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Abstract: The paper deals with the existence of at least two non zero weak solutions to a new class of
impulsive fractional boundary value problems via Brezis and Nirenberg’s Linking Theorem. Finally,
an example is presented to illustrate our results.
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1. Introduction

The paper deals with the existence of weak solutions to the following boundary value problems
for impulsive fractional Hamiltonian differential equations:

tDα
T
(c

0Dα
t u (t)

)
= −∇F (t, u) , t ∈ [0, T] ,

4
(

tDα−1
T

(c
0Dα

t ui) (tj
))

= 1
2 Iij

(
ui (tj

))
, i ∈ A, j ∈ B

u (0) = u (T) = 0,

(1)

where 0 ≤ α < 1, c
0Dα

t and tDα
T denote the left Caputo fractional derivative and the right

Riemann–Liouville fractional derivative of order α, respectively,

T > 0, , A := {1, . . . , N} , B := {1, . . . , L} ,
u (t) =

(
u1 (t) , u2 (t) , . . . , uN (t)

)
,

0 = t0 < t1 < t2 < · · · < tL < tL+1 = T,

∇F (t, x) denotes the gradient of F (t, x) in x, and4 the operator is defined as

4
(

tDα−1
T

(
c
0Dα

t ui
) (

tj
))

= tDα−1
T

(
c
0Dα

t ui
) (

t+j
)
−t Dα−1

T

(
c
0Dα

t ui
) (

t−j
)

,
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where

tDα−1
T

(
c
0Dα

t ui
) (

t+j
)

= lim
t→t+j

tDα−1
T

(
c
0Dα

t ui
)
(t)

and

tDα−1
T

(
c
0Dα

t ui
) (

t−j
)

= lim
t→t−j

tDα−1
T

(
c
0Dα

t ui
)
(t)

and c
0Dα

t is the left Caputo fractional derivatives of order α. Iij : R→ R, i ∈ A, j ∈ B are continuous
with F : [0, T]×RN → R satisfies the following condition:

(A) F (t, u) is measurable according to t for any u ∈ RN and continuously differentiable according
u for a.e. t ∈ [0, T] . However, there exist a ∈ C (R+,R+) and b ∈ L1 ([0, T] ,R+) , such that

|F (t, u)| ≤ a (|u|) b (t) , |∇F (t, u)| ≤ a (|u|) b (t)

for any u ∈ RN and a.e. t ∈ [0, T] .
Fractional differential equations have recently proved to be valuable tools for modeling many

phenomena in various fields of science and engineering. Indeed, one can find many applications in
viscoelasticity, electrochemistry, control, porous media, electromagnetic, etc., for example, see [1–19].
Moreover, recently, the existence of solutions of boundary value problems for Fractional differential
equations have widely been studied in many papers and we refer the reader to the papers [3–18]
and the references therein. For instance, in [3], the authors created a variable structure and, using
the critical point theory, investigated the existence of multiple solutions for a class of fractional
advection–dispersion equations derived from symmetric mass flow transmission. In [20], Torres
consider the fractional Hamiltonian system given by

−tDα
T ( 0Dα

t u (t)) = ∇F (t, u (t)) , t ∈ [0, T] ,

u (0) = u (T) = 0,
(2)

where α ∈
(

1
2 , 1
)

, u ∈ RN , and F : [0, T] × RN → R satisfies some conditions. In addition by
using a modified version of mountain pass theorem for functional bounded from below due to
Bonanno [21], the author studied the existence of at least three different solutions for problem (2)
(see Theorems 1 and 2). In addition, under certain conditions and using some critical point theorems
In [22] Zhou et al. proved the following fractional Hamiltonian system with impulsive effects has at
least one weak solution:

tDα
T
(c

0Dα
t u (t)

)
= ∇F (t, u (t)) , t ∈ [0, T] ,

u (0) = u (T) = 0,

4
(

tDα−1
T

(c
0Dα

t ui) (tj
))

= Iij
(
ui (tj

))
, i = 1, . . . , N, j = 1, . . . , p.

The outline of the paper is as follows: In Section 2, we lay down preliminaries and assumptions,
some of which will be needed in the body of the paper. Then, in Section 3, the main result is obtained,
which gives the result of the existence of at least two non zero weak solutions to problem (1) via Brezis
and Nirenberg’s Linking theorem (see Lemma 2 in [23]).

2. Preliminaries and Assumptions

In this section, we present some assumptions, definitions and basic properties of fractional
computing, used later in this article. For omitted evidence, we refer the reader to ([24]) or other texts
on the basic fractional calculation.
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To state our main results, we set

ω :=
2π

T
, ξ :=

Tα− 1
2

Γ (α)
√

2α− 1
and t ∈ [0, T] , (3)

where Γ is the standard gamma function given by

Γ (z) =
+∞∫
0

zα−1e−zdz.

