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Abstract: In this work, we explore the state feedback regulator problem (SFRP) in order to
achieve the goal for trajectory tracking with harmonic disturbance rejection to one-dimensional (1-D)
reaction-diffusion (R-D) equation, namely, a partial differential equation of parabolic type, while
taking into account bounded input, output, and disturbance operators, a finite-dimensional exosystem
(exogenous system), and the state of the exosystem as the state to the feedback law. As is well-known,
the SFRP can be solved only if the so-called Francis (regulator) equations have solution. In our work,
we try with the solution of the Francis equations from the 1-D R-D equation following given criteria
to the eigenvalues from the exosystem and transfer function of the system, but the state operator is
here defined in terms of the Sturm–Liouville differential operator (SLDO). Within this framework,
the SFRP is then solved for the 1-D R-D equation. The numerical simulation results validate the
performance of the regulator.

Keywords: applied mathematics; computational methods; exogenous system; reaction-diffusion
equation; regulator problem; Sturm-Liouville differential operator; tracking

1. Introduction

Some physical quantities from applications involving the diffusion and structural vibrations
depend on both position and time. Systems whose dynamic evolves in an infinite-dimensional Hilbert
space are modeled by partial differential equations (PDEs). Such systems are called infinite-dimensional
systems. Because these systems reflect the spatial distribution of a physical quantity, these systems
are called distributed parameter systems (DPSs). The aim when designing the controller for
infinite-dimensional systems is that the control system is stable and robust in the presence of parametric
uncertainties and external perturbations.

The design of classical controllers is commonly based on the transfer function of the system.
Infinite-dimensional systems have transfer function. Unlike transfer functions from finite-dimensional
systems, transfer functions of infinite-dimensional systems are not rational functions. If the transfer
function from an infinite-dimensional system is provided, then the controller can be directly designed.
A drawback from this last approach is that the controller will be infinite-dimensional and it may
be approximated by a finite-dimensional system. For some practical applications, it could be that
a transfer function is not available. Subsequently, a finite-dimensional model of the system must
be drawn from which the controller design may be based. This latter approach is the most used
methodology to design controllers of systems modeled by PDEs [1].
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The main aim in the regulator problem is the design of a feedback law, such that the output of the
system tracks a reference signal in presence of a external disturbance, where the reference signal and
external disturbances are generated through an exosystem (also called exogenous system). The state
feedback regulation problem (SFRP) and error feedback regulation problem (EFRP) are two approaches
that may be used to solve the output regulation problem [2]. The regulator theory has a long history
and has been used in both finite- and infinite-dimensional cases. In this work, we try with the SFRP
under the assumption that the whole state from the exosystem is available to the controller.

In our work, the employed methodology follows the work for linear finite-dimensional systems [3–6].
In [5], the solvability for the multivariable linear regulator problem, which tries with the solvability for a
pair of linear matrix equations, namely, the Francis (regulator) equations, was shown. Necessary and
sufficient conditions for the solvability of the so-called Hautus equations were given in [7]. In [8] the
Hautus conditions were stated, for finite-dimensional linear systems, claiming that any eigenvalue
from the exosystem is not an invariant zero of the control system. In [3] the regulator problem was
extended to finite-dimensional nonlinear systems where necessary and sufficient conditions, about the
solvability of a pair of nonlinear regulator equations, are given to the solvability of the problem.

The regulator problem for linear finite-dimensional systems was extended to linear DPSs [9–13].
Control systems governed by a discrete spectral operator are presented in [11,12], where the so-called
state operator comply with the property of spectrum decomposition [14,15] from which a controllability
condition is determined by the spectrum, implying the stabilizability of the control system through a
finite-dimensional controller. In [13], the geometric regulation approach was extended to linear DPSs
with bounded input and output operators where both reference and disturbance signals considered in
[11,12] are assumed as generated by a finite-dimensional exosystem. Additionally, simple criteria for
the solvability of the Francis (regulator) equations were provided. Moreover, the regulator problem to
set-point control with harmonic disturbance, such disturbance acting over a small spatial interval, for a
one-dimensional (1-D) heat equation, the regulator problem for harmonic tracking of a damped wave
equation, when considering full state feedback for both cases, as well as the regulator problem for
harmonic tracking of a 1-D heat equation, but under the error feedback approach, these latter without
considering disturbances, were solved. Neumann boundary conditions were considered to the cases
mentioned above about the regulator problem for a 1-D heat equation. The case for regulation of linear
systems with bounded input, output and disturbance operators, this last disturbance operator entering
across the entire interval, was considered in [16] for a 1-D heat equation with Dirichlet condition at one
boundary and Neumann condition at the other boundary. In [17] key results from [13], regarding the
state feedback regulator problem, were extended to systems with unbounded control and observation
operators. The regulator theory developed in such a work was applied to a one-dimensional (1-D) heat
equation, a heat equation on a two-dimensional (2-D) unit rectangle, and on a damped Rayleigh beam.

