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Abstract: The K-nearest neighbors (KNN) machine learning algorithm is a well-known non-parametric
classification method. However, like other traditional data mining methods, applying it on big
data comes with computational challenges. Indeed, KNN determines the class of a new sample
based on the class of its nearest neighbors; however, identifying the neighbors in a large amount
of data imposes a large computational cost so that it is no longer applicable by a single computing
machine. One of the proposed techniques to make classification methods applicable on large datasets
is pruning. LC-KNN is an improved KNN method which first clusters the data into some smaller
partitions using the K-means clustering method; and then applies the KNN for each new sample
on the partition which its center is the nearest one. However, because the clusters have different
shapes and densities, selection of the appropriate cluster is a challenge. In this paper, an approach has
been proposed to improve the pruning phase of the LC-KNN method by taking into account these
factors. The proposed approach helps to choose a more appropriate cluster of data for looking for the
neighbors, thus, increasing the classification accuracy. The performance of the proposed approach is
evaluated on different real datasets. The experimental results show the effectiveness of the proposed
approach and its higher classification accuracy and lower time cost in comparison to other recent
relevant methods.

Keywords: K-nearest neighbors; KNN; classifier; machine learning; big data; clustering; cluster
shape; cluster density; classification; reinforcement learning; machine learning for big data; data
science; computation; artificial intelligence

1. Introduction

With the emergence of big data applications, traditional software tools are no longer able to
process and manage them in an acceptable time. Exploring large amounts of data and extracting
useful information or knowledge is one of the most challenging problems for big data applications [1].
For solving this problem, two general solutions have been proposed; one approach is to distribute the
data among different processing machines and do calculations on them simultaneously. By so doing,
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the high processing capacity of the parallel or distributed system is employed to address the problem
of processing large datasets. Another approach is to prune the data and, thus, computation. Indeed,
in this way, an attempt is made to reduce the size of the training dataset, which is the input of the
learning algorithm in order to be manageable and processable by a single computing machine.

One of the popular and useful data mining methods is the KNN classifier. KNN classifies each
test sample based on its k nearest neighbors. For finding the k nearest neighbors, the distance between
the test samples and all training ones should be calculated. In the case of big data, this requires a
vast amount of computational overhead. Some researchers employ distributed frameworks, such as
Hadoop, to find the k nearest neighbors overall training samples [2]. These approaches usually lead to
finding the exact k nearest neighbors, but at the cost of using a large distributed system. However,
some other researchers propose to search for the nearest neighbors in a reduced training dataset [3,4].
For instance, in the research conducted by Deng et al. [5], k-means clustering algorithm was used to
partition data into k clusters. The cluster whose center has the minimum distance from the test sample
is selected as the suitable reduced training dataset. The quality of the KNN’s classification depends on
how well the nearest neighbors are found. The chance of finding the exact k nearest neighbors also
depends on how well the large dataset has been pruned.

In this paper, a new KNN algorithm is proposed for dealing with large datasets based on the
method suggested in [5]. Since the distance to the clusters’ center could not be an adequate metric on
its own, a new algorithm is proposed for choosing the proper cluster which also takes other metrics,
such as a cluster’s density and spread shape, into account. The experimental results indicate that
the proposed KNN algorithm results in a more accurate classification in comparison to the method
proposed in [5]. Therefore, the main contributions of this paper are as follows:

• Taking into account two new factors (cluster’s density and spread shape) in order to prune the
training dataset more efficiently; and

• Implementing the proposed method and evaluating its classification accuracy and time cost in
comparison to KNN, LC-KNN, and RFKNN methods.

The rest of this paper is organized as follows: we review related work in Section 2 and then
propose the new KNN algorithm for big data in Section 3. The experimental results are presented in
Section 4. Finally, the paper is concluded in Section 5.

2. Related Work

Applying a KNN classifier on big data requires high computational power. In this classification
method, the class label of a test sample is determined based on the k nearest samples from the training
dataset [6]. For finding the k nearest neighbors, the distance between the test samples and all training
ones should be calculated. Totally, previous attempts for using KNN on big data can be classified into
two groups.

