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Abstract: The paper develops a simultaneous equations stochastic frontier model (SFM) with
dependent random noise and inefficiency components of individual equations as well as allowing
dependence across all equations of the model using copula functions. First, feasibility of our developed
model was verified via two simulation studies. Then the model was applied to assess cost efficiency
and market power of the banking industry of China using a panel data of 37 banks covering the
period 2013–2018. Results confirmed that our simultaneous SFM with dependent random noise and
inefficiency components outperformed its predecessor, which is a simultaneous SFM with dependent
composite errors but with independent random noise and inefficiency components of individual
SFMs as well as the conventional single-equation SFM. Apart from the statistical and computational
superiority of our developed model, we also see that Chinese banks in general have a high level of
cost efficiency and that competition in the banking industry of China mainly exists in state-owned
banks and joint stock banks. Presence of economies of scales as well as diseconomies of scales were
found in different banks. Also, the state-owned banks embraced most sophisticated technologies
thereby allowing them to operate with the highest level of cost efficiency.

Keywords: simultaneous SFM; dependent error components; copula functions; simulation study;
market power; cost efficiency; technology gap ratio

1. Introduction

The stochastic frontier model (SFM) reflects the functional relationship between inputs and outputs
produced by enterprises under a given level of technology. For a production function, the SFM is
used to calculate efficiency of the production technology by measuring the gap between actual output
and the maximum potential output given technology and input levels. For a cost function, the cost
efficiency of an enterprise can be calculated by comparing the difference between actual cost and the
potential minimum cost given technology, input and output prices. Conventional SFM decomposes the
composite error into two components—statistical noise and inefficiency—thereby allowing separation
of inefficiency from external random shocks or measurement errors and thus avoiding overestimation
of inefficiency [1]. Given this advantage of SFM, it has been applied to a wide variety of research
fields to estimate efficiency of firms and/or economic agents, including the banking and finance
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sectors [2–4], the agricultural production sector [5,6] as well as the energy industry and environmental
performance [7,8]. In recent decades, SFM has been improved in its estimation approaches ranging from
semi-parametric and nonparametric estimations, various assumptions regarding marginal distribution
and so on. However, these extensions of single or univariate SFM cannot deal with multiple outputs.
Also, neglecting dependence among multiple outputs may lead to biased estimates of technical
efficiencies [9]. Therefore, when the nature of outputs is multiple and potentially correlated, it is
meaningful to apply simultaneous SFMs.

Existing literature does extend the single-equation SFM to solve the issues of multiple outputs
or construct multiple SFMs in some ways. For example, Fernández et al. [10] combined parametric
aggregator of outputs with the single-equation SFM to deal with multiple outputs. It is clear that
this transformation of multiple outputs is a way out to solve multi-output problems, but it is still
constrained by the application of a single-equation model and aggregation of multiple outputs could be
an issue on its own. Later, Ferreira and Steel [11] applied a multivariate skewed distribution to model
the skewness of composed error terms in multi-output equations of stochastic production frontiers.
Carta and Steel [12] first proposed a multi-output SFM using copula functions to link inefficiency error
terms. Afterwards, Lai and Huang [9] proposed a multiple SFM with correlated composite errors
using copula functions and used the maximum likelihood estimation procedure to draw inference
from the model. They showed that omission of dependence between composite errors could result in
severely biased estimation of technical efficiency. Hereafter, Huang et al. [13] applied the copula-based
simultaneous SFM to measure cost efficiency and Lerner index for Russia, Czech Republic, and Poland,
etc. In addition, Huang et al. [14] employed the approach to measure competition, innovation and
efficiency in Taiwan’s banking industry.

Through the above-mentioned literature, we can find that scholars have successfully extended
single-equation SFMs to simultaneous SFMs. Moreover, these studies focused on modelling dependence
between either the composite errors or the inefficiency terms of equations in simultaneous SFMs,
all of which were proved to be more effective than the single-equation SFM. However, as in the case
of conventional SFM, simultaneous SFMs were also developed based on the assumption that the
statistical noise and inefficiency components are independent. In fact, dependence between the two
error components of SFM should not be ignored. The logic behind this argument is that the correlation
between statistical noise and inefficiency may arise from factors that are beyond the control of firms,
on efficiency.

Some studies have showed that the relaxation of the restrictive independence assumption of the
statistical noise and inefficiency components can remarkably improve performance of the conventional
SFM. For example, Bandyopadhyay and Das [15] developed a SFM in which the error components
were jointly distributed as a truncated bivariate normal, given the condition that the distribution
of observational error is negatively skewed. Soon after, Smith [16] proposed a copula-based SFM
with dependent error components relaxing the statistical noise-inefficiency independence assumption.
Following that, many scholars have applied the copula-based SFM to assess efficiency of decision
making units in various fields, such as, applications to analyze technical efficiencies of Moroccan
municipalities [17] and intercrop coffee production in northern Thailand [18]. Further, Sriboonchitta et
al. [19] proposed a double-copula SFM with sample selection, extending the standard SFM with sample
selection by modelling dependent error components using copula functions. Thus, it is important
to allow for the dependence not only between composite errors across multiple equations but also
between the statistical noise (random error) and inefficiency components in the simultaneous SFM
framework. In view of this, we propose a simultaneous SFM with dependent error components of
each equation as well as correlated composite errors across equations, which is not currently available
in the existing literature. We apply our proposed model to an empirical panel data set of 37 Chinese
banks covering the period 2013–2018, to measure market power, cost efficiency, and technology gap
ratio of the Chinese banking industry.
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Literature abounds on the efficiency analysis of the Chinese banking industry, ranging from
examination of cost, production and/or profit efficiency from different perspectives. Among these,
some studies investigated interrelationships between efficiency and market power (competition) of
Chinese banks but with contrasting evidences. For instance, Lin et al. [20] found that the competition
from foreign banks promote efficiency of domestic banks, while Fungáčová et al. [21] concluded
that the increase of competition has no significant relationship with the efficiency of Chinese banks.
Other studies mainly focused on the influence of financial reforms [22], risk preference [23,24] and
bank ownership types [25,26] on efficiency of Chinese banks. Evidence showed that financial reforms
and risk taking were both key determinants that affected efficiency of Chinese banks. Nevertheless,
the conclusions on the relationship between efficiency and ownership types of banks are rather mixed.
For instance, Berger et al. [25] and Fungáčová et al. [27] provided evidence that the state-owned banks
suffered from the lowest efficiency compared with other banks, while Chen et al. [28] argued that
Chinese state-owned banks were more efficient than other bank groups. Besides, Wang et al. [29]
concluded that there is no significant difference in efficiency for banks of different ownership types.

Most of these studies, along with others, mainly applied SFM and/or data envelopment analysis
(DEA) and their extensions to analyze efficiency of Chinese banks. Chen et al. [26], Jiang and He [30]
and Zhu et al. [24] measured efficiency of Chinese banks using the DEA framework, combined DEA
with support vector machines, Malmquist index, and multi-directions efficiency analysis methods,
respectively. SFM has also been widely applied and extended to estimate efficiency of the Chinese
banking industry, such as, Lin et al. [20], Yin et al. [31] and Fungáčová et al. [27]. Besides, Silva et
al. [32] compared SFA and DEA approaches on the efficiency analysis of Chinese banks and concluded
that SFA and DEA provided consistent results overall for industry but not for individual banks.
Previous researches have provided a systematic and comprehensive analysis on the efficiency of the
Chinese banking industry with respect to different research interests and methodologies. However,
the application of simultaneous SFM to the Chinese banking industry is quite limited. Huang et al. [33]
developed a stochastic network model to assess the efficiency of Chinese banks under production
of multistage processes, with the help of copula methods. To the best of our knowledge, there is no
research applying simultaneous SFM with dependent error components to analyze efficiency of the
Chinese banking industry.

