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Abstract: Deanship of scientific research established by the King Abdulaziz University provides
some research programs for its staff and researchers and encourages them to submit proposals in this
regard. Distinct research study (DRS) is one of these programs. It is available all the year and the
King Abdulaziz University (KAU) staff can submit more than one proposal at the same time up to
three proposals. The rules of the DSR program are simple and easy so it contributes in increasing
the international rank of KAU. The authors are offered financial and moral reward after publishing
articles from these proposals in Thomson-ISI journals. In this paper, multiplayer perceptron (MLP)
artificial neural network (ANN) is employed to determine the factors that have more effect on the
number of ISI published articles. The proposed study used real data of the finished projects from
2011 to April 2019.

Keywords: prediction; artificial neural network; research program; research productivity

1. Introduction

Deanship of scientific research (DSR) at King Abdulaziz University (KAU) supports staff members
to develop high quality research in different scientific fields by providing some funded research
programs. Among these research programs, there is the distinct research study (DRS). DRS program
in KAU was initiated in 1432 h (2011) to support university staff and researchers to increase the
productivity of high-quality research through publishing articles in Thomson-ISI Journals. Since the
DSR program has been initiated, there are a lot of research articles published in Thomson-ISI Journals
in different areas. Most of these articles are conducted by some academic departments in the KAU
such as chemistry, mathematics, physics, statistics, etc., while other departments submit few projects.
Publish articles in ISI journals has many advantages for the researchers; they can get a ward from
their universities, financial incentives, and their work will be marketed in the international scientific
community, and to be promoted to higher degree in their institutes or faculties. From the literature, we
found that the research in this area is scares and the existing research comes from either questionnaire
or from literature review. In this study, real data from the database of the DSR program at deanship of
scientific research at KAU are analyzed. Due to their ability to solve complex numerical problem, we
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focus our attention on artificial neural network methods, which are well-known to be suitable when
other computational and statistical methods fall [1].

More precisely, in this research, distinct research study ISI published articles data is analyzed
and multilayer perceptron (MLP) artificial neural network (ANN) is developed to determine, which
variables have more effect on the number of ISI published articles and the rank of the journal. ANN
has some advantages such as its ability to store information on the entire network, have a distributed
memory and parallel processing capability. Additionally, ANN is suitable to handle our problem
because it has two dependent variables; one of them is numerical and the other is string. The paper is
structured as follows. Distinct research program is described in Section 2. An overview about ANN
is presented in Section 3, Section 4 is assigned to the developed ANN, Section 5 is assigned to ANN
results and conclusions and future research are discussed in Section 6.

2. Distinct Research Program (DRS)

Distinct research program is one of the research programs presented from DSR at KAU. This
program is running over the year and all staff and researchers of KAU can submit on proposal or more.
After publishing an article in ISI from each proposal, they got valuable financial incentives. All data of
researchers, articles and journals are stored in deanship of scientific research database. So, data used in
this research are got from the database, we focused on the finished projects that resulted in publishing
articles in Thomson ISI and, at the same time, the articles information appearing on Web of Science
from 2012 to April 2019.

Data include faculty name, department, authors (KAU staff members or external coauthors),
journal category (means the area of research that the journal covers), project duration (the time between
date of contract and data of publishing the article), budget of the project (it is divided into initial
deposit, which is given when signing the contract and the final deposit, which is given after publishing
the article and satisfying the rules of the distinct research study (DRS)), and contract category (which
means the journal rank; Q1, Q2, Q3, and Q4, where the final deposit depends on this rank).

KAU has more than 70 faculties, centers, institutes and deanships; all these units have staff and
researchers, and they can submit proposals for the DRS program.

Analyzing the data, it was found that the published articles were attended by the faculties of
science, engineering, pharmaceuticals, computer engineering, and information technology, as well as
the faculties of meteorology, environment, and agriculture with 77% of all the faculties, centers, and
deanships. Additionally, it is found that departments of chemistry, mathematics, physics, statistics,
pharmaceutics, biochemistry, production engineering and mechanical system design, computer science,
and electrical and computer engineering have participated in the published articles with 60% of all
departments of the faculties, centers, and deanships. Regarding the rank of the journals, it was found
that of published articles 7% of Q1, 14% of Q2, 18% of Q3, and 22% of Q4, and 40% of Q5.