In some studies, authors employed parallel and distributed frameworks, such as Hadoop and
Apache Spark, to speed up the computations and, thus, the process of finding the k nearest neighbors
overall training samples [2,7–9]. For example, Plaku and Kavraki [10] have presented a distributed
framework for computing KNN graphs and discussed extending the distributed framework to compute
graphs based on KNN approximations and query ranges. The experiments showed an excellent speed
up with more than 100 processors. Kim et al. [11] proposed a vector projection pruning approach to
reduce the computational cost of KNN joins and the network cost of communications for a parallel
KNN in the map-reduced framework. Garcia et al. [12] have employed a graphical processing unit
(GPU) for the KNN search in a large amount of data. They showed that using of the NVIDIA CUDA
API can speed up the KNN algorithm up to 120 times. Additionally, Garcia et al. have proposed two
fast GPU-based implementations of the naive brute-force KNN search algorithm using the CUDA and
CUBLAS APIs in [13]. They showed that CUDA and CUBLAS implementations were faster than the
ANN C++ library. Lu et al. [14] have proposed an effective mapping algorithm that reduced the number
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of replicas, shuffling and, thus, reducing the computational cost of the parallel KNN method in the
map-reduced platform. Connor and Kumar [15] have presented a parallel algorithm for constructing
a k-nearest neighbor graph using Morton ordering. They showed that the proposed algorithm can
construct the KNN graph faster and has better ability to handle large datasets in comparison to other
existing methods. The idea of these methods for scaling the KNN classifier to large-scale datasets is the
use of a high-performance computing system.

With the increase in the volume of data generated every day and the emergence of the big data
concept, sometimes data cannot be stored in a single machine. In such situations, classic methods, such
as the original KNN, would be unusable since they cannot work on distributed datasets. Some research
has focused on this issue to address the problem. For example, Valero-Mas et al. [16] have proposed
the prototype selection strategies that could be used to develop KNN classification for distributed data.

On the other hand, other studies have proposed to search for the nearest neighbors in a reduced
training dataset [3,5]. In fact, they suggested that the training data should be pruned first and then
the k nearest neighbors should be searched in that reduced dataset. For example, Deng et al. [5] have
proposed to initially cluster the training dataset employing the K-means algorithm. This clustering is
done only once and then for each test sample the appropriate cluster is selected (based on the Euclidean
distance of that test sample from clusters’ center) for searching the neighbors. Therefore, the KNN
would be applied on the closest cluster. Angiullihas [17] presented a new incremental algorithm for
computing a consistent subset from training data. His proposed approach showed better learning speed
and lower model complexity while it still had acceptable prediction accuracy. Seidl and Kriegel [18]
have presented a novel multi-step algorithm which employed a filtering mechanism for reducing the
number of candidates and, thus, the amount of distance measurement computations at each step.
Li et al. [19] decreased the amount of training data based on a density-based approach and then used
that reduced training set for classification. Chen et al. [20] used the FLANN library, which contains
fast approximate KNN searches in high-dimensional spaces, for the purpose of large-scale data fast
density peak clustering. In [21], rough and fuzzy sets concepts are used to distinguish between core
and border objects. The author partitions data into several clusters, and then, for each unseen data
sample, the nearest neighbors would be searched in one core and some border partitions according to
its membership in the clusters. This work is the most related recent work to our proposed approach
and, thus, the performance of the proposed approach is compared with it in Section 4.

Since the effect of choosing the proper data cluster on finding the true k nearest neighbors and,
thus, the performance of the KNN approach proposed in [5], could not be ignored, in this paper we
considered some other factors, such as different cluster shapes and densities which had influences on
choosing the proper cluster.

3. The Proposed KNN Algorithm for Big Data

When the amount of data becomes very large and sufficient computational power is not available
to process it in an acceptable time, one possible solution is to make decisions based on a smaller part of
the data [3–5]. In the research conducted by Deng et al. [5], the K-means clustering algorithm was
used to separate the large training dataset into different clusters; then, the KNN algorithm was used to
classify each test instances based on the k nearest neighbors in the closest data cluster. The cluster
whose center had the minimum Euclidean distance from the test sample was the closest one.