Therefore, the specific contribution of this study to related literature on SFM developments and
applications is threefold: First, we develop a simultaneous SFM with dependent error components and
dependent composite errors to measure efficiency, which not only allows for dependence between the
composite errors of seemingly unrelated stochastic frontier functions, but also captures the dependence
between the random noise and inefficiency components within each equation. This is the novelty of our
model development which circumvents the limitations in the existing literature on simultaneous SFM.
Second, we verify the reasonability and feasibility of relaxing the restrictive assumption of independence
between statistical noise and inefficiency components in individual SFM and simultaneous SFM by
conducting two simulation studies thereby providing evidence about the consequences of ignoring
correlations between the error components. Third, our model is applied to an empirical panel data set
of 37 Chinese banks covering the period 2013–2018, in order to measure market power, cost efficiency,
scale economy, and technology gap ratio of the Chinese banking industry, which in turn contributes to
the relatively limited literature on such analysis for Chinese banks for current years.

The remaining sections of this paper is arranged as follows: In Section 2, we present the basic
theories of copula functions, copula-based SFM and then establish the simultaneous SFM with
dependent error components. Section 3 describes the detailed process and main findings of the two
simulation studies. In Section 4, we apply our proposed model to a panel data of Chinese banks and
summarize the empirical results. Section 5 draws conclusions of this study.
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2. Methodology

In this section, the basic concepts of copulas are introduced first. Then, we review the theoretical
foundations of copula-based SFM. On this basis, we propose a SFM with dependent error components,
which not only allows for dependence between the composite errors of two stochastic frontier
functions but also captures the dependence between random noise and inefficiency components within
each equation.

2.1. Copula Functions

The concept of copula originated from Sklar’s theorem. A copula joins univariate distribution
functions of random variables to form multivariate (joint) distribution functions to describe the
dependence structure among variables [34,35]. Kreinovich et al. [36] mentioned that the copula is the
most efficient way of representing multidimensional distributions and, thus, has been successfully
applied to many applications in statistics. A bivariate copula is a cumulative distribution function
(CDF) of two random variables with uniform margins [0, 1] and support contained in [0, 1]2 [37].
A copula function can be expressed in terms of a joint distribution function H of two random variables
X and Y, such that

C(u1, u2) = H
(
F−1(u1), G−1(u2)

)
, (1)

and
H(x, y) = C(F(x), G(y)), (2)

where C(·, ·) is the copula function, u1, u2 ∈ [0, 1] are the uniform margins, F(·) and G(·) are the
continuous marginal distribution functions of X and Y, and F−1(·) and G−1(·) are the corresponding
quantile functions [38–40].

The joint probability density function (PDF) of X and Y is factorized as

f (x, y) =
∂2H(x, y)
∂x∂y

=
∂2C(u1, u2)

∂u1∂u2
·
∂F(x)
∂x
·
∂G(y)
∂y

= c(u1, u2)· f (x)·g(y), (3)

where f (x) and g(y) are the marginal densities of X and Y and c(·, ·) is the PDF of the copula distribution.
Many copula families have been developed to model dependence between variables,

where different copula families model dependence in different ways. Elliptical copulas and
Archimedean copulas are two parametric copula families. Elliptical copulas, such as the Gaussian
copula and student t copula, do not have closed-form expressions and are radial symmetric. On the
contrary, Archimedean copulas, including Frank, Gumbel, Clayton, and Joe copulas, admit explicit
formulas and have simpler forms. Detailed expressions of the commonly used copula families can be
found in Sriboonchitta et al. [41] and Wiboonpongse et al. [18].

Different copulas have different ranges of parameters and, so, the degree of dependence modelled
by different copulas cannot be compared directly by values of copula parameters. Instead, we may
extract Kendall’s tau coefficient from the copula functions to compare correlations. Kendall’s tau
coefficient is measured by the difference between the probability of concordance and the probability of
discordance of two pairs of random variables [42]. The Kendall’s tau (τ) for the random vector (X, Y)T

is defined as
τ(X, Y) = P[(X −X′)(Y −Y′) > 0] − P[(X −X′)(Y −Y′) < 0], (4)

where (X′, Y′)T is an independent copy of (X, Y)T. Kendall’s tau τ is expressible in terms of a copula
function:

τ(X, Y) = 4
x

I2
C(u1, u2) dC(u1, u2) − 1 = 1− 4

x

I2

∂C2(u1, u2)

∂u1∂u2
du1du2, (5)

where u1 and u2 are values of the uniform margins.
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2.2. Copula-Based Stochastic Frontier Model

A SFM breaks down the composite error into two components: a normally distributed random
error term V, which takes into account uncontrollable exogenous factors, and a non-negative error
term W, which represents a firm’s technical inefficiency [43]. The two error components are assumed
to be independent in the conventional SFM. Nevertheless, this assumption of independence can be
relaxed by applying copula functions to model the dependence between V and W [16,18], which is the
basis of the so-called copula-based SFM. The basic form of a copula-based SFM is given by

logY = Xβ+ ε, (6)

with
ε = V ±W, (7)

and
H(w, v) = C(FW(w), FV(v);θ), (8)

where the output Y is positively valued, X(k× 1) is a vector of regressors, and β(k× 1) is a vector of
unknown parameters. The composite error ε contains two components: a symmetric noise V, which is
typically assumed to be normally distributed withN

(
0, σ2

V

)
, and a non-negative inefficiency term W,

which is usually supposed to be gamma, half-normal or exponentially distributed. For a stochastic
production function, the error term has the specification ε = V −W while, for a stochastic frontier
cost function, the error term is specified by ε = V + W instead [44]. H(w, v) is the joint CDF of W and
V modeled by a copula function C(·, ·) with the copula parameter θ, FV(v) and FW(w) represent the
CDFs of V = v and W = w, respectively.

The copula-based SFM is reduced to the conventional SFM when W and V are independent,
such that

C(FW(w), FV(v)) = FW(w) × FV(v), (9)

while, if W and V are dependent, the copula-based SFM is also referred to as the SFM with dependent
error components. The joint PDF of (W, V) is expressed by

f (w, v) = fW(w)· fV(v)·c(FW(w), FV(v)), (10)

where fW(w) and fV(v) denote the PDFs of W and V, and c(·, ·) is the density of the copula.
The likelihood function of the copula-based SFM is written as:

L(β, σv, σw; Y, X) =
n∏

i=1

fε(ε) =
n∏

i=1

fε(logyi − βxi), (11)

where fε(ε) is the density function of ε, which can be obtained by the following steps [19]:
First, the joint density f (w, ε) can be obtained using Equations (3) and (7). Transforming (w, v) to

(w, ε), we can get the density function of (w, ε) [16]:

f (w, ε) = fW(w)· fV(ε∓w)·c(FW(w), FV(ε∓w)). (12)

Second, marginalizing out W, we can obtain the density function of ε as

fε(ε) =
∫ +∞

0
f (w, ε)dw, (13)

or
fε(ε) = EW [ fV(ε∓w)·c(FW(w), FV(ε∓w))], (14)

where EW [·] represents the expectation function with respect to W.
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Then, fε(ε) can be approximated by

fε(ε) ≈
1
M

M∑
m=1

fV(ε∓wm)·c(FW(wm), FV( ε∓wm)), (15)

where wm, m = 1, . . . , M is a sequence of M random draws from a particular distribution, such as
a standard half-normal distribution. The technology efficiency TE could be derived as

TE = EW [exp(−W)|ε ] = 1
fε(ε)

∫ +∞

0 exp(−W) f (w, ε)dw

=
EW [exp(−W) fV(ε∓w)c(FW(w),FV(ε∓w))]

EW [ fV(ε∓w)c(FW(w),FV(ε∓w))]
.