Now, we assume that Iij (s) and F (t, u) satisfy the following assumptions:
(h1) There exists a constant γ > 0, such that

lim
|u|→∞

inf
F (t, u)

|u|2
≥ γ uniformly for a.e.t ∈ [0, T] .

(h2) There exist constants ρ > 0, λ > 0 and k ≥ 1 verify

F (t, u) ≤ −1
2

λk2ω2
(

1
Γ (2− α)

)2

|u|2 ,

for all |u| ≤ ρ and a.e. t ∈ [0, T] .
(h3) There exist constants γij ∈ [0, 1) for any i ∈ A, j ∈ B, satisfying

γij

τ∫
0

Iij (s) ds ≤ Iij (τ) τ, for every τ ∈ R.

(h4) Iij satisfy cij := inf|τ|=1

τ∫
0

Iij (s) ds > 0.

(h5) There exist constants µij > 0 with an integer k ≥ 1, which is defined in (h2) for all i ∈ A,
j ∈ B, satisfying

0 <

z∫
0

Iij (s) ds ≤ µijk2ω2 |z|2 , for every z ∈ R.

Theorem 1. Suppose condition (A) is satisfied. Suppose that one of the following two conditions is true:
(H1) (h1) , (h3) and (h4) hold with γ > 1

2 ;
(H2) (h1) , (h3) and (h4) hold with

ξ2
N

∑
i=1

L

∑
j=1

cij

2
< γ ≤ 1

2
.

In addition, we assume also that the following condition holds:
(H3) (h2) , (h3) and (h5) hold with

λ ≥ 4
T2−2α

3− 2α
+ LNµξ2 + 4Lk2ω2µξ2 T2−2α

3− 2α
,

where µ = maxi∈A,j∈B
{

µij
}

. Then, problem (1) has at least two nonzero weak solutions.
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Definition 1. ([24]) Let u be a function defined on interval [a, b] . left and right Riemann-Liouville fractional
integrals of order α > 0 for a function u denoted by aD−α

t u (t) and tD−α
b u (t), respectively, are defined by

0D−α
t u (t) =

1
Γ (α)

t∫
0

(t− s)α−1 u (s) ds, t ∈ [a, b]

and

tD−α
b u (t) =

1
Γ (α)

b∫
t

(s− t)α−1 u (s) ds, t ∈ [a, b] ,

Definition 2. ([24]) Let u be a function defined on [a, b] . The left and right Riemann–Liouville fractional
derivatives of order α for a function u denoted by aDα

t u (t) and tDα
b u (t) are defined by

aDα
t u (t) =

dn

dtn aDα−n
t u (t) =

1
Γ (n− α)

dn

dtn

 t∫
a

(t− s)n−α−1 u (s) ds

 , t ∈ [a, b]

and

tDα
b u (t) = (−1)n dn

dtn tDα−n
b u (t) =

1
Γ (n− α)

dn

dtn

 b∫
t

(s− t)n−α−1 u (s) ds

 , t ∈ [a, b] ,

where n− 1 ≤ α < 1 and n ∈ N. In particular, if 0 ≤ α < 1, then

aDα
t u (t) =

d
dt a

Dα−1
t u (t) =

1
Γ (1− α)

d
dt

 t∫
a

(t− s)−α u (s) ds

 , t ∈ [a, b] (4)

and

tDα
b u (t) = − d

dt t
Dα−1

b u (t) = − 1
Γ (1− α)

d
dt

 b∫
t

(s− t)−α u (s) ds

 , t ∈ [a, b] (5)

Definition 3. ([24]) Let α ≥ 0 and n ∈ N, we have:
(i) If α ∈ [n− 1, 1( and u ∈ ACn ([a, b] ,Rn) , then the left and right Caputo fractional derivatives of

order α for function u denoted by c
aDα

t u and c
t Dα

b u respectively, are represented by

c
aDα

t u =
1

Γ (n− α)

t∫
a

(t− s)n−α−1 u(n) (s) ds, t ∈ [a, b] , (6)

and

c
t Dα

b u =
(−1)n

Γ (n− α)

b∫
t

(t− s)n−α−1 u(n) (s) ds, t ∈ [a, b] , (7)

respectively.
(ii) If α = n − 1 and u ∈ ACn ([a, b] ,Rn) , then c

aDn−1
t u (t) and c

t Dn−1
b u (t) are represented by

c
aDn−1

t u (t) = u(n−1) (t) and c
t Dn−1

b u (t) = (−1)n−1 u(n−1) (t) .

Lemma 1. ([22], Proposition 3.2) Let 0 < α ≤ 1, and 1 < p < ∞. For all u ∈ Lp ([0, T] ,RN) . Then∥∥∥ 0D−α
ξ u

∥∥∥
Lp([0,t])

≤ tα

Γ (α + 1)
‖u‖Lp([0,t]) for ξ ∈ [0, t] , t ∈ [0, T] , (8)
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where 0D−α
ξ is left Riemann–Liouville fractional integral of order α.