Comprehensive reviews regarding contributions made to generalize the regulator problem to
infinite-dimensional systems can be found in [17,18]. The output regulation problem for DPSs has
been extensively studied for different classes of PDEs systems; for example, parabolic and hyperbolic
PDEs [18–20], linearized Stokes flow, and steady-state incompressible Navier–Stokes fluid flow
equations with spatially varying parameters [16], coupled wave equation [16], wave equations [21,22],
beam and plate equations [16,17,23,24], and partial integro-differential equations [25]. In most of
the works, the controller is done based on output feedback; these include system stabilization and
availability of the state of the exosystem for feedback is not required.

Reaction-diffusion (R-D) equations have been playing an important role in applied mathematics.
Dynamics from combustion processes, superconductivity in liquids, signal transmission across
neurons, population growth, mass balance and mass transport, chemical kinetics, chemotaxis,
metabolic processes in living cells, and the spread of diseases and viruses can be analyzed and
simulated by R-D models [26–34]. In [35], boundary control to the R-D equation via the backstepping
method was proposed. The main idea of using the backstepping method was about the use of a
Volterra integral transformation along with feedback control that made that the R-D system behaves as
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the heat equation; this latter as an exponentially stable target system. To the best of our knowledge,
there is no work regarding the solution of the SFRP for harmonic tracking with harmonic disturbance
rejection to the 1-D R-D equation.

In this work, although it could be argued that the 1-D R-D equation is be among the simplest PDEs
systems, our application is concerned with the SFRP to the design of a harmonic tracking regulator,
but, in contrast with our previous work recently reported in [36], with harmonic disturbance rejection
for this kind of system. It is well known that the SFRP is solved only if the Francis (regulator) equations
have a solution. In our work, the main contribution is that the state operator to the Francis equations,
corresponding to the 1-D R-D equation, here is defined in terms of the Sturm–Liouville differential
operator (SLDO) to then solve them.

The manuscript is organized, as follows. In Section 1, the SFRP, modeling of DPS, control of
PDEs, and applications of the R-D equation are summarized; the problem statement is formulated in
Section 2; the regulator design is detailed at Section 3; the simulation results are included in Section 4;
and, the conclusion is drawn at the end.

2. Problem Statement

2.1. Sturm–Liouville Boundary Value Problem

Let us consider a differential equation of the form

(p(x)y′)′ − q(x)y + λr(x)y = 0, x ∈ (0, 1), (1)

with symmetric boundary conditions, also known as Sturm–Liouville boundary conditions,

α1y(0) + α2y′(0) = 0, β1y(1) + β2y′(1) = 0, (2)

at the endpoints. The Sturm–Liouville Equation (1) can be rewritten as

∑
∂

∂xi

(
p(x)

∂y
∂xi

)
− q(x)y + λr(x)y = 0 (3)

or, equivalently,
p(x)∆y− q(x)y + λr(x)y = 0, (4)

with ∆ the Laplacian operator [26,37], assuming that p(x) is a C1 function, q(x) and r(x) are continuous
functions, p(x) > 0, and r(x) > 0 [38]. In this case, the boundary value problem is said to be regular.
It should be noticed that these latter conditions are satisfied in many problems in mathematical physics.