(16)

2.3. Simultaneous Stochastic Frontier Model with Dependent Error Components

In simultaneous SFM, which has also been referred to as seemingly unrelated stochastic frontier
regressions, the stochastic frontier functions are estimated simultaneously. In this subsection,
we propose a copula-based simultaneous SFM which allows for dependence between the random
noise and inefficiency components of each stochastic frontier function, as well as dependence between
the composite errors of two equations. We named our proposed model as simultaneous SFM with
dependent error components for short, in order to distinguish from the copula-based simultaneous
SFM which was first introduced by Lai and Huang [9] and further developed by Huang et al. [13,14]
(hereafter referred to as simultaneous SFM with dependent composite errors). The basic form of the
simultaneous SFM with dependent error components is expressed by

logY1 = Xβ+ ε1, (17)

logY2 = Zα+ ε2, (18)

where
ε1 = V1 ±W1, (19)

ε2 = V2 ±W2, (20)

the dependence of error terms could be modeled by three copula functions, such that

H1(v1, w1) = C1
(
FV1(v1), FW1(w1); θ1

)
, (21)

H2(v2, w2) = C2
(
FV2(v2), FW2(w2);θ2

)
, (22)

H12(ε1, ε2) = C12(Fε1(ε1i), Fε2(ε2i);θ12). (23)

Similar to the copula-based SFM, the noise term V j ∼ N

(
0, σ2

V j

)
, j = 1, 2, is usually assumed to

obey normal distribution, while the distribution of the inefficiency term W j, j = 1, 2, could follow
a half-normal, exponential or gamma distribution. Fε(·), FV(·), and FW(·) are the CDFs of ε, V, and W,
respectively. The parameters θ1, θ2, and θ12 represent the parameters of the three copulas C1(·, ·),
C2(·, ·), and C12(·, ·), which model the dependences between V1 and W1, V2 and W2, and ε1 and
ε2, respectively.

The simultaneous SFM with dependent composite errors, proposed by Lai and Huang [9], could be
regarded as a special case of the simultaneous SFM with dependent error components when the error
components are assumed to be independent, such that

C1
(
FV1(v1), FW1( w1); θ1

)
= FV1(v1) × FW1( w1), (24)

C2
(
FV2(v2), FW2( w2); θ2

)
= FV2(v2) × FW2( w2). (25)
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The likelihood function of the simultaneous SFM with dependent error components can be
written as:

L(Ω; Y1, Y2, X, Z) =
N∏

i=1

c12(Fε1(ε1i), Fε2( ε2i)) fε1(ε1i) fε2( ε2i), (26)

with

fε j

(
ε j

)
≈

1
M

M∑
m=1

fV j

(
ε j ∓w jm

)
c
(
FW j

(
w jm

)
, FV j

(
ε j ∓w jm

))
, (27)

where Ω denotes the total possible parameter space and w jm, j = 1, 2 and m = 1, . . . , M, is a sequence of
M random draws from a specific distribution. Therefore, the log-likelihood function of the simultaneous
SFM with dependent error components can be expressed by

logL(Ω) =
N∑

i=1
log[c12(Fε1(ε1i), Fε2(ε2i))] +

N∑
i=1

log( fε1(ε1i)) +
N∑

i=1
log( fε2(ε2i))

=
N∑

i=1
log[c12(Fε1(ε1i), Fε2(ε2i))]

+
N∑

i=1
log

[
1
M

M∑
m=1

fV1(ε1i ∓w1im)·c1
(
FW1(w1im), FV1(ε1i ∓w1im)

)]
+

N∑
i=1

log
[

1
M

M∑
m=1

fV2(ε2i ∓w2im)·c2
(
FW2(w2im), FV2(ε2i ∓w2im)

)]
.

(28)

3. Simulation Study

The major advantage of simulation studies is that they are helpful to evaluate the behavior of
statistical models, as some “truth” is known from the data generating process. This helps us to compare
the performance and quality of one model against its competing methods [45]. To check the reasonability
of our proposed simultaneous SFM with dependent error components, we perform two simulation
experiments in this section. In the first simulation experiment, we compare the performance of the
copula-based SFM with conventional SFM under the “truth” that the error components are correlated
and the inefficiency terms are known. The second simulation is performed to make a comparison
between the performance of our proposed simultaneous SFM with dependent error components and
the simultaneous SFM with dependent composite errors of Huang et al. [13,14].

3.1. Comparative Study of Copula-Based SFM and Conventional SFM

We conducted a simulation experiment to make a comparison between the performance of
copula-based SFM introduced in Section 2.2 and conventional SFM, under the assumption that the
error components were dependent. Our simulation was based on a simple SFM with single explanatory
variable, expressed by

y = x′β+ v + w, (29)

where y is the output vector, x is the vector of a single explanatory variable, and β is the unknown
parameter to be estimated. The composite error is expressed as ε = v+w, where the error component v
represents the statistical noise, while w stands for the inefficiency term. Here the marginal distribution

of w was assumed to be a half-normal distribution with
∣∣∣∣N(

0, σ2
w

)∣∣∣∣, while the random noise term v was

assumed to be normal distributedN
(
0, σ2

v

)
. We assumed v and w to be dependent in the true model.

The data-generating mechanism consisted of the following steps:

• Set up the values for parameters. To generate a simulated data set, the true parameters of the
SFM were fixed as β = 10, σw = 0.7, and σv = 0.7. We chose the Gaussian copula to obtain the
correlation between v and w with the copula parameter set to be ρ = 0.7.
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• Simulate distributions of w and v. We first simulated the distribution of w (Fw) by generating
a sequence of 1000 random draws from the Halton sequence. Then, the conditional distribution of
v given w (Fv) was simulated by a Gaussian copula Cgau(v|w) using the “BiCopCondSim” function
in the R software.

• Obtain simulated data of w and v from their simulated distributions. The inefficiency term w was

generated by computing the inverse of the half-normal distribution with
∣∣∣∣N(

0, σ2
w

)∣∣∣∣, given the
distribution Fw obtained in the last step; the statistical noise term v was computed as the inverse
of the normal distribution withN

(
0, σ2

v

)
, given the distribution Fv. The composite errors were

then computed by ε = v + w.
• Simulate data of variables x and y. The data of the explained variable x was generated from

uniform random numbers on the interval [0, 1], while the dependent variable y was generated
according to Equation (29).

We generated 500 data sets of size n = 200, based on the above process. We estimated
the conventional SFM by the package “frontier” in the R software and used the estimated
coefficients as the starting values of β, σw, and σv to estimate the copula-based SFM and
conventional SFM. Next, we estimated the two models 500 times each using maximum simulated
likelihood, see details in Greene [46]. The simulated log-likelihood was maximized using the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm in R software. The performance of two models
was then compared by the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC).