Since the accuracy of the KNN classifier depends on finding the true k nearest neighbors, the
effect of choosing the proper cluster of data on KNN performance cannot be ignored. Although the
Euclidean distance between a cluster’s center and a test sample is a good metric for choosing that
cluster as a proper part of the data for KNN classification, it cannot be effective enough alone. Data
clusters almost have different shapes and more efficient metrics should be employed. As it can be seen
in Figure 1, although the test sample is closer to cluster 1’s center (c1), most of its nearest neighbors are
located in the other cluster. Consequently, using cluster 2’s training samples helps the KNN to find
better neighbors and probably yield a more accurate classification.
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Figure 1. Inefficiency of the distance to cluster’s center measure as a single criterion for choosing the
proper cluster.

In the proposed approach, the large set of training data is first clustered using the K-means method
similarly as it was done in [5]. These clusters may have different shapes and variant spread over axes.
As it can be seen in Figure 1, considering this fact can affect the final classification results. To take into
account the clusters spread over the axes, the following parameters are calculated for each cluster after
the K-means process is finished:

di
j = max

√P2
j − (C

i
j)

2
 ∀P ∈ ci (1)

where di
j is the maximum Euclidean distance between data points of the ith cluster and it’s center (Ci)

along the jth axis.
The idea is to define a metric which at least approximately shows the distance of a test data sample

to a cluster border. To have more accurate approximate, this distance is calculated based on both the
data point coordinates and the cluster’s spread on different axes as follows:

Di = di
−

n∑
j=1

√
test_sample2

j − (C
i
j)

2

di × di
j (2)

where Di is the approximate distance of the test sample from the ith cluster border, and di is the
Euclidean distance between the test sample and the center of the ith cluster (Ci). Furthermore, the
parameter n indicates the number of dimensions in the data space.

Another factor which has an influence on choosing the proper cluster is its density. For example,
between two clusters which their centers are at the same (or almost the same) distance from the test
sample, the one with higher density will probably have better candidates to be the nearest neighbors
for the test sample. Figure 2 shows two clusters with different densities. As it can be seen, for a 4-nn
algorithm, for example, the four nearest neighbors can be found at closer distances by choosing cluster
2’s data as the training samples.
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Figure 2. The effect of cluster density on the KNN algorithm performance.

The density of a cluster is defined as follows:

densi =
Number o f data samples in cluster i∏n

j=1 di
j

(3)

where n indicates the number of dimensions of the data space.
Based on these factors, the following Algorithms 1 and 2 are proposed for choosing a more proper

cluster of data.

Algorithm 1. Choosing the proper cluster.

Input: a test sample (t) to be classified by KNN and m clusters of data
Output: a data cluster which is used for finding the k nearest neighbors
1. Begin
2. for i = 1 to m
3. Find the Euclidean distance between t and cluster center i (di)
4. end for
5. for i = 1 to m
6. if di

≤ α× d j
∀ j , i

7. return i
8. for each cluster i which di

≤ α× dave

9. Calculate the distance defined by Equation (2) (Di)
10. for each cluster i which di

≤ α× dave

11. if Di
≤ β×D j

∀ j , i
12. return i
13. for each cluster i which Di

≤ β×Dave

14. Calculate the density of the cluster using Equation (3) (densi)
15. Choose the cluster with maximum density
16. End

The idea behind this algorithm is to take into account the distance to the clusters’ border metrics
in the process of choosing the proper cluster when there is no considerable difference between the
distances of the test sample from the clusters’ centers. As stated in lines 4–6, the cluster selection is
the same as the base method if the center of one cluster (such as i) is significantly closer to the test
sample in comparison to the other cluster’s center. However, if such a cluster does not exist, then the
one in which the distance between its borders and the test sample is at a minimum is selected among
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the clusters with the closest centers (lines 9–11). When there is no significant difference between the
distances to the clusters’ borders, the density of the clusters can play an effective role in choosing the
proper cluster. The cluster with maximum density would be selected in this condition (line 14).

Finally, the proposed KNN algorithm for application on big data can be proposed based on
Algorithm 1. First, the large amount of training data is clustered to m separate parts. After the
clusters are determined, their size and their spread over different axes on the data space (di

j) should be
calculated for each cluster. Employing Algorithm 1, the most proper cluster of data can be selected.
Since the output of the KNN process depends on the training data used, selecting the best cluster of the
data can have considerable effect on the final classification process. Consequently, the KNN algorithm
is applied on the selected part of training data to finds the k nearest neighbors and, thus, to estimate
the test sample’s class. The pseudocode of the proposed Algorithm 2 is shown below.