L = − d
dx

p(x)
d

dx
+ q(x) (5)

is known as the SLDO [39].
Let us consider the linear homogeneous differential operator

L[y] = −(p(x)y′)′ + q(x)y. (6)

Accordingly, the Equation (1) can be written as

L[y] = λr(x)y. (7)

Each one of the boundary conditions (2) involves only one of the boundary points, and that is
why are said to be separated. In order to impose any restriction on y, at least one of the parameters α1

and α2 must be different from zero to the first boundary condition. Alike, at least one of the parameters
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β1 and β2 must differ from zero [40]. The boundary value problem consisting of (1) and (2) is called
the Sturm-Liouville boundary value problem (SLBVP) [41].

Modeling that involves ordinary differential equations (ODEs) usually leads to initial value
problems or boundary value problems, these latter written in the form of the SLBVPs, which are
eigenvalue problems that involve a parameter λ related to frequencies, energies, or other physical
quantities [42]. In fact, the next theorem summarizes the way about how to convert a linear second
order differential equation A(x)y′′ + B(x)y′ + C(x)y into one of the form (1/r(x))((p(x)y′)′ + q(x)y).
If p(x), q(x), and r(x) are given, then A(x) = p(x)/r(x), B(x) = p(x)′/r(x), and C(x) = q(x)/r(x).

Theorem 1. [43] Suppose that A(x) > 0, B(x) and C(x) are analytic real-valued functions in the (finite or
infinite) interval a < x < b, then exist functions p(x) > 0, q(x), and r(x) > 0 likewise analytic and real
valued in a < x < b and

A(x)y′′ + B(x)y′ + C(x)y =
1

r(x)
[
(p(x)y′)′ + q(x)y

]
identically in y.

Proof. See [43].

The expression on the right from this last equation is referred as the Sturmian form of the
differential equation, also called self-adjoint form. Solutions of SLBVPs, called eigenfunctions, have
many general properties in common, as the orthogonality property, useful in eigenfunctions expansions
in terms of Fourier series, Legendre polinomials, Bessel functions, and other eigenfunctions [41,44].

2.2. Abstract Control System Model

Let us consider an abstract distributed parameters control system in the Hilbert space Z in
the form

zt = Az(t) + Binu(t) + Bdd(t), (8)

z(0) = z0, z0 ∈ Z , (9)

y(t) = Cz(t), (10)

where the state operator A refers to an unbounded densely defined operator, z(t) stands for the state
of the system, z0 is for the initial condition, zt is the derivative of z(t) with respect to time, u(t) ∈ U
is the control input, and y(t) ∈ Y is the measured output. U , Y are Hilbert spaces of either finite or
infinite dimension. Bin is an input operator, Bd ∈ L(U ,Z) is a disturbance operator, d(t) refers to the
disturbance, and C is an output operator.

The operator A is given in terms of a linear elliptic partial differential operator L in the Hilbert
space Z = L2(Ω) of infinite dimension with bounded domain Ω ∈ Rn with piecewise smooth
boundary. To the second order case,

L =
n

∑
i,j=1

∂

∂xj

(
aij(x)

∂

∂xi

)
− a(x) (11)

where a(x) ≥ 0 for all x ∈ Ω, aij ∈ C∞(Ω), aij(x) = aji(x), and Ω is the closure of Ω. If there exist
constants 0 < c1 < c2 < ∞, by uniform ellipticity it means that

c1|ξ|2 ≤
n

∑
i,j=1

aij(x)ξiξ j ≤ c2|ξ|2

for all ξ ∈ Rn and x ∈ Ω, where | · | represents the Euclidean norm in Rn.
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In our work, from (5) and (11), the state operator is defined here as given in the form of the
SLDO, namely,

A = A + λ, (12)

with
A = d2/dx2. (13)

The output operator C ∈ L(Z ,Y) is a set of bounded operators Ci given by

yi(t) = Ciz =
1
|Ωi|

∫
Ωi

z(x, t)dx, (14)

for some Ωj of the domain Ω, with Lebesgue measure

|Ωi| =
∫

Ωi

dx > 0.

In the same setting,

yi(t) = Ciz = 〈z, Ψi〉 =
∫

Ω
z(x, t)Ψi(x)dx

with

Ψi(x) =
1
|Ωi|

1Ωi (x) ∈ L2(Ω)

and indicator function

1Ωi (x) =

{
1, x ∈ Ωi

0, x 6∈ Ωi.
(15)

Accordingly,

y = Cz = [C1(z) C2(z) · · · Cnc(z)]
T .