The true values (True) of parameters (Para) and the summary statistics of estimated parameters
by simulation are summarized in Table 1. The estimation accuracy of parameters from the two models
were compared by the values of Mean Absolute Error (MAE) and Mean Absolute Percentage Error
(MAPE). The overall MAE and MAPE for parameters β, σw, σv, and ρ from the copula-based SFM is
0.057 and 0.05, which is lower than the overall MAE (0.316) and MAPE (0.428) from the conventional
SFM. In particular, the MAE and MAPE of σw estimated from copula-based SFM were obviously
lower than the conventional SFM, which indicates that the parameters σw estimated by copula-based
SFM were much more accurate than conventional SFM. Furthermore, the average AIC and BIC of
copula-based SFM were both lower than the conventional SFM, implying that copula-based SFM
outperformed the conventional SFM and gave a better fit to data.

Table 1. Simulation results of the conventional SFM and copula-based SFM.

Para True Mean Max Min Median 95% CI MAE MAPE

Conventional SFM

β 10.0 9.981 10.154 9.794 9.983 [9.859, 10.107] 0.054 0.005
σw 0.7 1.566 3.587 0.003 1.563 [1.118, 2.074] 0.870 1.243
σv 0.7 0.695 0.790 0.602 0.695 [0.638, 0.758] 0.025 0.036

AIC 565.1 616.5 507.8 565.2 [530.8, 600.0]
BIC 575.0 626.4 517.7 575.1 [540.7, 609.9]

Overall 0.316 0.428

Copula-based SFM

β 10.0 9.993 10.420 9.556 9.996 [9.751, 10.218] 0.093 0.009
σw 0.7 0.698 0.997 0.413 0.703 [0.530, 0.859] 0.068 0.097
σv 0.7 0.700 0.822 0.577 0.699 [0.621, 0.781] 0.031 0.045
ρ 0.7 0.700 0.804 0.518 0.703 [0.608, 0.772] 0.034 0.049

AIC 432.4 494.5 354.0 434.0 [391.9, 470.6]
BIC 445.6 507.6 367.2 447.2 [405.1, 483.8]

Overall 0.057 0.050

Note: 95% CI: 95% confidence intervals; MAE: Mean Absolute Error; MAPE: Mean Absolute Percentage Error; AIC:
Akaike Information Criterion.
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From the simulation study, the estimated parameters β, σw, σv, and ρ from the copula-based
SFM were found to be closer to their true values, with mean values of 9.993, 0.698, 0.700, and 0.700,
respectively. It is remarkable that the mean (0.698) and median (0.703) of σw from the copula-based
SFM were much closer to the true value (0.7), compared with the mean (1.566) and median (1.563) of σw

from the conventional SFM. Moreover, the parameter σv estimated by copula-based SFM was also more
precise than by conventional SFM. Therefore, ignoring dependence between the error components w
and v in conventional SFM may lead to biased estimations, which was also established by Smith [16],
Sriboonchitta et al. [41] and Wiboonpongse et al. [18].

Further, Figure 1a,b plot the histogram and kernel density of the estimated parameters by
conventional SFM and copula-based SFM, respectively. Generally speaking, the kernel density of
each parameter from copula-based SFM fit well to the histograms and was quite close to a normal
distribution. However, the estimated parameter σw by conventional SFM obviously deviated from its
true value, as shown in Figure 1a. On the contrary, the σw estimated by copula-based SFM was much
closer to its true values, as shown in Figure 1b. Therefore, the copula-based SFM outperformed the
conventional SFM when the error components were correlated.
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3.2. Comparative Study of Two Copula-Based Simultaneous SFMs

Our second simulation study was aimed at comparing the performance of two copula-based
simultaneous SFMs: simultaneous SFM with dependent composite errors and simultaneous SFM with
dependent error components. The simultaneous SFM in this simulation study could be expressed by

y1 = α0 + x′1α1 + v1 + w1, (30)
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and
y2 = β0 + x′2β1 + v2 + w2, (31)

where ε1 = v1 + w1 and ε2 = v2 + w2.
We allowed for dependence between the error components, such that v1 was correlated with

w1 and v2 was correlated with w2. Meanwhile, the composite errors ε1 and ε2 were also assumed
to be dependent. The marginal distribution of the inefficiency terms w1 and w2 were assumed to be

half-normally distributed (
∣∣∣∣∣N(

0, σ2
wj

)∣∣∣∣∣, j = 1, 2), while the noise terms v1 and v2 were assumed to be

normally distributed (N
(
0, σ2

vj

)
, j = 1, 2).

The data generation process can be summarized as follows:

• Simulate values of the parameters. The coefficientsα0, α1, β0, and β1 were generated from uniformly
distributed random numbers on the interval [5, 10], the standard deviations of inefficiency terms
σw1 and σw2 were generated from uniform random numbers on the interval [2, 3], and the standard
deviations of noise terms σv1 and σv2 were simulated from uniform random numbers on the
interval [0.5, 1]. The dependence between v1 and w1, v2 and w2, and ε1i and ε2i were modeled
by Gaussian copulas, where the copula parameters ρ1, ρ2, and ρ12 were simulated from uniform
random numbers on the interval [0.7, 0.95].

• Simulate distributions of w1 and v1, and w2 and v2. To simulate the data of w1 and v1, we first
simulated the distribution of w1 (Fw1) by generating a sequence of 500 random draws from the
Halton sequence. Next, we simulated the conditional distribution of v1 given w1 (Fv1) from
a Gaussian copula Cgau(v1|w1) using the “BiCopCondSim” function in R software, setting up the
copula parameter to be ρ1. The distributions of w2 (Fw2) and v2 (Fv2) were simulated following
the same procedure as w1 and v1, where the copula parameter was set as ρ2.

• Generate values for w1, v1, ε1, w2, v2, and ε2. In this step, we generated the values of w1 and v1,
as well as w2 and v2, given their distributions simulated in the last step. The inefficiency term
w1 (w2) was computed by the inverse of the half-normal distribution with a mean of zero and
standard deviation of σw1 (σw2); the noise term v1 (v2) was computed by the inverse of the normal
distribution with a mean of zero and standard deviation of σv1 (σv2); and the composite errors
were computed by ε1 = v1 + w1 and ε2 = v2 + w2.

• Generate values for variables x1 and y1, and x2 and y2. The explained variables x1 and x2 were
simulated as uniform random numbers on the interval [0, 1], while the dependent variables y1

and y2 were calculated according to Equations (30) and (31), respectively.

Following the above steps, we generated 200 data sets of size n = 500 for each model. We first
estimated the conventional SFM by the package “frontier” in R software, and used the estimated
coefficients as the starting values of α0, α1, σw1, σv1, β0, β1, σw2, and σv2; the starting values of three
copula parameters ρ1, ρ2 and ρ3 were all set at 0.5. Then, we estimated the simultaneous SFM with
dependent error components and simultaneous SFM with dependent composite errors using maximum
simulated likelihood and compared the quality of the two models by AIC and BIC. The simultaneous
SFM with dependent error components in this simulation study was supposed to be the true model,
as the data were generated based on the assumption that the error components were correlated. Thus,
the simultaneous SFM with dependent composite errors was mis-specified.

In Table 2, we summarize the statistics of AIC and BIC calculated from the two copula-based
simultaneous SFMs. The average AIC and BIC of the simultaneous SFM with dependent
error components are both lower than the simultaneous SFM with dependent composite errors,
with an average difference of −228.2 (−219.7) for AIC (BIC) between the two models. Further, the
difference of AICs between the two models is plotted in Figure 2. During 200 simulations, the AICs of
simultaneous SFM with dependent error components were smaller than the AICs of simultaneous SFM
with dependent composite errors for 197 times. We can conclude that the mis-specified model (with
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larger AIC and BIC) lost more information and, thus, had lower qualities compared to the true model.
Therefore, if the error components of SFM are correlated, the simultaneous SFM with dependent error
components provided a better fit for the data.