Algorithm 2. The proposed KNN for big data.

Input: a large amount of data and a set of test samples that should be classified (data space has n dimension)
Output: the estimated class of each test sample
1. Begin
2. Divide the large amount of data to m separate clusters using k-means algorithm
3. For each cluster i = 1 . . .m
4. Calculate the size of cluster (number of data samples)
5. Calculate di

j ( j = 1 . . . n)

6. For each test sample
7. Choose the proper cluster of data by using Algorithm 1.
8. Employ the KNN algorithm on the selected cluster to find the estimatedclass of the test sample
9. End

The performance of the proposed algorithm in comparison with some relevant recent studies is
evaluated in the following section.

Parameters dave and Dave represent the average distance between the test sample and the clusters’
centers and clusters’ borders, respectively. Furthermore, α and β are two tuning parameters (in the
range of 0 to 1) which are suggested to be 0.5 and 0.7, respectively, based on experimental results.
The higher value of the α parameter means giving more importance to the distance to the clusters’
center metrics for choosing the proper cluster. In addition, the lower value of the β parameters gives
more importance to the density of clusters metric.

From a computational load point of view, the time complexity of the LC-KNN method is linear
to the sample size, as stated in [5]. Since no loop of computation is added to the LC-KNN method
and just two new cluster selection metrics are computed and employed by the proposed method, the
time complexity of the proposed method is also linear to the sample size. The significant reduction in
the size of the sample set which is explored for finding the nearest neighbors has led to the temporal
superiority of the LC-KNN method and the proposed methods in comparison with the classic KNN
one. It should be noted that the k-means clustering method is applied to the dataset only once, and
the resulting clusters are used repeatedly for unseen samples. Furthermore, the metrics defined by
Equations (1) and (3) are just calculated once for each cluster.

4. Experimental Results

As the proposed approach is an extension of the algorithm suggested in [5] (LC-KNN), its
performance is compared with LC-KNN (as the baseline) on different real datasets [22–27]. The effect
of some parameters’ value such as the number of clusters (m), number of neighbors (k), α and β
on performance of the proposed approach has been also investigated in these experiments. The
experimental results show the effectiveness of the proposed approach in comparison to the LC-KNN
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method. Before presenting and discussing the experimental results, the characteristics of the datasets
used in the experiments are described in the following section.

4.1. The Characteristic of the Datasets

Nine datasets with different characteristics which are usually used in the previous related works
are used for the evaluation. The number of instances and attributes which each dataset contains are
stated in Table 1. An attempt was made to select different datasets from several fields with variant
numbers of instances and attributes to have a more comprehensive and convincing evaluation.

Table 1. The characteristics of the datasets.

Dataset Name Number of Instances Number of Attributes Number of Class Labels

USPS 7291 256 10
MNIST 60,000 780 10

GISETTE 13,500 5000 2
LETTER 20,000 16 26

PENDIGITS 10,992 16 10
SATIMAGE 6430 36 6

ADNC 427 93 2
psMCI 242 93 2

MCINC 509 93 2

4.2. Performance Evaluation with Different Values of the m Parameter

The value of the m parameter indicates the number of clusters which are the output of the k-means
algorithm. As stated in [5], increasing the number of clusters usually leads to a decrease in classification
accuracy. On the other hand, a higher value of the m parameter means breaking the vast amount of
data into more clusters and, thus, spending less processing time for classification. However, when the
number of clusters increases, choosing the proper cluster to search the neighbors in becomes more
crucial. As the experiments show, the proposed approach selects the more appropriate cluster in
comparison to LC-KNN method and, thus, shows better performance especially in the case of high
numbers of cluster. Table 2 shows the classification accuracy of the proposed approach and LC-KNN
on several datasets. The value of k, α, and β parameters are considered 1, 0.5, and 0.7, respectively, for
this experiment.

As it can be seen, the proposed approach shows better classification accuracy almost in all
situations. However, by decreasing the number of clusters (m parameter), the performance of the
proposed approach becomes closer to LC-KNN.