Proposition 1. ([24]) We have the following property of fractional integration

T∫
0

[
0D−α

t u (t)
]

v (t) dt =
T∫

0

[
tD−α

b v (t)
]

u (t) dt, α > 0

provided that u ∈ Lp ([0, T] ,R) , v ∈ Lq ([0, T] ,R) and p ≥ 1, 1
p + 1

q ≤ 1 + α or p 6= 1, q 6= 1, 1
p + 1

q =

1 + α.

Proposition 2. ([24]) Let n ∈ N and n− 1 < α ≤ n. If u ∈ ACn ([a, b] ,RN) or u ∈ Cn ([a, b] ,RN) , then

aD−α
t (c

aDα
t u (t)) = u (t)−

n−1

∑
k=0

u(k) (a)
k!

(t− a)k

tD−α
b (c

t Dα
b u (t)) = u (t)−

n−1

∑
k=0

(−1)k u(k) (b)
k!

(b− t)k

and for t ∈ [a, b]. In particular, if 0 < α ≤ 1 and u ∈ AC
(
[a, b] ,RN) or u ∈ C1 ([a, b] ,RN) , then

aD−α
t (c

aDα
t u (t)) = u (t)− u (a) , and tD−α

b (c
t Dα

b u (t)) = u (t)− u (b) .

The Riemann - Liouville fractional derivative and the Caputo fractional derivative are related to
one another by the following relationships.

Proposition 3. ([24]) Let n− 1 ≤ α < n.for any n ∈ N. If u is a function defined on interval [a, b] for which
the derivatives of Caputo fractional c

aDα
t u (t) and c

t Dα
b u (t) of order α exist together with the Riemann–Liouville

fractional derivatives aDα
t u (t) and tDα

b u (t), thus

c
aDα

t u (t) = aDα
t u (t)−

n−1

∑
k=0

u(k) (a)
Γ (k− α + 1)

(t− a)k−α

and
c
t Dα

b u (t) = tDα
b u (t)−

n−1

∑
k=0

u(k) (b)
Γ (k− α + 1)

(b− t)k−α ,

where t ∈ [a, b] . In particular, when 0 < α < 1, we have

c
aDα

t u (t) = aDα
t u (t)− u (a)

Γ (1− α)
(t− a)−α

and
c
t Dα

b u (t) = tDα
b u (t)− u (b)

Γ (1− α)
(b− t)−α .

Definition 4. [25] Let 0 < α ≤ 1and 1 < p < ∞. The space of fractional derivative Hα,p
0 is defined by the

closure of C∞
0
(
[0, T] ,RN), that is

Hα,p
0 = C∞

0 ([0, T] ,RN)

with respect to the weighted norm

‖u‖α,p =

 T∫
0

|u (t)|p dt +
T∫

0

|0Dα
t u (t)|p dt


1
p

(9)
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for every u ∈ Hα,p
0 .

Proposition 4. ([25], Proposition 3.1) Let 0 < α ≤ 1, and 1 < p < ∞.The fractional derivative space Hα,p
0 is

a reflexive and separable Banach space.

Proposition 5. ([25], Proposition 3.2) Let 0 < α ≤ 1, and 1 < p < ∞. For all u ∈ Hα,p
0 , we have

‖u‖Lp ≤
Tα

Γ (α + 1)
‖c

0Dα
t u (t)‖Lp (10)

Moreover, if α > 1
p , then

‖u‖∞ ≤
Tα− 1

p

Γ (α) ((α− 1) q + 1)
1
q
‖c

0Dα
t u (t)‖Lp (11)

Proposition 6. ([25], Proposition 3.3) Let 0 < α ≤ 1 and 1 < p < ∞. Assume that α > 1
p and the sequence

{uk} converges weakly to u in Hα,p
0 , i.e., uk ⇀ u. Then uk → u in C∞

0
(
[0, T] ,RN), i.e., ‖u− uk‖∞ → 0,

as k→ ∞.

In our study in this paper, we use Hilbert space Hα = Hα,2
0 with the inner product and the

following corresponding norm

〈u, v〉 =
T∫

0

(u (t) , v (t)) dt +
T∫

0

(c
0Dα

t u (t) ,c0 Dα
t v (t)) dt, ∀u, v ∈ Hα

and

‖u‖α = ‖u‖α,2 =

 T∫
0

|u (t)|2 dt +
T∫

0

|c0Dα
t u (t)|2 dt


1
2

, ∀u ∈ Hα (12)

In view of (11), we have that, for t ∈ [0, T] and p = q = 2

‖u‖∞ ≤ ξ ‖c
0Dα

t u‖L2 ≤ ξ ‖u‖α (13)

Definition 5. Let X be a Banach space with J : X → R differentiable. It can be said that J satisfies the
Palais–Smale (PS)-condition if for all sequence (un) in X which J (un) is bounded and J′ (un)→ 0 as n→ ∞
possesses a convergent subsequence.