Few studies in the literature tried to determine the factors affecting number of published research
or research productivity. A brief state of the art is formulated below. The reference [2] developed a study
to identify the factors affecting numbers of citations for papers in medicine based on the evidence-based
approach. They found that journal rank subject, IF, h index of the authors, the notoriousness of the
main author, SNIP (source normalized), and SJR (scientific journal ranks) had significantly positive
correlations with paper citability. The reference [3] developed a study based on researcher-made
questionnaire about study factors impacting on the research productivity of Iranian women in ISI.
The reference [4] conducted a literature review and designed a questionnaire to determine the most
influencing factors on the research performance of the university professor at different universities in
Taiwan. They found that the most important factors are feeling in work, research funding, hardware
climate, hardware and facility, human resources, and library resources. The reference [5] used
questionnaires, interview and document analysis to analyze resource, institutional, and cultural factors
that influence research productivity in Mwenge Catholic University in Tanzania. He found that
lack of the staff, low salaries, teaching workload, not enough research budget, and the inadequate



Mathematics 2020, 8, 766 3 of 10

computer application software for data analysis and plagiarism are the most factors affecting research
productivity. The reference [6] conducted a study in 14 institutions under the control of university of
agricultural sciences. They found that human factors (organizational, sociopsychological, and personal)
and organizational related factors have an effect on research productivity. The reference [7] identified
the opportunities and barriers that faculty members at Najran University can face when publishing in
ISI journals. The reference [8] examined research productivity of faculty at two major Kenyan public
universities. The reference [9] determined factors affecting the research productivity and the factors
importance using statistical package LISREL (the linear structural relationship) and neural network
analyses. The reference [10] found that financial incentives motivate the improving of the research
productivity from the Scopus data base study of the assignment of Russian authors’ affiliations to the
branches of Russian science.

3. An Overview about ANN

Artificial neural networks (ANNs) are widely used in various fields and applications. The
following overview provides some applications. The reference [11] developed a comprehensive study
of ANNs, with discussions on the applications and contributions. ANN is used in various fields such as
computer security, medicine, business, finance, banking, insurance, the stock market, power generation,
management, the nuclear industry, mineral exploration, mining, and forecasting the quality of oil
fractions. The reference [12] presented a study of neural networks of direct communication with random
weights. The reference [13] reviewed ANNs uses in energy. The reference [14] presented a survey on
randomized methods for training ANNs. The reference [15] investigated random single-hidden layer
feedforward neural network based on metaheuristic and non-iterative learning approach. Application
of recurrent ANNs in the field of statistical language modeling can be found in [16]. There are
extensions and other developed types of ANN such as projection neural network. The reference [17]
provided a comprehensive review of the projection neural networks for solving various constrained
optimizations. Additionally, the reference [18] presented Zeroing neural networks to solve complex
computation equations. The reference [19] applied ANN ensemble for the mapping of landslide
susceptibility where this type has feature of higher accuracy.

4. Implementation of MLP ANN

IBM SPSS 25 was used to develop the proposed MLP neural network to determine the most
important factors affects publishing in ISI journals. Table 1 shows the case processing summary; where
the percentage of the included cases was 91.0% and the excluded cases was 9.0%. From the included
cases 80.0% of the sample was employed for training and 20.0% was used for testing.

Table 1. Case processing summary.

Percent

Sample
Training 80.0%

Testing 20.0%

Valid 91.0% 100.0%

Excluded 9.0%

Total 100.0%

The proposed multilayer perceptron ANN structure had one input layer, one output layer, and
two hidden layers. Table 2 shows MLP ANN information and it was discussed in the subsections. Two
hidden layers were used because the data of the problem addressed was deterministic and two layers
were enough for the NN to be learned and to find the most important factors affecting publication
in ISI.
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Table 2. Multilayer perceptron (MLP) artificial neural network (ANN) information.