Table 2. Classification accuracy (mean of 10 runs) of the proposed approach and LC-KNN algorithm at
different values of the m parameter.

m USPS MNIST GISETTE LETTER PENDIGITS SATIMAGE ADNC psMCI MCINC

10
LC-KNN 0.9355 0.8389 0.9526 0.9495 0.9721 0.8883 0.7667 0.5833 0.6159

Proposed approach 0.9501 0.8691 0.9647 0.9484 0.9798 0.9162 0.7711 0.6165 0.6198

15
LC-KNN 0.9338 0.8364 0.9494 0.9469 0.9711 0.9468 0.7500 0.6042 0.5633

Proposed approach 0.9512 0.8680 0.9623 0.9467 0.9790 0.9374 0.7680 0.6427 0.5802

20
LC-KNN 0.9300 0.8353 0.9411 0.9451 0.9700 0.8884 0.7143 0.6500 0.6500

Proposed approach 0.9495 0.8675 0.9608 0.9457 0.9781 0.9206 0.7628 0.7013 0.6833

25
LC-KNN 0.9284 0.8338 0.9321 0.9423 0.9687 0.9421 0.7071 0.6417 0.5746

Proposed approach 0.9482 0.8669 0.9567 0.9448 0.9775 0.9456 0.7601 0.7025 0.6147

30
LC-KNN 0.9275 0.8313 0.9192 0.9403 0.9683 0.8878 0.7190 0.6125 0.5984

Proposed approach 0.9475 0.8658 0.9513 0.9439 0.9761 0.9258 0.7608 0.6784 0.6421
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4.3. The Effect of α and β Parameters’ Values on the Accuracy of the Proposed Method

Other factors that can have an effect on the performance are the values of α and β parameters.
These parameters’ values are real numbers in the range of 0 to 1. Close to one value for the α parameter
makes the performance of the proposed approach and LC-KNN algorithm more similar, while smaller
values for this parameter mean more usage of the distance to the boundary and the density criteria in the
proper cluster selection process. Figure 3 shows the classification accuracy of the proposed approach for
different values of the α parameter on three different sample datasets. In these experiments, the value
of the m, k, and β parameters are considered 20, 1, and 0.7, respectively.

Figure 3. Classification accuracy of the proposed approach for different values of the α parameter. As it
can be seen, the proposed approach has a better performance for the value of 0.5 on average.

As it can be seen, the optimal value for the α parameter depends on the structure of the data;
however, based on the results obtained from all experiments, the value of 0.5 is presented as a suggestion
for this parameter. Similar experiments are conducted for investigating the effects of the value of the
β parameter on the proposed approach’s performance. Figure 4 shows the classification accuracy of
the proposed approach for different values of the β parameter. Higher value (near to 1) of the beta
parameter means that most of the times the proper cluster is selected based on the distance from
the clusters’ boundary. While lower values (near to zero) of this parameter mean taking the clusters’
density into account in the process of selecting the proper cluster more. The higher the value of the
k parameter is, the grater the impact the clusters’ density may have on selecting the proper cluster;
therefore, its value is considered 10 in this experiment. Furthermore, the value of the α parameter is
considered to be 0.5.

Based on all of the experiments done on different datasets, a value of 0.7 is suggested for the β
parameter. Although the proposed approach shows better performance on average when 0.5 and 0.7
values are used for the α and β parameters, it has also better classification accuracy in comparison to
the LC-KNN approach even if other values in the range of (0,1) are used for these parameters.

Finally, the performance of the proposed approach (PA) is evaluated for different values of the
k parameter. As the results show, the appropriate k value depends on the structural characteristics
of the training dataset, such as the number of samples, density of the samples, each class’ sample
frequency, etc. However, the overall classification accuracy decreases with the increase in the value of
the k parameter. This reduction is much lower for the proposed approach because it takes the factors
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such as distance to the cluster’s border and the density of each cluster into account for the process of
choosing the proper cluster. Figure 5 shows the experimental results over three different datasets. The
value of m, α, and β parameters are considered 10, 0.5, and 0.7, respectively.

Figure 4. Classification accuracy of the proposed approach for different values of the β parameter. As it
can be seen, the proposed approach has a better performance for the value of 0.7 on average.