Definition 6. Let X be a Banach space and J : X → R differentiable and c ∈ R. It can be said that J satisfies
the (PS)c-condition if the existence of a sequence (un) in X such that

J (un)→ c, J′ (un)→ 0

as n→ ∞, implies that c is a critical value of J.

Remark 1. It can be remarked the (PS)-condition implies the (PS)c condition for each c ∈ R.

Lemma 2. [23] Let X be a Banach space with a direct sum decomposition X = X1⊕X2 and k := dim X2 < ∞.
Let J ∈ C1 (X,R) with J (0) = 0, satisfying the (PS)-condition, we assume that, for ρ > 0,
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J (u) ≤ 0, u ∈ X2, ‖u‖α ≤ ρ, (14)

J (u) ≥ 0, u ∈ X1, ‖u‖α ≤ ρ

In addition, we assume also that J is bounded below and infX J < 0. Thus J has at least two non
zero critical points.

3. Mains Result

We establish the existence of at least two non zero weak solutions to problem (1) via Brezis and
Nirenberg’s Linking Theorem.

Definition 7. A function u ∈ Hα is said to be a weak solution of problem (1) if the identity

T∫
0

(c
0Dα

t u (t)c
0 Dα

t v (t)
)

dt +
1
2

N

∑
i=1

L

∑
j=1

Iij

(
ui (tj

))
vi (tj

)
dt +

T∫
0

(∇F (t, u (t)) , v (t)) dt = 0

holds for any v ∈ Hα .
Consider the functional J : Hα → R defined by

J (u) = 1
2

T∫
0

∣∣c
0Dα

t u (t)
∣∣2 dt +

T∫
0

F (t, u (t)) dt + 1
2 ∑N

i=1 ∑L
j=1

ui(tj)∫
0

Iij (s) ds

= J1 (u) + J2 (u)

(15)

where

J1 (u) =
1
2

T∫
0

|c0Dα
t u (t)|2 dt +

T∫
0

F (t, u (t)) dt (16)

and

J2 (u) =
1
2

N

∑
i=1

L

∑
j=1

ui(tj)∫
0

Iij (s) dt (17)

Proposition 7. The functional J is continuously differentiable on Hα and

〈J′ (u) , v〉 =
T∫

0

c
0Dα

t u (t)c
0 Dα

t v (t) dt +
1
2

N

∑
i=1

L

∑
j=1

Iij

(
ui (tj

))
vi (tj

)
dt +

T∫
0

(∇F (t, u (t)) , v (t)) dt (18)

Proof. The proof of this proposition is very simple, we omit it.

It is clear that, the critical points of J are weak solutions of (1). Now, we give the proof of our
main results.

Proof of Theorem 1. We apply Lemma 1 to J. Knowing that Hα is a Banach space and J ∈ C1 (Hα,R)
(see Proposition 5). By (15), it can be easily checked that functional J satisfies J (0) = 0. We decompose
the proof of the theorem into the following three steps.

Step1 We get (h1) or (h2) implies that

lim
‖u‖α→∞

J (u) = +∞, (19)
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and J (u) is bounded below on Hα. To this end, for any 0 < ε < γ, (h1) implies that there exists δ > 0
such that

F (t, u (t)) ≥ (γ− ε) |u|2 , ∀u ∈ RN with |u| ≥ δ and a.e.t ∈ [0, T] . (20)

Let aδ = max|u|≤δ a (|u|) ; in view of (A), one can get

F (t, u) ≥ −a (|u|) b (t) ≥ −aδb (t) + (γ− ε) |u|2 − (γ− ε) δ2,
∀u ∈ RN with |u| ≥ δ and a.e.t ∈ [0, T] .

(21)

Then it follows from (20) and (21) that

F (t, u) ≥ (γ− ε) |u|2 − (γ− ε) δ2 − aδb (t) , ∀u ∈ RN with |u| ≥ δ and a.e.t ∈ [0, T] . (22)

Thus, by (16) and (22), we have

J1 (u) = 1
2

T∫
0

∣∣c
0Dα

t u (t)
∣∣2 dt +

T∫
0

F (t, u (t)) dt

≥ 1
2

T∫
0

∣∣c
0Dα

t u (t)
∣∣2 dt + (γ− ε)

T∫
0
|u (t)|2 dt

− (γ− ε) δ2T − aδ

T∫
0

b (t) dt

≥ min
{

1
2 , (γ− ε)

}
‖u‖2

α

− (γ− ε) δ2T − aδ

T∫
0

b (t) dt

(23)

for all u ∈ Hα
0 . For any z ∈ R, we set

K (τ) :=

 τ−1z∫
0

Iij (s) ds

 τγij , for all τ ≥ 1.