2.3. Exogenous System (Exosystem)

Let us consider a finite-dimensional exosystem

dw(t)
dt

= Sw(t), (16)

yr(t) = Qw(t), (17)

d(t) = Pw(t), (18)

w(0) = w0, (19)

which generates both reference output yr(t) and disturbance d(t),W is the state space of the exosystem,
S ∈ L(W), Q ∈ L(W ,Y), and P ∈ L(W ,Z).

Let us consider the system given by

zt(x, t) = Az(x, t), (20)

z(x, 0) = z0(x). (21)

If there exist positive constants M and α, such that

‖z(·, t)‖ = ‖eAtz0‖ ≤ Me−αt‖z0‖ ∀ t ≥ 0, (22)
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with z0 ∈ Z , then the system (20) and (21) is exponentially stable. From the above, it is said that the
state operatorA generates an exponentially stable C0 semigroup in Z [45], i.e.,A is stable. Accordingly,
here it is assumed that the uncontrolled system (20) and (21), i.e., to the case when u = 0 and d = 0,
is exponentially stable. Additionally, it is assumed that the exogenous system (16)–(19) is neutrally
stable. To the linear case, in the Lyapunov sense, this is equivalent to the origin being stable implying
that σ(S) ⊂ iR and S has no nontrivial Jordan blocks. ρ(T) refers to the resolvent set of an operator T
and σ(T) refers to the spectrum of T.

Let us consider the error signal

e(t) = y(t)− yr(t), (23)

= Cz(t)−Qw(t). (24)

The main task for the regulator is to force the output of the system to track a reference signal in
presence of a disturbance d(t), i.e., e(t)→ 0 as t→ ∞. Accordingly, the problem is stated as follows.

Problem 1. State Feedback Regulator Problem (SFRP).
The SFRP consists in to find a control law

u(t) = Γw(t) (25)

in function of the state of the exosystem with Γ ∈ L(W ,U ), such that for the system

dz(t)
dt

= Az(t) + (BdP + BinΓ)w(t), (26)

dw(t)
dt

= Sw(t), (27)

which corresponds to the interconnection of (8)–(10) with (16)–(19), the error norm

‖e(t)‖ = ‖y(t)− yr(t)‖, (28)

= ‖Cz(t)−Qw(t)‖, (29)

satisfies

‖e(t)‖ → 0 as t→ ∞, (30)

for any z0 ∈ Z and w0 ∈ W .

Being e(t) a finite dimension vector, then all lp norms in (30) are equivalent. Because exponential
stability for the system (20) and (21) has been assumed, then a state feedback control law is not involved.
In this work, our main focus is with tracking and harmonic disturbance rejection, so, the stabilization
problem is out of scope of our proposal. Thus, the solvability of the SFRP is stated in the next theorem.

Theorem 2. If there exist mappings Π ∈ L(W ,Z) and Γ ∈ L(W ,U ), with rank(Π) ⊂ D(A), satisfying the
Francis (regulator) equations

ΠS = AΠ + BinΓ + BdP, (31)

CΠ = Q, (32)

then the linear SFRP has solution. The feedback control law that solves the SFRP is given by

u(t) = Γw(t). (33)
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Proof. The proof can be carried out along the same lines as in [16].
From this last theorem, from the assumptions that eAt is an exponentially stable semigroup and

that the exosystem is neutrally stable, if (31) holds then e(t) → 0 as t → ∞ for all z0 ∈ Z, w0 ∈ W,
if and only if [CΠ−Q] = 0.

3. Regulator Design

Let us consider the 1-D R-D equation that is given by

zt(x, t) = Dzxx(x, t) + λz(x, t) + Binu + Bdd, (34)

z(0, t) = 0, (Dirichlet BC) (35)

zx(1, t) = 0, (Neumann BC) (36)

z(x, 0) = φ(x), (37)

y(t) = Cz(t), (38)

where Dzxx(x, t) is referred as the diffusion term, with diffusion coefficient (constant) D > 0, and
λz(x, t) is the reaction (source) term, with λ an arbitrary constant. Refer to [37] to have an idea about
typical values that D may take when trying with heat conduction or molecular diffusion.

