjective map 1 : Cg(pg) — Cs(p) for whichhog = fohon
Cq(pg), where d(h(x),x) < € forall x € Cg(py).

TS(C(p)) denotes the set of all chain recurrence class C¢(p)-topologically stable diffeomorphism.
We say that a diffeomorphism f lies within the C! interior of the set of all C £(p)-topologically stable
diffeomorphisms if there exists a C! neighborhood U(f) of f such that given ¢ € U(f), g is
Cq (pg)-topologically stable, where Cq (py ) is the chain recurrence class of g and py is the continuation
of p. Here, since g is a diffeomorphism, it guarantees that p, is the continuation of p. Note that in the
definition above, g is a homeomorphism, it does not belong to int7S(Cq(pg)))-

It is known that if C¢(p) is Cl-structurally stable then Cy(p) ix topologically stable (see [8]).
But, the converse is not true. So, we consider the C! interior elements of C £(p)-topologically
stable diffeomorphisms.

intTS(C¢(p)) denotes the set of C! interior elements of 7S (C 7(p))- The following theorem is
the main conclusion of our research.

Theorem A Let p € P(f) be hyperbolic. If a diffeomorphism f € intTS(Cs(p)), then Cg(p) is hyperbolic
for f.

2. Proof of Theorem A

Let M be defined as shown previously and let Diff(M) be the set of all diffeomorphisms of M.
For a closed f-invariant set A C M, A is called normally hyperbolic for f if there is a D f-invariant
splitting TA\M = E° @ E* @ TAand A € (0,1) such that for all x € A:

IDxfles | < A, IDxf ™ |pyll < A, and

IDxflesll - 1D g f s all < A, IDxf el - 1D g1 flD, 1,y all < A-

It is known that if x € M\ A then x is hyperbolic point of f.

Remark 3. For a closed f-invariant set L C M, if the derivative map Dy f has an eigenvalue A (x € L) such
that |\| = 1, then for some g C* close to f, we can construct a small closed curve J such that ¢| 7 : T — J is
the identity map, meaning J is a normally hyperbolic set of g.

Regarding Remark 3, we have the following.

Lemma 1. For a diffeomorphism f : M — M, if a closed f-invariant set T C Cy(p) is normally hyperbolic
and f|7 : T — T is the identity map, then f is not C¢(p)-topologically stable.
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Proof. To derive a contradiction, we assume that f is C¢(p)-topologically stable. Let diamZ = I and
take 0 < € < I/8. Since f is C¢(p)-topologically stable, there is a CP neighborhood Uy (f) of f such that
given g € Up(f), there is a continuous surjective map h : Cg(pg) — Cf(p) for which ho f = gohon
Ce(pg) and d(h(x), x) < € forall x € C¢(py). For any x € Z, thereis a y € Cq(pg) such that h(y) = x.
Since f|7 : Z — 7 is the identity map, for any x € Z, one can see that f'(x) = x for alli € Z.

We take ¢,d € Cg(pyg) such that (i) d(c,d) < €/4, (i) h(c) € Z, and h(d) € C¢(p) \ Z, and (iii)
d(g"(c),g"(d)) < e for some k € Z.

Let h(c) = a and h(d) = b. Since T C Cf(p) is normally hyperbolic and b € C¢(p) \ Z,
by hyperbolicity of b there is a j € Z such that d(f/(b),a) = 8e. Since ho f = goh on C¢(pg)
and d(h(x),x) < e forall x € C¢(pg), we have:

8e = d(f/(b),a) = d(f/(b), f/(a)) = d(fI(h(d)), f (h(c))) = d(h(g/(d)), h(g/ (c)))
<d(h(g/(d)),8'(d)) +d(g/(d), g/ (c)) +d(g/(c), h(g/(c)))
<€e+e+e=23e

—_ ~—

This creates a contradiction. Therefore, f is not C(p)-topologically stable if Z C C¢(p) is normally
hyperbolic and f|7 : Z — Z is the identity map. O

The following lemma is called the Franks” lemma [10]. It plays an essential role in our proofs.

Lemma 2. For any C! neighborhood U (f) of f, one can take a positive € and C* neighborhood Uy (f) C U(f)
of f such that given § € Uy (f), there exists a finite set S = {x1, x,- - -, xn }, neighborhood U of S, and linear
maps L; © Ty M — Ty M for which ||L; — Dx;g|| < € (1 < i < N), one can find a diffeomorphism
g1 € U(f) such that:

(@) ¢1(x)=gx)ifxe SUM\U)and
(b) Dy,g1 = Liforalll <i<N.

Lemma 3. Suppose that a diffeomorphism f € intT S(Cr(p)). Then, every periodic point q € Cy(p) is hyperbolic.

Proof. Let f € intTS(Cs(p)) and letU(f) be a C! neighborhood of f. Suppose that there are g € U(f)
and a periodic point ¢ € C¢(pg) such that g is not hyperbolic. For simplicity, we can assume that
8(q) = g (other cases are similar). Since g is not hyperbolic, there is an eigenvalue A of D;g such
that |[A| = 1. Note that if all eigenvlaues of D;g are one then we can get a similar result as this proof.
Let E; be the eigenspace corresponding to A. Then we have a splitting TyM = E} ® E; @ E|, where Ej
associated to all eigenvlaues that are less than one and Ejj associated to all eigenvalues that are greater
than one.