By (h3)

K′ (τ) : = −τγij−2zIij

(
τ−1z

)
+ γij

 τ−1z∫
0

Iij (s) ds

 τγij−1

= τγij−1

γij

 τ−1z∫
0

Iij (s) ds

− τ−1zIij

(
τ−1z

) ≤ 0

so that K is non-increasing in [1, ∞). Therefore, for any |z| ≥ 1, we have K (1) ≥ K (|z|) , that is,

z∫
0

Iij (s) ds ≥

 |z|
−1z∫

0

Iij (s) ds

 |z|γij ≥ cij |z|γij (24)

where cij = inf|z|=1

z∫
0

Iij (s) ds > 0 by (h4) Thus, it follows from (15), (16), (18), (23) and (24) that
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J (u) ≥ min
{

1
2 , (γ− ε)

}
‖u‖2

α − (γ− ε) δ2T − aδ

T∫
0

b (t) dt + 1
2 ∑N

i=1 ∑L
j=1

ui(tj)∫
0

Iij (s) dt

≥ min
{

1
2 , (γ− ε)

}
‖u‖2

α − (γ− ε) δ2T − aδ

T∫
0

b (t) dt− 1
2 ∑N

i=1 ∑L
j=1 cij

∣∣ui (tj
)∣∣γij

≥ min
{

1
2 , (γ− ε)

}
‖u‖2

α − 1
2 ∑N

i=1 ∑L
j=1 cij

∥∥ui (tj
)∥∥γij

∞ − (γ− ε) δ2T − aδ

T∫
0

b (t) dt

≥ min
{

1
2 , (γ− ε)

}
‖u‖2

α − 1
2 ∑N

i=1 ∑L
j=1 cijξ

γij
∥∥ui (tj

)∥∥γij
α
− (γ− ε) δ2T − aδ

T∫
0

b (t) dt

(25)

Then in view of (25), for any γ > 0, choosing 0 < ε < γ. The following two cases may occur.

Case1 γ > 1
2 choosing ε =

γ− 1
2

2 , we can get γ− ε > 1
2 , so

min
{

1
2

, (γ− ε)

}
=

1
2

.

Thus, it follows from (25) that

J (u) ≥ 1
2
‖u‖2

α −
1
2

N

∑
i=1

L

∑
j=1

cijξ
γij
∥∥∥ui (tj

)∥∥∥γij

α
− 1

2

(
γ +

1
2

)
δ2T − aδ

T∫
0

b (t) dt.

So (H1) yields that (19) holds, i.e.,

J (u)→ ∞, as ‖u‖α → ∞.

Case2 γ ≤ 1
2 choosing ε =

γ−ξ2 ∑N
i=1 ∑L

j=1
cij
2

2 It follows from (H2) that

γ− ε =
1
2

(
γ +

1
2

ξ2
N

∑
i=1

L

∑
j=1

cij

)
>

1
2

ξ2
N

∑
i=1

L

∑
j=1

cij > 0 (26)

and ε > 0. Since γ− ε ≤ 1
2 − ε < 1

2 , we have

min
{

1
2

, (γ− ε)

}
= (γ− ε) .

Thus, it follows from (19) and (20) that

J (u) ≥ (γ− ε) ‖u‖2
α −

1
2

N

∑
i=1

L

∑
j=1

cijξ
γij
∥∥∥ui (tj

)∥∥∥γij

α
− (γ− ε) δ2T − aδ

T∫
0

b (t) dt

≥ (γ− ε) ‖u‖2
α −

1
2

N

∑
i=1

L

∑
j=1

cijξ
γij
∥∥∥ui (tj

)∥∥∥γij

α
− 1

2

(
γ +

1
2

ξ2
N

∑
i=1

L

∑
j=1

cij

)
δ2T

−aδ

T∫
0

b (t) dt,

which combined with (H2) yields that (19) holds, i.e.,

J (u)→ ∞, as ‖u‖α → ∞.

Therefore, (H1)or (H2) implies (19). Thus, J (u) is bounded below on Hα.
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Step 2 We prove that (H1) or (H2) implies that J (u) satisfies the (PS) condition. Suppose that
{un} is a sequence in Hα such that J (un) is bounded and J′ (un)→ 0 as n→ ∞. Then {un} is bounded
on Hα

0 . In fact, if {un} is an unbounded sequence, without loss of generality we assume that ‖un‖α → ∞
as n → ∞. By Step 1, we know that (H1) or (H2) implies (19). Thus J (un) → ∞, which contradicts
the boundedness of J (un) . Since{un} ⊂ Hα is bounded and Hα is a reflexive Banach space and so by
passing to a subsequence (for simplicity denoted again by {un}) if necessary, by Proposition 6, we may
assume that 

un ⇀ u, weakly in Hα,

un → u, strongly in C
(
[0, T] ,RN) (27)