The system (34)–(38) is formulated in the form (8)–(10) in the Hilbert state space Z = L2(0, 1).
zx refers to the partial derivative with respect to space and zxx refers to the second partial derivative
with respect to space also. The maximal elliptic operator is given by L = d2/dx2 in (11) with domain
D(L) = H2(0, 1), the Sobolev space of functions ζ ∈ Z with dζ/dx both continuous on (0, 1) and
d2ζ/dx2 ∈ Z . The state operator (12) is a self-adjoint operator in Z , i.e.,

A[ζ] = ζ ′′ + λζ,

where
D(A) = {ζ ∈ H2(0, 1) : ζ(0) = 0, ζ ′(1) = 0} ⊂ Z . (39)

The spectrum of A denoted by

σ(A) = {λk}∞
k=0,

where λk = −µ2
k with µk =

(
k− 1

2

)
π, is purely discrete with a corresponding set of

orthonormal eigenvectors

ζk(x) =
√

2 sin (µkx), k = 1, 2, . . . .

The operator A is assumed as an infinitesimal generator of an exponentially stable C0 semigroup
in Z in terms of the eigenfunction expansion

eAtζ =
∞

∑
j=0

eλjt〈ζ, ζ j〉ζ j.

It should be noticed that the system under consideration is a single-input/single-output system
with scalar input and output Bin and C, respectively, and Bd is for a bounded disturbance. Additionally,
the input, output, and disturbance operators are bounded operators acting in the interior of the
domain.

The input to the system is spatially uniform over a small interval about a fixed point xin = x0 ∈
(0, 1), where Binu = b(x)u with

b(x) =
1

2ν0
1[x0−ν0,x0+ν0]

(x) (40)
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and

1[a,b](x) =

{
1, x ∈ [a, b]

0, x 6∈ [a, b].

The input operators Bin and Bd are given as

Binu(t) =
nin

∑
j=1

Bj
inuj(t), Bdd(t) =

nd

∑
j=1

Bj
ddj(t),

where uj(t) and dj(t) are scalar control inputs and disturbances, respectively. Bj
in and Bj

d(x) are
characteristic functions of a bounded subset of Ω, namely

Bj
in(x) =

1
|Ωj|

1Ωj(x).

To guarantee that Bj
in ∈ Z , here it is assumed that |Ωj| > 0.

The output is the average transport reaction over a small interval about a point xout = x1 ∈
(0, 1), i.e.,

Cφ =
∫ 1

0
c(x)φ(x)dx

with

c(x) =
1

2ν1
1[x1−ν1,x1+ν1]

(x). (41)

Because Cζ = 〈ζ, c〉, C is a bounded linear observation functional on Z .
In our work, d(t) = Ad sin (βt) ∈ R entering across the whole interval is considered, so Bd = 1.
In our proposal, the Francis Equations (31) and (32) take the form

ΠSw = AΠw + BinΓw + BdPw, (42)

CΠw = Qw = w1, (43)

with

Π = [Π1 Π2 Π3 Π4], w(t) =


w1

w2

w3

w4

 =


Ar sin(αt)
Ar cos(αt)
Ad sin(βt)
Ad cos(βt)

 ,

S =


0 α 0 0
−α 0 0 0
0 0 0 β

0 0 −β 0

 , Q = [1 0 0 0], P = [0 0 1 0].

Because of the block diagonal structure of S, the Francis equations can be decoupled into two
separate parts, the first one to work with the harmonic tracking task and the last one to work with the
rejection of a harmonic disturbance.
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3.1. Harmonic Tracking

Accordignly, along the same lines from [16], for the first part on which it is desirable to track a
harmonic signal yr(t) = Ar sin (αt) consider an exosystem given as

wt = Sw, w(0) =

[
0

Ar

]
, S =

[
0 α

−α 0

]
,

with solution

w(t) =

[
Ar sin(αt)
Ar cos(αt)

]
.

Taking P = [0 0] and Q = [1 0] then

yr(t) = Qw = Ar sin (αt).