Input Layer

Factors

1 Faculty

2 Department

3 JournalCateg

Covariates

1 Budget

2 InKAUStaff

3 OutKAUStaff

4 ProjDuration

Number of Units 363

Rescaling Method for Covariates Standardized

Hidden Layer(s)

Number 2

Number of Units in 1 a 1

Number of Units in 2 a 1

Activation Function Hyperbolic tangent

Output Layer

Dependent Variables
1 PublishYear

2 ContractCateg

Number of Units 6

Rescaling Method for Scale Dependents Adjusted
normalized

Activation Function Hyperbolic tangent

Error Function Sum of Squares
a The bias unit is excluded.

4.1. The Input Layer

The variables in the input layer were seven variables in two types; numeric variables (called
covariates in SPSS) and nonnumeric variables (called factors in SPSS). The numeric variables were:
budget of research, number of staff from KAU participated in these articles as principle authors or
coauthors, number of staff out of KAU participated in these articles as principle authors or coauthors,
and project duration (it is time between the contract date and the date of publishing the article on the
web of science). The nonnumeric variables were the faculty of the author(s), the department at the
faculty that the author(s) belongs to, and journal category that means the journal research area. The
variables in the input layer were the independent variables. The output layer had two dependent
variables; the first one was the contract category, which means the class of the journal where the article
was published in A, B, C, D, or E, and the second variable was the number of published articles every
year. The rescaling method for numerical variables was standardized. The ratio assigned to the three
samples was 70% for training, 30% for testing, and 0% for holdout.

4.2. The Hidden Layers

We determined the number of hidden layers in layer 2, where the hidden layer contained network
nodes (units). The first hidden unit is a function of the weighted sum of the input data, and the second
hidden layer is a function of the weighted sum of units in the first hidden layer, and the activation
function is the same for two hidden layers. The number of units in each hidden layer was automatically
determined by SPSS.

The activation function used in this research was the hyperbolic tangent of the form:

f (u) =
(
1− e−λu

)
/
(
1 + e−λu

)
(1)
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where λ is a scale parameter. For the output layer, which contains the dependent variables, the
activation function is a hyperbolic tangent.

4.3. Types of Training

There were three types of training: batch, online, and mini-lot. The difference between the three
types is the updating synaptic scales. In a batch training type, synaptic weights were updated after all
training data records were completed. In an online workout, synaptic weights were updated after each
workout data record. In the mini-lot type, the training data records were divided into groups of the
same size and then update the synaptic weights after passing through the group. We tried the three
types of training. For batch training type, we used the scaled conjugate gradient method to estimate
the synaptic weights.

4.4. The Output Layer

The output layer contained two variables: the number of published articles and rank of the
journals that the articles were published in. The activation function is defined by the hyperbolic tangent
function. The error function is given by the sum of squares.

5. ANN Results

After determining the input and output variables and featuring the MLP ANN, the results are
shown in Table 3.

Table 3. ANN model summary.

Training

Sum of Squares Error 185.885

Average Overall Relative Error 0.766

Percent Incorrect
Predictions for

Categorical Dependents
ContractCateg 43.4%

Relative Error for Scale
Dependents PublishYear 0.999

Stopping Rule Used 1 consecutive step(s) with no
decrease in error a

Training Time 0:00:00.22

Testing

Sum of Squares Error 42.322

Average Overall Relative Error 0.748

Percent Incorrect
Predictions for

Categorical Dependents
ContractCateg 44.4%

Relative Error for Scale
Dependents PublishYear 0.978

a The testing sample is used to determine the error computations.

Where the model summary shown in Table 3 displays a summary of the neural network results by
partition and overall, including the error, the relative error or the percentage of incorrect predictions,
the stopping rule used to stop training, and the training time. The error is the sum-of-squares error
when the identity, sigmoid, or hyperbolic tangent activation function is applied to the output layer. It
is the cross-entropy error when the softmax activation function is applied to the output layer.

Since one of the output variables (ContractCateg) is categorical, Table 4 shows the classification
of this variable by sections and general parameters. This table shows the number of cases rightly or
wrongly classified for a dependent variable of type ContractCateg. A percentage of the total number of
cases that were classified correctly was also reported.
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Table 4. Classification of ContractCateg variable.