By (18), we have

〈J′ (un)− J′ (u) , un − u〉 =

T∫
0

|c0Dα
t un (t)− c

0Dα
t u (t)|2 dt

+
1
2

N

∑
i=1

L

∑
j=1

[
Iij

(
ui

n
(
tj
))
− Iij

(
ui (tj

))] (
ui

n
(
tj
)
− ui (tj

))
dt

+

T∫
0

(∇F (t, un (t)−∇F (t, u (t))) , un (t)− u (t)) dt,

≥
T∫

0

|c0Dα
t un (t)− c

0Dα
t u (t)|2 dt

+
1
2

N

∑
i=1

L

∑
j=1

[
Iij

(
ui

n
(
tj
))
− Iij

(
ui (tj

))] (
ui

n
(
tj
)
− ui (tj

))
dt

+

T∫
0

(∇F (t, un (t)−∇F (t, u (t))) , un (t)− u (t)) dt,

One has
T∫

0

∣∣c
0Dα

t un (t)− c
0Dα

t u (t)
∣∣2 dt ≤ 〈J′ (un)− J′ (u) , un − u〉

− 1
2 ∑N

i=1 ∑L
j=1
[
Iij
(
ui

n
(
tj
))
− Iij

(
ui (tj

))] (
ui

n
(
tj
)
− ui (tj

))
dt

−
T∫

0
(∇F (t, un (t)−∇F (t, u (t))) , un (t)− u (t)) dt

(28)

By (27), we know that

T∫
0

|un (t)− u (t)|2 dt→ 0, as n→ ∞ (29)

and for any i ∈ A, j ∈ B, we have that ui
n
(
tj
)
→ ui (tj

)
, as n→ ∞. In fact∣∣∣ui

n
(
tj
)
− ui (tj

)∣∣∣ ≤ ∣∣un
(
tj
)
− u

(
tj
)∣∣ for any i ∈ A, j ∈ B,

Thus, it follows from the continuity of all Iij that

N

∑
i=1

L

∑
j=1

[
Iij

(
ui

n
(
tj
))
− Iij

(
ui (tj

))] (
ui

n
(
tj
)
− ui (tj

))
→ 0, as n→ ∞. (30)



Mathematics 2020, 8, 856 11 of 16

In view of (A) and (27), we have

T∫
0

(∇F (t, un (t)−∇F (t, u (t))) , un (t)− u (t)) dt→ 0, as n→ ∞. (31)

Since J′ (un)→ 0, then using (28), (30) and (31), we have that

T∫
0

|c0Dα
t un (t)− c

0Dα
t u (t)|2 dt→ 0, as n→ ∞. (32)

By (29) and (32), one has ‖un − u‖α → 0, which means that J (u) satisfies the (PS)−condition.
Step 3 We prove that (H3) implies that (14) holds for some ρ > 0. To this end, it follows from

(13), (17) and (h5) , that

0 ≤ J2 (u) =
1
2

N

∑
i=1

L

∑
j=1

ui(tj)∫
0

Iij (s) dt

≤ 1
2

N

∑
i=1

L

∑
j=1

k2ω2µij

∣∣∣ui (tj
)∣∣∣2

≤ 1
2

N

∑
i=1

L

∑
j=1

k2ω2µ ‖u‖2
∞

≤ 1
2

N

∑
i=1

L

∑
j=1

k2ω2µξ2 ‖u‖2
α

=
1
2

NLk2ω2µξ2 ‖u‖2
α (33)

where µ = maxi∈A,j∈B
{

µij
}

.Let

X2 =

{
k

∑
m=0

am sin (mωt) ; am ∈ RN

}
,

where am =
(
a1

m, a2
m, . . . , aN

m
)

with ai
m = 1 for i = 1, . . . , N. and X1 be the orthogonal complement of

X2 in Hα. Then dim X2 < ∞ and Hα = X1 ⊕ X2 .
If (H3) holds, we will consider X2 with k ≥ 1. When u ∈ X2, we have

T∫
0
|u (t)|2 dt =

T∫
0

∑N
i=1
∣∣ui (t)

∣∣2 dt =
T∫
0

∑N
i=1

(
∑k

m=0 ai
m sin (mωt)

)2
dt

=
T∫
0

∑N
i=1

(
∑k

m=0
(
ai

m
)2 sin2 (mωt) + ∑k

m=0 ∑k
j=0,j 6=m ai

mai
j sin (mωt) sin (jωt)

)
dt

(34)

On the other hand, one has

T∫
0

sin (mωt) sin (jωt) dt =


T
2 , m = j

0, other wise.
(35)
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So, in view of (34) and (35), we have

T∫
0

|u (t)|2 dt =
T
2

N

∑
i=1

k

∑
m=0

(
ai

m

)2
=

N (k + 1) T
2

(36)

Also, For all u ∈ X2, and by Proposition 3, one has c
0Dα

t u (t) = 0Dα
t u (t) and

c
0Dα

t ui (t) = c
0Dα

t ui (t) = 1
Γ(1−α)

d
dt

(
T∫
0
(t− s)−α ∑k

m=0 ai
m sin (mωs) ds

)

