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Abstract: Shewhart control charts with estimated control limits are widely used in practice. However,
the estimated control limits are often affected by phase-I estimation errors. These estimation errors
arise due to variation in the practitioner’s choice of sample size as well as the presence of outlying
errors in phase-I. The unnecessary variation, due to outlying errors, disturbs the control limits
implying a less efficient control chart in phase-II. In this study, we propose models based on Tukey
and median absolute deviation outlier detectors for detecting the errors in phase-I. These two outlier
detection models are as efficient and robust as they are distribution free. Using the Monte-Carlo
simulation method, we study the estimation effect via the proposed outlier detection models on the
Shewhart chart in the normal as well as non-normal environments. The performance evaluation is
done through studying the run length properties namely average run length and standard deviation
run length. The findings of the study show that the proposed design structures are more stable in the
presence of outlier detectors and require less phase-I observation to stabilize the run-length properties.
Finally, we implement the findings of the current study in the semiconductor manufacturing industry,
where a real dataset is extracted from a photolithography process.

Keywords: average run length; control chart; median absolute deviation; outlier; photolithography;
Shewhart; Tukey

1. Introduction

The two salient tools of statistical process control (SPC) are memory and memory-less control
charts. The memory-less control charts are most suitable for large shift, while the memory-control
charts are used to monitor moderate and small shifts. The prominent form of memory-less control
chart for location monitoring is the Shewhart X control chart. In general, control charts-irrespective of
the magnitude they measure-operate in two phases: phase-I, the prospective stage from which the
control limits are obtained; phase-II, where we monitor the process and correct the unnatural causes of
variation whenever they occur (cf. [1]). In phase-I we estimate the control limits using the parameters of
the process under study which, in reality, are seldom known. The amount of data employed in phase-I
for estimating process parameters varies from one practitioner to the other. As a result, this variability
affects the chart performance in the monitoring stage i.e., phase-II. (see for example [2–6]).
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Furthermore, the amount of data employed in estimating the process parameters does affect the
accuracy of the chart, as well as its limits. As we all know, the larger the sample size, the closer we are
to the parameter. Therefore, increasing the sample size used for estimating the parameters should be
the remedy to this shortcoming, but there is a limit to which we can increase sample sizes in real-life
situations. As a result, the Shewhart chart, like any other chart, loses its performance and credibility.
The depth of the loss depends on the efficacy of the parameter estimation and sample size employed
in phase-I.

The presence of outlying/extreme values in the phase-I dataset can affect the performance of the
control chart. The insufficiency of the phase-I estimates could be a result of extreme sample points in
the sample, and not necessarily the size of the sample (see [5,7]). The easiest remedy for the extreme
values is to drop such a sample and pick another one, but this is not appropriate for small sample
data. Therefore, there is a need to screen the extreme values to improve the overall performance of the
control chart.

Over the years, researchers have studied different types of robust outlier detection models in
a series of control charts to enhance their performance. Examples include [8–12]. These outlier
detectors require the data to be from normal distribution such as the Student-type and Grubbs-type
detectors. However, for a non-normal dataset, the Tukey’s and median absolute deviation (MAD)
outlier detection models are more accurate and robust since they are independent of mean and
standard deviation. (see [13–19]). SPC is widely applied and implemented in various sectors; health,
industrial, manufacturing and every service-rendering sector. Control charts, however, are most
applied in manufacturing industry, with semiconductors as a case study. Semiconductor manufacturing
processes are prone to high chances of assignable cause of variations, due to machine breakdown,
multiple products, re-entrant flows, batching processes etc. [20]. Researchers have employed SPC in
solving these recurring challenges in this industry (see [21–24]). The proposed charts in this study are
applied in photolithography, a semiconductor manufacturing process.

In this article, we study the effects of parameter estimation on the Shewhart X chart for normal and
non-normal environments. We also study the effect of outliers on the reliability of the control charts and
the process parameters are estimated. Furthermore, we propose non-parametric outlier detectors, namely:
the robust Tukey and MAD outlier detection models in designing the basic control chart structure. A fair
comparison between the two-outlier detection models is also made. We achieve all of these using average
run length (ARL) and standard deviation run length (SDRL) as the performance measures.