Table 2. Summary statistics of AIC and BIC of two copula-based simultaneous SFM.

Criteria Mean Max Min Median 95% CI

Simultaneous SFM with dependent error components

AIC 3031.3 3534.4 2273.7 3035.5 [2491.4, 3504.1]
BIC 3077.7 3580.8 2320.1 3081.9 [2537.8, 3550.4]

Simultaneous SFM with dependent composite errors

AIC 3259.5 4170.1 2279.5 3275.6 [2520.8, 4046.0]
BIC 3297.4 4208.0 2317.4 3313.5 [2558.7, 4083.9]

D.AIC −228.2 0.662 −688.8 −207.8 [−636.0, −1.405]
D.BIC −219.7 9.091 −680.4 −199.4 [−627.6, 7.024]

Note: 95% CI: 95% confidence intervals; AIC: Akaike Information Criterion; BIC: Bayesian Information Criterion;
D.AIC (D.BIC): AICs (BICs) of simultaneous SFM with dependent error components minus AICs (BICs) of
simultaneous SFM with dependent composite errors.
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3.3. Brief Summary

The results of the two simulation studies confirmed reasonability and feasibility of allowing for
possible correlations between the error components in SFM as well as simultaneous SFM. Conclusions
from the first simulation study challenged the ubiquitous assumption of independence between
statistical noise and inefficiency components in conventional SFM. When the two error components
were correlated, estimation by conventional SFM led to relatively larger errors as compared with
the copula-based SFM which modelled dependence of the error components by copula functions.
Furthermore, for 200 simulations in the second simulation study, the AICs of simultaneous SFM with
dependent error components were always lower than the AICs of simultaneous SFM with dependent
composite errors. This result strongly supported that the simultaneous SFM with dependent error
components could provide a better fit to the data as compared with the simultaneous SFM with
dependent composite errors developed by Huang et al. [13,14]. Therefore, it is advisable to relax the
restrictive assumption of independence between two error components when analyzing real economic
problems using either SFM and/or simultaneous SFM.
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4. An Application to the Chinese Banking Industry

In this section, the simultaneous SFM with dependent error components (as proposed in Section 2)
was applied to a balanced panel dataset of the Chinese banking industry. We estimated market power,
cost efficiency and meta-frontier technology gap ratio of 37 Chinese commercial banks covering the
period 2013 to 2018. Meanwhile, estimation based on simultaneous SFM with composite errors and the
single-equation SFM was also carried out for comparison.

4.1. Model and Data

In this application, we jointly estimated a cost frontier function and an output price frontier
function using the simultaneous SFM with dependent error components, in which the total costs and
output price were considered as dependent variables. The simultaneous SFM with dependent error
components combined a translog cost function and an output price function using copulas, which can
be specified as

lnTC = α0 + α1lnYit +
1
2α2(lnYit)

2 +
3∑

k=1
λklnPk,it +

1
2

3∑
k=1

3∑
h=1

βkhlnPk,itlnPh,it

+
3∑

k=1
γklnYitlnPk,it +ω1Trend + 1

2ω2Trend2 +ω3Trend× lnYit

+
3∑

k=1
ϕkTrend× lnPk,it + ε1it,

(32)

and
P∗it = MCit + ε2it, (33)

where ε1it = v1it + w1it, ε2it = v2it + w2it, and

F(v1it, w1it) = C
(
FV1(v1it), FW1( w1it)

)
, (34)

F(v2it, w2it) = C
(
FV2(v2it), FW2( w2it)

)
, (35)

F(ε1it, ε2it) = C(Fε1(ε1it), Fε2( ε2it)). (36)

Equation (32) represents the translog cost function of bank i at time t (which is also referred
to as the cost frontier function), where lnTC donates the total cost; Y represents for the output;
Pk (k = 1, 2, 3) implies the input prices of labor, capital, and funds, respectively; and trend is the time
trend, indicating technical changes over time. The error component v1it represents the random noise,
while w1it stands for the non-negative inefficiency term. Equation (33) is the so-called output price
frontier function, where P∗it and MCit stand for the output price and the marginal cost of bank i at
time t, respectively [14,25]. The error component v2it stands for the random noise in the price frontier,
while w2it is a non-negative random variable measuring the extent to which price deviates from MCit.

The implied marginal cost MCit is calculated by taking the partial derivative of total costs TCit
with respect to output Yit:

MC =
∂TCit
∂Yit

=
TCit
Yit

α1 + α2lnYit +
3∑

k=1

γklnPk, it +ω3Trend

. (37)

Thus, it is crucial to allow the total cost (Equation (32)) and output price (Equation (33)) to be
correlated. In the simultaneous SFM with dependent error components, the dependence between the
error components w1it and v1it, and w2it and v2it were modelled by copulas, as shown in Equations
(34) and (35). Moreover, the composed error terms ε1it and ε2it were also permitted to be dependent,
following Equation (36).
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Based on the estimation results of the simultaneous SFM with dependent error components, a set
of indices to measure market power, cost efficiency, and the meta-frontier technology gap ratio of
banks could be derived. First, the Lerner Index (LI), a well-established measure of market power
(competition) of firms, was calculated as E(u2t|ε2it)/Pit. Second, the measure of scale economies (SC)
could be obtained by ∂lnTC/∂lnY, which is the term in the parenthesis in Equation (37). Further,
the cost efficiency (CE), technology gap ratio (TGR) as well as meta-frontier cost efficiency (MCE) could
be obtained; for more details, see Huang et al. [13,14].

We used a balanced panel dataset comprised of 222 observations for 37 Chinese commercial banks
from 2013 to 2018, to avoid selection bias from unbalanced data or non-random sample. Our sample
included all the 6 state-owned banks and 12 joint-stock banks of China. Furthermore, we selected 19
Chinese city commercial banks and rural commercial banks which were listed on A-share or H-share
stock market by the end of 2018. The total assets of the sample banks account for approximately 68% of
the total assets of the Chinese banking industry during the sample period, which indicates that these
37 banks are representative of the Chinese banking industry. The data of all variables were gathered
from the Bankscope database. The missing values were manually recorded from annual reports of
individual banks. We divided the 37 Chinese banks into four sub-samples: (a) state-owned commercial
banks (SOCBs), (b) joint-stock commercial banks (JSCBs), (c) city commercial banks (CCBs) and (d)
rural commercial banks (RCBs), according to their ownership types. The output of banks was proxied
by their total assets (Y). The price of labor (P1), price of capital (P2), and the price of funds (P3) were
calculated as the ratio of personnel expenses to number of employees, the ratio of operating expenses
to total fixed assets, and the ratio of interest expenses to all types of deposits, respectively. Total cost
(TC) was calculated as the sum of personnel expenses, operating expenses, and interest expenses.
The output price P∗ was defined as the ratio of total revenue (TR) to output (Y). Following Shamshur
and Weill [47] and Huang et al. [13,14], we used the consumer price index (CPI) of China to deflate all
variables from nominal values into real values with base year 2013 = 100. The descriptive statistics of
variables are summarized in Table 3.

Table 3. Descriptive statistics of used variables.