≤ 1
Γ (1− α)

d
dt

(
T∫
0
(t− s)−α ∑k

m=0 ai
m (mωs) ds

)
=

1
Γ (1− α)

d
dt ∑k

m=0 ai
m (mω)

(
t2−α

(1−α)(2−α)

)
=

1
(1− α) Γ (1− α)

∑k
m=0 ai

m (mω) t1−α

=
1

Γ (2− α)
∑k

m=0 ai
m (mω) t1−α

which implies

T∫
0

∣∣c
0Dα

t u (t)
∣∣2 dt ≤

(
1

Γ(2−α)

)2 T∫
0

∑N
i=1

(
∑k

m=0
(
ai

m
)2 m2ω2 + ∑k

m=0 ∑k
j=0,j 6=m mjω2ai

mai
j

)
t2(1−α) dt

=
(

1
Γ(2−α)

)2
∑N

i=1

(
∑k

m=0
(
ai

m
)2 m2ω2 + ∑k

m=0 ∑k
j=0,j 6=m mjω2ai

mai
j

)
T3−2α

3−2α

≤
(

1
Γ(2−α)

)2
(2k + 1) k2ω2 T3−2α

3−2α

(37)
By (16) and (h2), for all ‖u‖α ≤ ρ, we have

J1 (u) =
1
2

T∫
0

|c0Dα
t u (t)|2 dt +

T∫
0

F (t, u (t)) dt (38)

≤ 1
2

T∫
0

|c0Dα
t u (t)|2 dt− 1

2
λk2ω2

(
1

Γ (2− α)

)2 T∫
0

|u (t)|2 dt.

By (15), (33), (36)–(38), we have

J (u) ≤ 1
2

T∫
0

∣∣c
0Dα

t u (t)
∣∣2 dt− 1

2 λk2ω2
(

1
Γ(2−α)

)2 T∫
0
|u (t)|2 dt

+ 1
2 NLk2ω2µξ2 ‖u‖2

α ,

≤ 1
2

(
1

Γ(2−α)

)2
(2k + 1) k2ω2 T3−2α

3−2α −
1
4 λk2ω2N (k + 1) T

(
1

Γ(2−α)

)2

+ 1
2 NLk2ω2µξ2 ‖u‖2

α ,

(39)

for all u ∈ X2. Therefore, by the fact 1 <
(

1
Γ(2−α)

)2
for α ∈ ( 1

2 , 1], 2k + 1 < 2k + 2, N > 1, (36), (37)
and (39), we have
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J (u) ≤
(

1
Γ (2− α)

)2

(2k + 1) k2ω2 T3−2α

3− 2α

−1
4

λk2ω2N (k + 1) T
(

1
Γ (2− α)

)2

+
1
4

LN2 (k + 1) k2ω2ξ2T

+

(
1

Γ (2− α)

)
LN (2k + 1) k4ω4µξ2 T3−2α

3− 2α

≤
(

1
Γ (2− α)

)2

(2k + 2) k2ω2 T3−2α

3− 2α

−1
4

λk2ω2N (k + 1) T
(

1
Γ (2− α)

)2

+
1
4

LN2 (k + 1) k2ω2µξ2T
(

1
Γ (2− α)

)2

+

(
1

Γ (2− α)

)2
LN (2k + 2) k4ω4µξ2 T3−2α

3− 2α

≤ 2k2 (k + 1)π2

T

(
1

Γ (2− α)

)2

×
[

2
T2−2α

3− 2α
− 1

2
λN +

1
2

LN2µξ2 + 2LNk2ω2µξ2 T2−2α

3− 2α

]
Thus

J (u) ≤ k2(k+1)Nπ2

T

(
1

Γ(2−α)

)2

×
[
4 T2−2α

3−2α − λ + LNµξ2 + 4Lk2ω2µξ2 T2−2α

3−2α

] (40)

for all u ∈ X2 with ‖u‖α ≤ ρ. Thus, (H3) implies that J (u) ≤ 0 for all u ∈ X2 with ‖u‖α ≤ ρ.
In view of (22) by choosing ε = γ

2 , we get

J1 (u) =
1
2

T∫
0

|c0Dα
t u (t)|2 dt +

T∫
0

F (t, u (t)) dt

≥ 1
2

T∫
0

|c0Dα
t u (t)|2 dt +

γ

2

T∫
0

|u (t)|2 dt

−γ

2
δ2T − aδ

T∫
0

b (t) dt

≥ min
{

1
2

,
γ

2

}
‖u‖2

α −
γ

2
δ2T − aδ

T∫
0

b (t) dt, (41)

for all u ∈ Hα. Since b ∈ L1 ([0, T] ,R+) , then J (u) ≥ 0 for all u ∈ X1 with ‖u‖α ≤ ρ for ρ large enough.
Thus, (H3) implies that (14) holds for ρ large enough.