First, we consider dimE; = 1. The case means that the eignevlaue A is real. For simplicity,
we assume that A = 1 (other cases are similar). Then, by Lemma 2, thereisa « > 0 and g; € U ( f) C
U(f) with the following properties:

M gi1(q) =gla) =4,
(i) g1(x) =exp,oDygo equ’l(x) for x € By(q), and
(iii) g1(x) = g(x) for x & By, (q), where By(q) is an « neighborhood of g.

Consider a; < a and define E{(p,a1) = E{ N T;M(a1). Here, TyM(a1) = {v € T;M : [jo|| < a}.
Therefore, it is clear that g3 |equ( E¢(g,a,)) 18 the identity map of exp, (E°(q,a1)).

Since g is a diffeomorphism and p, is a hyperbolic periodic point of g, we have pg, € P(g;) and
we can define the chain recurrence class Cg, (pg,) associated with pg,. Since g1 € TS(Cq, (pg,)),
according to Definition 1.4, for any € > 0, there is a 6 > 0 such that for any g, € Hom(M)

with do(g1,82) < ¢, there is a continuous map & : Cg,(pg,) —+ Cq, (pg,) such that d(h(x),x) < e,
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and g, oh =hog forall x € Cg,(py,), where pg, € h™1(pg,) and Cg, (pg,) is the chain recurrence
class associated with pg,.

Let J7; = equ(EC(q, 61)). Since g1|7, is the identity map, every point in J; is chain transitive,
meaning its points are mutually chain equivalent. Therefore, we know that J; C Cg (pg,).
Furthermore, by Remark 3, we can see that J; is a normally hyperbolic set.

Therefore, according to Lemma 1, g; is not Cg, (pg, )-topologically stable. This creates a contradiction.

Finally, we consider dim E; = 2. The case means that the eigenvalue A is complex. In this case,
to avoid notational complexity, we can assume that g(q) = g for some g € U(f). Then, similar to
the proof of the first case, we can take €y > 0 and g; C! close to g with the following properties:
() g1(q9) = g(q) = g and (ii) g1 has a small arc £,;, where L, = equ({t ‘g1 <t <1+4¢€y/4}) for
some €y > 0. The small arc £; has the following properties for g1:

@) gi(L)Ngl(Ly) =Dfor0<i#j<i—T1,
b) gL q) = Ly for some [ > 0, and
!
81l

(c) is the identity map.

Since ¢} | , is the identity map, we can easily show that £; C Cg, (pg, ). Let g} = g1. Then, just as
in the argument for the first case, we can derive a contradiction. Therefore, Lemma 3 is proved. [

Let p and g be hyperbolic periodic points. We say that g is homoclinically related to p if W*(p) rh
Wh(q) # @ and W"(p) M W5(q) # @. Then, Ws(p) h W"(q) # @ and W"(p) h W3(q) # @
are denoted by p ~ g. Next, we define Hy(p) = {q € P,(f) : 9 ~ p}, where Py, (f) is the set of all
hyperbolic periodic points of f.

Let p be a periodic point with a period 77(p) of a diffeomorphism f. If A1, A;,..., and A, are
the eigenvalues of D, f(P), then the numbers yx; = ﬁp) log |Ai|(i=1,...,d) are called the Lyapunov
exponents of p.

Lemma 4. A diffeomorphism f in a dense G5 subset G in Diff(M) has the following properties:

(a) A chain recurrence class Cs(p) is a homoclinical class H (p) for some hyperbolic periodic point p (see [11]);
(b)  If a homoclinical class Hy(p) is not hyperbolic, then one can find a periodic point q that is homoclinically
related to p and has a Lyapunov exponent arbitrarily close to 0 (see [8]).

Lemma 5. Let p be a hyperbolic periodic point of f. If the point q is homoclinically related to p and has a
Lyapunov exponent arbitrarily close to 0, then there is a ¢ C! close to f such that Dy, ¢ has an eigenvalue A
such that |A| = 1.

Proof. Suppose that there is a periodic point 4 that is homoclinically related to p and has a Lyapunov
exponent arbitrarily close to 0. Then, we know that there is an eigenvalue A; of D f 7(9) such that A,; is
close to 1 for some i = 1,...,d. From Lemma 2, there is a ¢ C! close to f such that Dqgg”(qs) has an
eigenvalue y; such that [y;| =1. O

Proof of Theorem A. By contradiction, suppose that Cs(p) is not hyperbolic. Let U(f) be a C!
neighborhood of f € Diff(M). Since f € intTS(Cs(p)), thereis a g € U(f) N G with the following
properties:

(i) g€ TS(Clpg))
(ii) Cg(pg) = Hg(pg), and
(iii) There is a hyperbolic periodic point g € C¢(pg) with a Lyapunov exponent arbitrarily close to 0
such that g ~ p.

Since g has a Lyapunov exponent arbitrarily close to 0, from Lemma 5, there is a g1 € U(g) C

U(f) NG such that Dy, gf 1) has an eigenvalue A such that |A| = 1. Just as in the proof of Lemma 3,
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thereis a g» € U(g1) C U(f) NG such that g, has a small arc J;,, centered at gg,. Then, we have that

g; (s2) is +id on Jg,, and Jy,, C Cg, (pg,), where id is the identity map. Additionally, J4g, is normally
hyperbolic. From Lemma 1, this creates a contradiction. Therefore, if f € int7TS(C¢(p)), then Cs(p)
is hyperbolic. O
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