Sample Observed
Predicted

A B C D E Percent Correct

Training

A 0 0 0 32 0 0.0%
B 0 0 0 64 2 0.0%
C 0 0 0 76 3 0.0%
D 0 0 0 90 24 78.9%
E 0 0 0 2 175 98.9%

Overall Percent 0.0% 0.0% 0.0% 56.4% 43.6% 56.6%

Testing

A 0 0 0 8 0 0.0%
B 0 0 0 18 0 0.0%
C 0 0 0 19 4 0.0%
D 0 0 0 16 3 84.2%
E 0 0 0 0 49 100.0%

Overall Percent 0.0% 0.0% 0.0% 52.1% 47.9% 55.6%
Dependent Variable: ContractCateg.

Figure 1 shows a graph predicted by the observed. It displays grouped rectangles with predicted
pseudo-sequences for combined training and test samples for categorical dependent variables
from ContractCateg. The x axis is for the observed response categories, and the legend is for
the predicted categories.
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Figure 3 shows the ROC curve (receiver performance) for the categorical dependent variable
ContractCateg. It displays a curve for each category. Where the ROC is graph showing the performance
of a classification model at all classification thresholds and serves to visualize and analyze the
relationship between one or two performance measures and the threshold as well.
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Figure 4 displays a graph of total revenue for the dependent variable ContractCateg. It shows a
percentage of the total number of cases in this “acquired” category, segmenting a percentage of the
total number of cases.
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Table 5 indicates the area under each curve for the dependent variable ContractCateg.

Table 5. Area under the curve for ContractCateg.

ContractCateg Area

A 0.958
B 0.889
C 0.795
D 0.752
E 0.975
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Table 6 presents an independent variable importance analysis (the factors weights and their
rank). Thus, a sensitivity analysis is performed, showing the significance of each predictor by the
determination of the neural network.

Table 6. Factors weights and rank according to training type.

Factors
Batch Online Mini-Batch

Weights Average Rank
Weight Rank Weight Rank Weight Rank

Budget 0.520 1 0.543 1 0.461 1 0.508 1
ProjDuration 0.098 2 0.086 4 0.177 2 0.120 2
Department 0.090 3 0.097 3 0.100 4 0.096 3
OutKAUStaff 0.078 4 0.109 2 0.040 6 0.076 6
JournalCateg 0.077 5 0.063 6 0.104 3 0.081 4
InKAUStaff 0.069 6 0.039 7 0.018 7 0.042 7

Faculty 0.068 7 0.063 5 0.099 5 0.077 5

From Table 6, budget is the most important factor affecting the number of published articles and
the class of the journal for all the training types.

When calculating the average of weights for the three types of training, the order of the ranks
that affect publishing articles was as follows: budget, project duration, department, journal category,
faculty, staff from outside the KAU, and finally staff from inside the KAU.

6. Conclusions and Future Research

In this a study, a multilayer perceptron ANN was developed to determine the factors affecting
publishing articles of distinct research study program in KAU and their weights. The factors taken into
consideration in this study such as project duration, number of inside, and number of outside staff

were not considered in many similar studies.
The results show that the budget, as most of the similar research studies in this area, was the most

important factor and the three different training types gave the same rank for the budget. The second
important factor was the project duration, which is the available time to complete the project and
publish the article in ISI journal. Two types of training gave this factor rank 2 while the third training
approach ranked it 4. The third important factor is the department that the submitted project belongs
to it. Two training methods ranked the department 3 while the third training method ranked it 4.

ANN was selected to handle this problem because it has the ability to store information on the
entire network and parallel processing capability. Additionally, ANN is more suitable to handle our
problem because we had two dependent variables; number of publications per year, which is numerical,
and the contract category (A, B, C, D, or E), which is ordinal (string).

Determining the factors affecting publishing in ISI journals needs further large-scaled research
that can handle all different research areas. This study can be extended to include the staff scientific
rank and their number at each rank. It is recommended to use a neural network merged with other
metaheuristics approaches such as genetic algorithm and particle swarm in to increase the performance
of NN. Additionally, the problem can be dealt as a fuzzy problem for some variables.
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