The remainder of this article is as follows: the next Section entails the methodologies employed
for the study; briefing the overview of the Shewhart X control chart when the parameters are known
and unknown, alongside the performance measure properties adopted in this study; the variability in
Shewhart chart performance due to phase-I estimation; a scenario for the presence of outliers in the
design structure of Shewhart chart, and its effect; incorporating the Turkey and MAD outlier detection
models in the design structure of the Shewhart chart as remedies for rectifying the presence of outliers;
Section 3 gives a concise and precise description of the simulation results. In Section 4, a detailed
comparison of the results is presented; while Section 5 provides an illustrative example with a real life
dataset; finally a concluding remark and future recommendations are given in Section 6.

2. Methodology

In this section, we give details of the Shewhart control chart for normal and non-normal
environments. The known and unknown parameter scenarios, the practitioner–practitioner variation in
the estimation stage, the presence of outliers/extreme values in the estimation sample, and incorporating
some outlier detection models in the Shewhart chart are all discussed in the following subsections.

2.1. Overview of the Shewhart Control Chart

Let Yi j i = 1, 2, . . . , n and j = 1, 2, . . . represent a ith observation from jth sample of an
ongoing (continuous) process. Further Yi j follows a normal distribution with mean µ0 + δσ0 and
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variance σ0
2 i.e., Yi j ∼ N

(
µ0 + δσ0, σ0

2
)
. The process is said to be in the in-control (IC) state if δ = 0,

and out-of-control (OoC) otherwise. A default Shewhart set-up monitors a process by plotting the
sample mean (Yi = 1/n

∑n
j=1 Yi j) of Yi j against the following control chart limits.

UCL = µ0 + L
σ0
√

n
, LCL = µ0 − L

σ0
√

n
(1)

where UCL and LCL denote the upper and lower control limits, respectively. Limits in (1) are useful
when the parameters (µ0 and σ0

2) of the process are known. However, when they are unknown,
their respective unbiased estimators from the phase-I are used, and the resulting control chart structures
will be in estimated form.

For phase-I, let Yil represents ith observation from lth random sample ∀ i = 1, 2, 3, . . . , n and
l = 1, 2, 3, . . . , m, regarded to be under statistically IC state. It is good to mention here that the choice
of m and n varies from one practitioner-to another. Therefore, it affects the accuracy of the control
limits implying an influenced ARL in phase-II. The unbiased estimators for the parameters µ and σ of
an IC process are defined as:

µ̂0 = (1/m)
∑m

l=1 Yl
σ̂0 = (1/mC4)

∑m
l=1 Sl

(2)

where Yl =
∑n

l=1 Yil
n , Sl =

√∑n
i=1(Yil−Yl)

2

n−1 and c4 =

√
2/(n−1)Γ(n/2)

Γ[(n−1)/2] is the bias correction constant.
Subsequently, the resulting control limits in (1) are modified to the following:

ÛCL =

∑m
l=1 Yl

m
+ L̂

∑m
l=1 Sl

mC4
√

n
, L̂CL =

∑m
l=1 Yl

m
− L̂

∑m
l=1 Sl

mC4
√

n
(3)

In phase-II, Yls are plotted against the control limits in (3) and the chart is said to have given
an OoC signal if any value of Yl is plotted outside the limits. Here, the sample number at which the
statistic is plotted outside the limits is recorded as run length (RL). RL is an important variable in
measuring the performance of control charts in general, and the Shewhart is not an exception. The most
widely used property of RL is ARL, which is the average number of samples observed before the chart
sends an OoC signal. Mathematically, ARL =

∑s
k=1 RLk/s where s is the number of RLs recorded.

In addition to ARL, standard deviation of the RL (SDRL) gives more information about the behavior of
the RL variable in evaluating the performance of a control chart. Furthermore, the ARL is of two types
i.e., the IC ARL, denoted as ARL0 and the OoC ARL, referred to as ARL1. ARL0 is expected to be
sufficiently large enough to avoid false alarms. On the other hand, ARL1 is anticipated to be sufficiently
small to enable the process to send a signal as soon as there is a shift in the process parameter(s).