Variables Entire Sample SOCBs JSCBs CCBs RCBs

Total revenues
(TR)

1.7778 × 108

(2.5983 × 108)
6.7775 × 108

(2.6755 × 108)
1.9337 × 108

(9.0484 × 107)
3.2843 × 107

(2.5205 × 107)
1.4155 × 107

(1.3939 × 107)

Total assets
(Y)

3.8862 × 109

(6.0574 × 109)
1.5698 × 1010

(6.5007 × 1010)
3.7259 × 109

(1.8339 × 109)
7.0699 × 108

(5.6708 × 108)
2.8958 × 108

(2.9301 × 108)

Total costs
(TC)

1.0856 × 108

(1.4852 × 108)
4.0271 × 108

(1.2239 × 108)
1.2199 × 108

(5.2576 × 107)
2.1694 × 107

(1.6508 × 107)
9.1620 × 106

(8.9081 × 106)

Price of labor
(P1)

345.269
(84.186)

246.245
(38.131)

397.954
(73.877)

347.937
(77.403)

349.817
(63.075)

Price of capital
(P2)

1.049
(0.743)

0.807
(0.738)

1.254
(0.597)

1.083
(0.875)

0.865
(0.477)

Price of funds
(P3)

0.027
(0.006)

0.019
(0.004)

0.028
(0.005)

0.029
(0.005)

0.0262
(0.005)

Output price
(P∗)

0.049
(0.006)

0.044
(0.005)

0.053
(0.005)

0.048
(0.005)

0.050
(0.006)

No. of bank 37 6 10 15 6

Obs. 222 36 60 90 36

Note: Sample means are reported (Thousands of real Chinese Yuan with base year 2013); Numbers in parentheses
are standard deviations.

It was observed that SOCBs played the dominant role in the Chinese banking industry. Regarding
bank size, SOCBs were largest among all types of banks and were roughly four times as large as JSCBs
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on average in terms of total assets. On the contrary, the sizes of CCBs and RCBs were much smaller
compared with SOCBs and JSCBs. However, the three input prices and output price of SOCBs were
lowest as compared with JSCBs, CCBs and RCBs during the sample period.

4.2. Estimation Results

In our application, the random noise terms v1it and v2it were assumed to be normally distributed
(N

(
0, σ2

vi

)
, i = 1, 2), while the inefficiency terms w1it and w2it were assumed to be either half-normally

(HN) or exponentially (EX) distributed. We considered Gaussian (G) and Frank (F) copulas to model
dependence between random error and inefficiency terms. The simultaneous SFM with dependent
error components was estimated by maximum simulated likelihood using 500 draws from the Halton
sequence. The best-fitting model was selected according to the AIC values.

Figure 3 plots the AIC values of all considered models. As shown, the best-fitting model (GFG) is
the one based on a Gaussian copula to capture dependence between v1 and w1, a Frank copula for
dependence between v2 and w2, and a Gaussian copula for dependence between ε1 and ε2, with the
lowest AIC value (−2255.7) among all considered models. It is worth mentioning that the models in
which the inefficiency terms w1 and w2 were described by a HN distribution were all superior to the
models using an EX distribution, indicating that the marginal distribution of inefficiency terms has
a crucial influence on the goodness of model fit, especially in our case.
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Figure 3. AIC values for each copula-based simultaneous SFM (the symbol “G” stands for “Gaussian
copula”; “F” represents “Frank copula”; and “HN” and “EX” represent half-normal and exponential
distributions, respectively. The three copulas are listed, according to the order of the dependence
between v1 and w1, v2 and w2, and ε1 and ε2).

The estimation results of the cost function by the best-fitting model of the simultaneous SFM
with dependent error components (SSFMDEC) are shown in Table 4. Meanwhile, we provide the
result obtained by the simultaneous SFM with dependent composite errors (SSFMDCE) of Huang et
al. [13,14] where the dependence between v1 and w1, and v2 and w2 were both modelled by independent
copulas. To draw a solid comparison with our simultaneous SFM with dependent error components,
the dependence between ε1 and ε2 in the simultaneous SFM with dependent composite errors was also
modelled by a Gaussian copula and the inefficiency terms were assumed to have HN distributions.
The estimation results of the conventional single-equation SFM is also provided for comparison.

The results immediately yield some clear conclusions: First, most of the estimated coefficients of
the cost function by SSFMDEC and SSFMDCE were significant at 1% level of significance, while many
parameters failed to be significant in the conventional single-equation SFM. Thus, the two copula-based
simultaneous SFMs (SSFMDEC and SSFMDCE) provided more efficient results as compared to the
single-equation SFM. Second, the AIC of the single-equation SFM had a much larger value than
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the other two models, indicating that both versions of simultaneous SFM were preferable to the
single-equation SFM. Third, the AIC of SSFMDEC was lower than the AIC of SSFMDCE. Thus,
the simultaneous SFM with dependent error components outperformed the simultaneous SFM with
dependent composite errors. Finally, it is important to note that the Gaussian copula parameter ρ1 and
Frank copula parameter θ2 in SSFMDEC were both significant, which indicate that it is rational to
allow dependence between the error components in simultaneous SFM.

Table 4. Parameter estimation results of the cost function.

Models SSFMDEC SSFMDCE Single-Equation SFM

Variables Parameter S.E. Parameter S.E. Parameter S.E.

Constant 13.123 *** 0.0050 9.8454 *** 0.0060 11.707 ** 5.1775
lnY 0.2512 *** 0.0002 0.3806 *** 0.0003 0.1712 0.2022
lnY × lnY 0.0344 *** 0.0000 0.0494 *** 0.0004 0.0522 *** 0.0049
lnP2 0.5719 *** 0.0009 −0.5109 *** 0.0010 −0.5108 0.4778
lnP3 1.8974 *** 0.0005 2.1181 *** 0.0006 2.0425 * 1.0721
lnP2 × lnP2 0.1526 *** 0.0003 0.1205 *** 0.0003 0.1177 *** 0.0276
lnP3 × lnP3 0.1005 *** 0.0001 0.2423 *** 0.0001 0.1981 0.1416
lnP2 × lnP3 −0.0483 *** 0.0002 −0.1786 *** 0.0055 −0.1716 * 0.0881
lnY × lnP2 0.0057 *** <0.0001 0.0220 *** <0.0001 0.0224 ** 0.0072
lnY × lnP3 −0.0101 *** <0.0001 0.0264 *** <0.0001 0.0109 0.0218
trend −0.0921 *** 0.0184 −0.2650 *** 0.0016 −0.2707 0.1729
trend× trend 0.0102 ** 0.0036 0.0081 *** 0.0012 0.0083 0.0052
trend× lnY −0.0035 *** <0.0001 −0.0002 *** <0.0001 −0.0017 0.0026
trend× lnP2 0.0219 *** 0.0002 0.0092 *** 0.0028 0.0106 0.0080
trend× lnP3 −0.0254 *** 0.0001 −0.0294 *** 0.0005 −0.0340 * 0.0174
σ 0.0110 ** 0.0043
γ 0.4587 0.4080
σw1 0.0231 0.0159 0.0915 *** 0.0242
σw2 0.0768 *** 0.0068 0.0716 *** 0.0103
σv1 0.0219 *** 0.0004 0.0162 *** 0.0008
σv2 0.0136 *** 0.0008 0.0012 0.0008
ρ1 0.9800 *** <0.0001
θ2 −28.346 *** 2.3940
ρ12 0.0148 0.0736 0.1297 0.0708

AIC −2255.67 −1907.41 −413.99

Note: Significance at the 0.01, 0.05, and 0.10 levels are indicated by ***, **, *, respectively; SSFMDEC is short for
simultaneous SFM with dependent error components, SSFMDCE is short for simultaneous SFM with dependent
composed errors; P1 is arbitrarily selected as the numeraire to satisfy the homogeneity restriction in input prices;

In single-equation SFM, σ =
√
σ2

w + σ2
v and γ = σ2

w/σ2.