Figure 5. Classification accuracy of the proposed approach (PA) and LC-KNN for different k values.
As it can be seen, the higher values of the k parameter lead to the lower classification accuracy, in
general, for both the proposed approach and LC-KNN.
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4.4. Classification Accuracy and Time Cost Comparisons

In addition to LC-KNN, the performance of the proposed approach is compared with the original
KNN and RFKNN methods in the classification accuracy and time cost points of view. In comparison
with the original KNN, which is an exact method, helps to offer a better evaluation regarding the
accuracy of the proposed method. On the other hand, RFKNN is an extension of the KNN for big
data classification, which is the most related recent work to our proposed method, and also LC-KNN
(as stated in Section 2). Table 3 shows the classification accuracy and time cost (in seconds) of these
methods on the nine datasets. The experiments are repeated ten times, and the results are reported as the
mean of these repetitions. It should be noted that the value of m, k, α, and β parameters are considered
20, 1, 0.5, and 0.7, respectively, in these experiments. Experiments are performed on a computer with
2.67 GHz CPU and 6 GB of RAM running Windows 7 as the operating system. In addition, all the
methods are implemented and performed using the MATLAB (Massachusetts, USA) environment.
During these experiments, all unnecessary OS services are disabled, and no concurrent program is
run. As it can be seen, the proposed approach has better accuracy in comparison to the LC-KNN
method and approximately the same accuracy in comparison with the RFKNN classifier. However,
the proposed approach has lower computational complexity and, thus, time cost in comparison to
the RFKNN classifier. This higher execution time is due to the fact that the RFKNN classifier usually
searches for the nearest neighbors of a test sample in a larger dataset than of the one searched in the
proposed approach. Obviously, the original KNN method can achieve better accuracy at the cost of
greater execution time.

Table 3. Classification accuracy and time cost of the proposed approach in comparison to the other
related works on different datasets.

Dataset
KNN LC-KNN RFKNN Proposed Approach

Accuracy Time Accuracy Time Accuracy Time Accuracy Time

USPS 0.9503 44.8120 0.9300 4.9874 0.9471 7.3458 0.9495 5.1213
MNIST 0.8768 35.0211 0.8353 4.6309 0.8534 6.9142 0.8675 4.8757

GISETTE 09660 296.4012 0.9411 37.5111 0.9631 51.2430 0.9608 40.6560
LETTER 0.9518 26.3548 0.9451 4.3528 0.9489 6.5956 0.9457 4.7016

PENDIGITS 0.9793 9.6935 0.9700 3.2756 0.9772 5.0158 0.9781 3.5584
SATIMAGE 0.9315 4.7499 0.8884 1.7377 0.9281 2.7885 0.9206 1.9511

ADNC 07906 0.0473 0.7143 0.0450 0.7709 0.0459 0.7628 0.0453
psMCI 0.7195 0.0240 0.6500 0.0234 0.6964 0.0236 0.7013 0.0236

MCINC 0.7201 0.0766 0.6500 0.0690 0.6916 0.0713 0.6833 0.0694

5. Conclusions

With increases in databases’ volumes, traditional machine learning methods almost cannot be
performed by a single processing machine in an acceptable time anymore. Therefore, two main
approaches have been proposed by researchers to address this problem: using high-performance
computing systems or reducing the amount of required computation. This paper has focused on
devising an efficient KNN classification algorithm for big data. The proposed classifier initially
partitions the large amount of training data into smaller subsets by using a clustering algorithm, such
as k-means, and then applies the KNN method for each new unseen sample on the cluster with the
nearest center for the classification phase. It has been shown and discussed with some examples,
in the proposed approach section, that the minimum distance between the cluster’s center and the test
sample alone is not an efficient criterion. The shape and density of the clusters are also two important
factors that have significant impacts on choosing the proper cluster and, thus, classification accuracy.
Two parameters have been defined in order to consider these two factors in choosing the proper
cluster and, thus, reducing the data volume more intelligently. Experimental results show that the
proposed approach has better classification accuracy in comparison to other recent relevant methods.
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It has also been shown that the proposed method has a shorter execution time in comparison to the
RFKNN method.
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