In this caseW = R2, so Π = [Π1 Π2] and Γ = [Γ1 Γ2] ∈ R2 with Πj ∈ Z .
The Francis equations applied to the vector w = [w1 w2]

T ∈ W give the following system

ΠSw = AΠw + BinΓw, (44)

CΠw = Qw. (45)

From these last equations, the regulator equation on the left can be written as

αΠ1w2 − αΠ2w1 = AΠ1w1 +AΠ2w2 + BinΓ1w1 + BinΓ2w2. (46)

Because (46) must be fulfilled for all w, let us consider first the case w1 = 1 and w2 = 0 and then
w1 = 0 and w2 = 1 yielding

−αΠ2 −AΠ1 = BinΓ1, (47)

αΠ1 −AΠ2 = BinΓ2. (48)

Remarking that the exogenous system (16)–(19) is neutrally stable, multiplying (48) by i =
√
−1

to then adding the result to (47) it yields

(iαI −A)Π1 + i(iαI −A)Π2 = BiniΓ2 + BinΓ1. (49)

Because iα 6∈ ρ(A), multiplying from the left by (iαI −A)−1 both sides of (49) results

Π1 + iΠ2 = (iαI −A)−1Bin(Γ1 + iΓ2). (50)

Applying C to both sides of (50) and recalling that CΠw = Qw, with CΠ1 = 1 and CΠ2 = 0,
then Q = [1 0]. Consequently,

1 = C(iαI −A)−1Bin(iΓ2 + Γ1) = G(iα)(Γ1 + iΓ2). (51)

Rewriting (51) in terms of G(iα) = Re(G(iα)) + iIm(G(iα)), it yields

1 = (Re(G(iα)) + iIm(G(iα)))(Γ1 + iΓ2).
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From the above, matching real and imaginary parts,

1 = (Re(G(iα))Γ1 − Im(G(iα))Γ2,

0 = (Im(G(iα))Γ1 + Re(G(iα))Γ2.

Hence,

Γ1 =
Re(G(iα))
|G(iα)|2 , Γ2 = −Im(G(iα))

|G(iα)|2 .

Accordingly, from the fact that

G(iα)−1 =
1

G(iα)
=

G(iα)
|G(iα)|2 =

Re(G(iα))− iIm(G(iα))
|G(iα)|2 ,

the desired control is given by

Γ = [Γ1 Γ2] = [Re(G(iα)−1) Im(G(iα)−1)]. (52)

Here, it has been assumed that the system is real, i.e., G(s) = G(s) for all s 6∈ ρ(A). It should be
noticed that G(iα) 6= 0 for solvability.

3.2. Harmonic Disturbance Rejection

Now, for the last part where is desirable to reject a sinusoidal disturbance such as d(t) =

Ad sin (βt), let us chose an exosystem that is governed by the harmonic oscillator

wt = Sw, w(0) =

[
0

Ad

]
, S =

[
0 β

−β 0

]
,

with solution

w(t) =

[
Ad sin(βt)
Ad cos(βt)

]
.

Taking Q = [0 0] and P = [1 0], then

yr(t) = Qw = 0.

Again, to this caseW = R2 so, we look for Π = [Π3 Π4], where Πj ∈ Z , and Γ = [Γ3 Γ4] ∈ R2.
The Francis equations that are applied to the vector w = [w3 w4]

T ∈ W result in the system

ΠSw = AΠw + BdPw + BinΓw, (53)

CΠw = 0. (54)

Expanding the above matrix multiplications, the regulator equation from the left becomes

βΠ3w4 − βΠ4w3 = AΠ3w3 +AΠ4w4 + Bdw3 + BinΓ3w3 + BinΓ4w4. (55)
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Because (55) has to hold for w, now consider the case for w3 = 1 and w4 = 0 to then consider that
for w3 = 0 and w4 = 1 resulting

−βΠ4 −AΠ3 = Bd + BinΓ3, (56)

βΠ3 −AΠ4 = BinΓ4. (57)

By multiplying (57) by i =
√
−1 and adding the result to (56), we get

(iβI −A)Π3 + i(iβI −A)Π4 = Bd + BiniΓ4 + BinΓ3. (58)

Noting that iβ 6∈ ρ(A), applying (iβI −A)−1 to both sides of (58), we get

Π3 + iΠ4 = (iβI −A)−1Bd + (iβI −A)−1Bin(iΓ4 + Γ3). (59)

By multiplying both sides of (59) by C, from (54) implies

CΠ3 = 0, CΠ4 = 0,

thus, we get

0 = C(iβI −A)−1Bd + C(iβI −A)−1Bin(iΓ4 + Γ3)

= GBd(iβ) + G(iβ)(iΓ4 + Γ3)

where we have used the notation

GBd(s) = C(sI −A)−1Bd.