4.3. Various Measures of Interests

The parameters estimated by the simultaneous SFM with dependent error components were then
applied to compute a set of indicators to analyze the level of competition, cost efficiency and technology
gap ratio of Chinese banks, such as the Lerner Index (LI), scale economies (SC), cost efficiency (CE),
technology gap ratio (TGR) as well as meta-frontier cost efficiency (MCE).

4.3.1. The Lerner Index (LI) and Scale Economies (SC)

Summary statistics of LI and SC are presented in Table 5. A bank’s LI reflects relative makeup of
the market output price (P∗) over marginal cost (MC), which is defined by LIit =

(
P∗it −MCit

)
/P∗it. LI is

a measure of market power of firms and can be regarded as the inverse of market competition level.
The values of LI range from 0 (perfect competition) to 1 (pure monopoly) [48]. We obtained an average
LI of 33.5% for the entire sample, with group mean ranging from 31.1–38.0%. This result is close to the
statistics of the Federal Reserve Economic Data (FRED), which reported an average LI of 34.9% in the
banking market of China from 1997 to 2014. Compared with the banks of developed countries during
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the same period (such as the average LI of 26.8% for banks in United States), Chinese banks possessed
higher market power. Second, there were some discrepancies in competition levels between different
types of banks. The average LI was 31.1% for SOCBs, 31.4% for JSCBs, 34.1% for CCBs, and 38.0% for
RCBs. The market competition of both SOCBs and JSCBs were highest and did not differ substantially
from each other, followed by CCBs; whereas RCBs had the lowest competition level on average.
This finding indicates that competition of the Chinese banking industry mainly exists in SOCBs and
JSCBs. The reason for this is that RCBs and CCBs are limited within a certain territorial area, typically
serving local residents and small enterprises. Compared with SOCBs and JSCBs, CCBs and RCBs have
the advantages of more flexible operation modes, lower transaction costs, and better understanding of
local conditions. Hence, RCBs and CCBs were found to have greater market power than SOCBs and
JSCBs. Our results are in line with the findings by Tan [49] and Fungáčová [21], who documented that
the competition of SOCBs and JSCBs were higher than CCBs.

With respect to the economies of scale, a company operates under diminishing, constant,
or increasing returns to scale if SC is greater than, equal to, or less than one, respectively [50].
The mean and median values of SC for the entire sample were greater than 1, indicating that Chinese
banks operated under slightly decreasing returns to scale overall. Among them, all values of SC for
SOCBs and JSCBs were greater than 1. Thus, diseconomies of scale occurred in SOCBs and JSCBs.
On the contrary, CCBs and RCBs achieved overall economies of scale, also known as increasing returns
to scale. According to Berger and Humphrey [51], small-sized banks can obtain scale economies by
increasing their size, while further increases in size may result in diseconomies of scale after a certain
point. This statement is further supported by the findings of Barros et al. [52] and Athanasoglou et
al. [53]. Thus, our finding is acceptable because the average sizes of SOCBs and JSCBs were much
larger than CCBs and RCBs based on the TR and Y values, as shown in Table 3.

Table 5. Summary statistics of Lerner Index and Scale Economies.

Groups Entire Sample SOCBs JSCBs CCBs RCBs

Lerner Index (LI)

Mean 0.335 0.311 0.314 0.341 0.380
S.D. 0.067 0.090 0.060 0.053 0.060

Median 0.337 0.327 0.318 0.339 0.392
Min 0.104 0.104 0.154 0.197 0.258
Max 0.487 0.417 0.460 0.475 0.487

Scale Economies (SC)

Mean 1.019 1.103 1.053 0.989 0.953
S.D. 0.056 0.015 0.021 0.025 0.033

Median 1.007 1.110 1.060 0.989 0.935
Min 0.920 1.073 1.002 0.944 0.920
Max 1.121 1.121 1.077 1.038 1.003

Obs. 222 36 60 90 36

Next, we take a closer look at the dynamic characteristics of the market power of Chinese banks.
Figure 4 plots the average LI for different types of banks by year. Overall, the increasing average LI
provides evidence of enhanced market power of Chinese banks during the period 2013–2018, both as
a whole or specific groups. Second, the market power of RCBs remained the highest among all types of
banks each year, followed by CCBs; while the market power of SOCBs remained low and did not vary
largely across the whole period. However, it is noticeable that the average LI of JSCBs showed some
variation. The market power of JSCBs remained lowest before 2014, then increased from 2014 to 2016
and reached the average level of the whole sample. Third, it is worth noting that the market power of
JSCBs, CCBs, and RCBs all decreased in 2016, indicating increased competition among these banks.
This result may be due to the tax reform policy of China implemented in 2016 to replace business tax
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(BT) by value-added tax (VAT) in several service sectors, including financial service sector. The tax
burden of many banks and financial companies increased at the beginning of the tax reform thereby
leading to an increase in operating costs for banks. Therefore, the market power of Chinese banks,
especially for the smaller banks, decreased in 2016.Mathematics 2020, 8, 238 17 of 23 
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The gaps in market power amongst banks, as measured by the difference between maximum LI
and minimum LI within each group, are plotted in Figure 5. The difference of LI tended to reduce
for every type of bank, indicating that the gap of market power amongst banks has narrowed in
recent years. Regarding SOCBs, the gap of market power remained relatively stable from 2013 to 2016.
However, the gap has narrowed since 2016 due to the ever-increasing market power of the Postal
Savings Bank of China (PSBC). The Industrial and Commercial Bank of China (ICBC) had the highest
market power among all SOCBs from 2013 to 2017, whereas the market power of PSBC was lowest in
those years. The gap of market power for JSCBs remained stable, with a slightly downward trend,
implying that the market power of joint stock banks was changing. Obviously, the market power of the
China Merchants Bank (CMBC) remained the highest every year, while the China Bohai Bank (CBHB)
faced the highest level of competition for most years (except for 2017). Turning to CCBs and RCBs,
the differences of LI for CCBs and RCBs shrank from 2013 to 2018, indicating that the gap of market
power among banks within the two groups was diminishing. In addition, banks with the highest and
lowest market power varied amongst different banks for CCBs and RCBs. SOCBs are the mainstay of
China’s commercial banks, with respect to asset and loan sizes, and most state revenues and expenses
are handled by state-owned banks, while the operation of JSCBs is largely attributed to contributions
of shareholders. Thus, the market power of SOCBs and JSCBs were relatively stable, leading to the
fact that the gap of market power within the two types of banks varied only slightly over the period
under consideration. On the contrary, CCBs and RCBs are mainly controlled by local governments and
enterprises, with the characteristics of large quantities, regional restriction and instability. Therefore,
there were more obvious changes of market power among CCBs and RCBs.
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Figure 5. The values of maximum, minimum, and difference of Lerner Index for the four studied
bank groups. (The left-hand ordinate indicates the LI values and the right-hand ordinate indicates
the differences between maximum and minimum LI within each group; CCB: China Construction
Bank, CGB: China Guangfa Bank, JJCCB: Bank of Jiujiang, BOCD: Bank of Chengdu, HSB: Huishang
Bank, BQD: Bank Of Qingdao, BOJ: Bank of Jiangsu, TCCB: Tianjin City Commercial Bank, WJRCB:
Jiangsu Wujiang Rural Commercial Bank, CRCB: Chongqing Rural Commercial Bank, CSRCB: Jiangsu
Changshu Rural Commercial Bank, ZRCB: Jiangsu Zhangjiagang Rural Commercial Bank, GRCB:
Guangzhou Rural Commercial Bank).