Moreover, it follows from (h2) that F (t, 0) = 0 for a.e. t ∈ [0, T] .Thus, (h2) implies J (0) = 0.
Now if infHα J ≥ 0, by Step 3 we have that all u ∈ X2 with ‖u‖α ≤ ρ are minima of J, which implies
that J has infinitely many critical points. If infHα J ≤ 0, then it follows from Lemma 2 that J has at
least two nonzero critical points. Therefore, problem (1) has at least two nonzero weak solutions in Hα.
The proof of Theorem 1 is complete.
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Example 1. Let α = 3
4 , T = 2π, N = 1 and k = 1. Consider the boundary value problem of the fractional

differential equation with impulsive effects

tD
3
4
T

(
c
0D

3
4
t u (t)

)
= −∇F (t, u) , t ∈ [0, 2π] ,

4
(

tD
−1
4

T

(
c
0D

3
4
T ui
) (

tj
))

= 1
2 Iij

(
ui (tj

))
, i = 1, j = 1

u (0) = u (2π) = 0 ,

(42)

where Iij (s) = 1
5 (0.0005) s., Direct computation shows that ξ = (2π)

1
4
√

2
Γ( 3

4 )
≈ 1.8, ω = 1, (h3) , (h4) and (h5)

hold with γij =
1
2 and µ =

1
2000

.
Case 1 Assume that F of (42) is

F (t, u) =


1
2 (t + 2)

(
|u|2 − |u|

)
, |u| > 1,

5.71187 (t + 1)
(
|u|4 − |u|2

)
, |u| ≤ 1,

where t ∈ [0, 2π] . In this case, we have that condition (A) holds with a (|u|) =

max
{
|u|4 + |u|2 ,

(
2 |u|2 + 2 |u|

)
, 4 |u|3 + 2 |u| , 4 |u|+ 2

}
and b (t) = 7 (t + 2) . Direct computation

shows that (h1) holds with γ = 1 since, we have

lim
|u|→∞

inf
F (t, u)

|u|2
=

1
2
(t + 2) ≥ γ >

1
2

Moreover, direct computation shows that (h2) holds with λ = 9.46 and

λ ≥ 9.45 + 24.89 µ ≈ 9.46,

where Γ (2− α) = Γ
( 5

4
)
≈ 0.91. Since lim|u|→0

F(t,u)
|u|2

= −5.71187 (t + 1) , then by choosing ε = 1
100 such

that F (t, u) ≤ −5.71187 |u|2 .
Thus, by F (t, 0) = 0, (H1) and (H3) holds. According to Theorem 1, the problem (42) has at least two

non zero weak solutions.
Case 2 Assume that F of (42) is

F (t, u) =


(

t + 1
3

) (
|u|2 − |u|

)
, |u| > 1,

9.77 (t + 0.605)
(
|u|4 − |u|2

)
, |u| ≤ 1,

where t ∈ [0, 2π] . In this case, we have that condition (A) holds with a (|u|) =

max
{
|u|4 + |u|2 ,

(
2 |u|2 + 2 |u|

)
, 4 |u|3 + 2 |u| , 4 |u|+ 2

}
and b (t) = 10 (t + 1). Direct computation

shows that (h1) holds with γ = 1
3 , since

lim
|u|→∞

inf
F (t, u)

|u|2
= t +

1
3
≥ γ,
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and

0.06593 ≈ ξ2
1

∑
i

1

∑
j

cij

2
< γ ≤ 1

2
.

Moreover, direct computation shows that (h2) holds. Since

lim
|u|→0

F (t, u)

|u|2
= −9.77 (t + 0.605) .

Therefore, by choosing ε =
132

1000
, we have F (t, u) ≤ −5.71187 |u|2 .Then, by F (t, 0) = 0, (H2) and

(H3) holds. According to Theorem 1, the problem (42) admits at least two nonzero weak solutions.

4. Conclusions

Fractional differential equations have recently proved to be valuable tools for modeling many
phenomena in various fields of science and engineering. Indeed, one can find many applications in
viscoelasticity, electrochemistry, control, porous media, electromagnetic, etc., for example, see [1–19].
Moreover, recently, the existence of solutions of boundary value problems for fractional differential
equations have widely been studied in many papers and we refer the reader to the papers [3–18].
In this work, we can extend the previous mentioned works for proving the existence of at least two
non zero weak solutions to a new class of impulsive fractional boundary value problems via Brezis
and Nirenberg’s Linking Theorem. Finally, an example is presented to illustrate our results. In the next
work, we will try to prove the existence of three different weak solutions of the p-Laplacian fractional
for an overdetermined nonlinear fractional partial Fredholm–Volterra integro-differential system by
using variational methods combined with a critical point theorem due to Bonanno and Marano.
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