Finally, solving for Γ we have

Γ3 = −Re(G(iβ)−1)Re(GBd(iβ)) + Im(G(iβ)−1)Im(GBd(iβ)),

Γ4 = −Re(G(iβ)−1)Im(GBd(iβ))− Im(G(iβ)−1)Re(GBd(iβ)),

where

Γ = [Γ3 Γ4]. (60)

Consequently, by combining (52) and (60) we get

Γ = [Γ1 Γ2 Γ3 Γ4].

Although it could be argued that the 1-D R-D equation was so easy to find an explicit formula
for the transfer function G(s) = C(sI −A)−1Bin, then there is no reason for which the state feedback
regulator problem to this type of PDE had not been reported in the literature in spite of its importance
to a myriad of applications.

4. Simulation Results

In our numerical simulation, we have set Ad = 2, Ar = 2, α = 4, β = 4, x0 = 0.75, x1 = 0.25 and
ν0 = ν1 = 0.25. From Figures 1–3, it can be seen that the controlled output y(t) tracks the reference
signal yr(t) from an initial condition ϕ(x) = 4 cos (πx). Additionally, it can be seen that the error
signal e(t) tends to zero as time tends to infinity. The performance of the regulator is shown for
different λ values. The convergence of y(t) to yr(t) is faster for small λ values. From Figures 4–6, the
solution surface is shown for every λ value. In mass balance the source term λz can be interpreted
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as the rate of production (destruction) of species per unit volume. From (34), the sign from the
diffusion term agrees with the observation that mass flows from high to low mass concentration. In
general, pressure gradients, temperature, and external forces affect the mass flux but their effects can
be neglected and take the diffusion coefficient D > 0 to be constant. In fact, the units may be chosen in
a convenient way in order to make D = 1. In our work, the diffusion coefficient is set to the unit value.
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Figure 1. Performance of the regulator for λ = 2.5 with Γ1 = 1.8424, Γ2 = 1, Γ3 = −0.5, and Γ4 = 0.
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Figure 2. Performance of the regulator for λ = 0, i.e., to the case for which the R-D equation is reduced
to the Fick’s second law of diffusion (also called simply as diffusion equation), for whose case Γ1 = 2.4674,
Γ2 = 1, Γ3 = −0.5, and Γ4 = 0.
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Figure 3. Performance of the regulator for λ = −2.5, for whose case Γ1 = 3.0924, Γ2 = 1, Γ3 = −0.5,
and Γ4 = 0.
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Figure 4. Plot of the solution surface for λ = 2.5.
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Figure 5. Solution surface for the case in which the reaction term is omitted, i.e., to the case for which
λ = 0.
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5. Conclusions

In [16], from an abstract control system model for the 1-D heat equation, the SFRP was solved
in terms of the transfer function of the system, but with feedback control law in function of the state
of the exosystem. The SFRP to the 1-D heat equation was solved for harmonic tracking and rejection
of a constant disturbance. The SLDO (5) is present for most of the R-D equation types [34]. In our
work, we propose the state operator for an abstract control system model to the 1-D R-D equation,
in contrast with that in [16], namely, (13), as given in the form of the SLDO (12). Accordingly, the
1-D R-D equation is characterized, along the same lines as in [16], in terms of the Francis (regulator)
equations, but with state operator (12) and then these are solved. The SFRP to the 1-D R-D equation is
solved for harmonic tracking with harmonic disturbance rejection. The simulation results validate the
performance of the regulator, i.e., the error tends to zero as time tends to infinity. From all of the above,
we conclude that our proposal performs well, i.e., the SFRP for the 1-D R-D equation has solution.
As future work, our proposal may be extended to those approaches in [16], and so on, on which the
abstract control system model to the R-D equation could falls.
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