4.3.2. Cost Efficiency (CE), Technology Gap Ratio (TGR), and Meta-Frontier Cost Efficiency (MCE)

CE, TGR, and MCE are the most widely used measures of efficiency of firms. The descriptive
statistics of the CE, TGR and MCE for Chinese banks are displayed in Table 6. CE measures how well
a bank performs relative to the “best-practice” bank under the same conditions, or how close it is to the
minimum cost level [25]. We observed that the Chinese banks are operating at a very high level of cost
efficiency with an average CE value of 0.982. This result agreed with the findings of Hsiao et al. [22],
which indicated that the cost efficiency of Chinese banks had been converging and getting closer to
one by the end of 2012. As our sample period was from 2013 to 2018, it is no wonder that the high
CEs of Chinese banks were noticed. It is worth noting that the estimated CEs were not comparable
among different bank groups. However, the efficiencies among banks of different ownerships could be
compared based on MCE [54], which will be explained in detail later.

TGR measures the distance between group frontier technology and meta-frontier technology.
A larger TGR value indicates that more advanced technologies were utilized by the group, such that
the group’s cost frontier is closer to the meta-cost frontier [54]. The average TGR for the four groups
of banks ranged from 0.857 (for RCBs) to 0.946 (for SOCBs), with a total mean of 0.899 for the whole
sample. The six state-owned banks took on the most superior technology, followed by CCBs and
JSCBs. On the contrary, the six RCBs, as a group, were found to acquire least sophisticated technology,
indicated by their group cost frontier deviating farthest from the meta-frontier. Banks in rural areas
have short development times, with obvious geographical restrictions, and encounter challenges of
backward information technology, such as a lack of high-speed wireless networks, big data, and cloud
computing facilities. The strategies of credit risk management and services of online banking have also
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been shown to be lacking in RCBs [55]. Thus, an obvious technology gap exists between RCBs and
other banks.

Table 6. Summary statistics of Cost Efficiency, Technology Gap Ratio, and Meta-frontier Cost Efficiency.

Groups Entire Sample SOCBs JSCBs CCBs RCBs

Cost Efficiency (CE)

Mean 0.982 0.976 0.984 0.987 0.974
S.D. 0.013 0.010 0.011 0.012 0.017

Median 0.984 0.977 0.985 0.990 0.977
Min 0.945 0.961 0.960 0.947 0.945
Max 1.000 0.997 0.999 1.000 0.999

Technology Gap Ratio (TGR)

Mean 0.899 0.946 0.887 0.906 0.857
S.D. 0.069 0.028 0.073 0.065 0.072

Median 0.909 0.949 0.874 0.916 0.857
Min 0.711 0.893 0.735 0.711 0.733
Max 0.999 0.995 0.999 0.998 0.998

Meta-frontier Cost Efficiency (MCE)

Mean 0.883 0.923 0.872 0.893 0.834
S.D. 0.063 0.023 0.065 0.059 0.061

Median 0.897 0.930 0.860 0.908 0.831
Min 0.702 0.868 0.733 0.702 0.727
Max 0.981 0.964 0.980 0.981 0.979

Obs. 222 36 60 90 36

MCE can help to figure out efficiency of individual banks and, consequently, to compare banks.
The average MCE of the entire sample was 0.883. SOCBs were the most efficient banks among four
groups, with an average MCE of 0.923, followed by CCBs (0.893) and JSCBs (0.872); while RCBs were
the least efficient banks, with an average MCE of 0.834. These results were in line with many previous
studies focused on analyzing cost efficiency of Chinese banks, such as Chen et al. [28]. Nevertheless,
our findings were contrary to Lee and Huang [56], who showed that JSCBs and RCBs were more
cost efficient compared with CCBs and the four biggest SOCBs. The different conclusions may have
been due to the different sample of banks selected, different methodologies applied and different
periods covered.

4.3.3. Brief Summaries

Our findings on various bank behaviors can be summarized as follows: First, the findings by LI
indicated that the competition in the Chinese banking industry mainly existed in state-owned banks
and joint stock banks. Moreover, the market power of Chinese banks had increased in recent years and
gaps in market power amongst banks were declining gradually. Second, the presence of economies of
scale was found in CCBs and RCBs, while diseconomies of scale occurred in SOCBs and JSCBs. Third,
Chinese banks in our sample, in general, were operating with a high level of cost efficiency during
2013 to 2018. The findings from TGR and MCE were consistent too: SOCBs were found to have the
most superior technology leading to the highest MCE followed by CCBs and JSCBs; while TGR and
MCE of RCBs were lowest among the four groups of banks.

5. Conclusions

In this study, we proposed a simultaneous SFM with dependent error components by using
copula functions. The flexibility of this model is that it allows for dependence between the random
noise and inefficiency components of individual SFM as well as dependence between the composite



Mathematics 2020, 8, 238 20 of 23

errors of simultaneous stochastic frontier equations. We first verified reasonability of allowing for such
dependence between statistical noise and inefficiency components when estimating single-equation
SFM and/or simultaneous SFM using two simulation studies. The results confirmed that the
copula-based SFM outperforms conventional SFM as the two error components, i.e., random noise
and inefficiency components, are correlated in practice; while, for the case of simultaneous equations,
it was demonstrated that ignoring dependence between random noise and inefficiency components
could result in biased estimates. We then applied our developed model to measure performance of
the Chinese banking industry. Empirical analysis again confirmed that our simultaneous SFM with
dependent error components was superior to the other two models. Finally, we estimated market
power, economies of scale, cost efficiency and technology gap ratios of 37 Chinese banks covering
the period 2013–2018 based on the estimation results from the simultaneous SFM with dependent
error components.

Results from the empirical application reveal that Chinese banks operated at a high level of cost
efficiency and there is high level of competition amongst state-owned banks and joint stock banks,
implying low market power. On the other hand, high market power was enjoyed by CCBs and
RCBs. Different groups of banks demonstrated economies of scales as well as diseconomies of scales.
The state-owned banks acquired the highest level of technologies which enabled them to operate at the
highest level of cost efficiency.

The following policy implications can be drawn from the empirical results of the study. First,
Chinese banks experiencing diseconomies of scale should consider reducing their operation size to
remain competitive in the global financial market. Second, there is a need to acquire superior and
advanced technologies in operation, which will allow reducing efficiency gaps of Chinese banks. A suit
of advanced technologies is available within the banking sector, which the lagging banks should
explore and adopt in order to remain at the top of their game in a globally competitive financial market.

The main contribution of our study is that it provides a new method to estimate simultaneous
SFM with least restrictive assumptions, which is a valuable addition to the existing literature on
SFM developments. Our study could serve as a useful reference for future studies, both in terms of
applying innovative research methods and/or empirical applications with least restrictive assumptions.
In terms of directions for future research, first, future research could focus on incorporating other
copula families to specify dependence between random error and inefficiency components instead of
Gaussian or Frank copulas used in our study. Second, future research can also consider other marginal
distributions for the inefficiency terms instead of half-normal or exponential distributions applied in
our study. Third, solving problems of possible serial autocorrelation and heteroskedasticity in the
application of our proposed model for panel data could also be a useful future research direction.
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