2.2. Variability in the Shewhart Chart Performance

In this section, we explain the effect of the practitioner to practitioner variability on the Shewhart
chart, both in normal and non-normal distribution, by using the Monte Carlo simulation approach.
See ([25–29]) for more information about the effect of sample size and practitioners’ variability.
To achieve this aim, we develop an algorithm in R programing language to simulate the Shewhart
chart environment, using the standard Shewhart chart as our benchmark and reference point. The X
chart has a control limits width determinant L that influences RL properties. We use the standard
L = 3, that corresponds to the ARL0 = 370 (see [1] for more details). Without any loss of generality,
we generate random samples from a standard normal distribution N(µ = 0, σ = 1), each of sample
size n = 5, assuming the process parameters are known. While for the non-normal distribution,
we considered the t-distribution with degrees of freedom v = 5, 25, and 100. Since all the three
categories of v exhibit the same pattern, we report only the results for v = 100. In both environments,
normal and t-distributions, we set up the chart limits as given in Equation (1) and plot the sample
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means against the UCL and LCL. As soon as a value of Y j is plotted outside the limits, RL is recorded
and saved. The process is iterated 105 times to get ARL and SDRL.

For the unknown parameters, we estimate the parameter from phase-I. The number of samples
employed for the estimation differs from on practitioner to another and so does the accuracy of the
charts in phase-II. To depict that, we estimated both µ0 and σ0 from different number of in-control
phase-I samples i.e., m = 25, 50, 100, 250, 500 and 1000 each of sample size n = 5. The estimated
parameters µ̂0 and σ̂0 from the phase-I IC stage are, therefore, used in the same algorithm instead of µ0

and σ0 respectively. Subsequently the parameter L, changes as the amount of phase-I samples changes.
The corresponding L′s for the different m′s are L = 2.962, 2.983, 2.9925, 2.997, 2.999, and 3 respectively
for the normal distribution, and L = 2.974, 2.995, 3.005, 3.010, 3.012, and 3.012 respectively for
the t-distribution of v = 100. These L’s are determined through simulations to obtain ARL0 = 370.
We carry out the simulation with different level of shifts δ ranging from 0 to 5 i.e., δ ∈ (0, 0.5, 5),
as shown in Tables 1 and 2.

Table 1. Average run length (ARL) of the Shewhart chart with estimated parameters for standard
normal and t (v = 100) distributions.

ARL Standard Normal Distribution T-Distribution v = 100

δ/m 25 50 100 250 500 1000 25 50 100 250 500 1000

0 370.93 369.66 370.43 369.09 371.10 370.98 370.67 370.00 369.58 370.89 369.63 370.00
0.5 190.76 173.92 165.35 159.25 157.00 156.54 194.06 177.76 167.85 161.75 160.48 159.04
1 53.91 48.74 46.37 44.73 44.41 44.21 55.14 50.13 47.75 46.26 46.02 45.32

1.5 17.19 16.05 15.52 15.20 15.09 15.04 17.70 16.53 16.06 15.65 15.65 15.52
2 6.87 6.59 6.46 6.35 6.33 6.33 7.05 6.80 6.65 6.57 6.54 6.57

2.5 3.40 3.33 3.29 3.26 3.25 3.25 3.52 3.44 3.40 3.36 3.35 3.35
3 2.05 2.03 2.02 2.01 2.00 2.00 2.10 2.08 2.06 2.06 2.05 2.05

3.5 1.47 1.46 1.45 1.45 1.45 1.45 1.50 1.49 1.48 1.48 1.48 1.47
4 1.20 1.19 1.19 1.19 1.19 1.19 1.21 1.21 1.21 1.21 1.20 1.20

4.5 1.08 1.08 1.07 1.07 1.07 1.07 1.09 1.08 1.08 1.08 1.08 1.08
5 1.03 1.02 1.02 1.02 1.02 1.02 1.03 1.03 1.03 1.03 1.03 1.03

L 2.962 2.983 2.9925 2.997 2.999 3 2.974 2.995 3.005 3.010 3.012 3.012

Table 2. Standard deviation of the run length (SDRL) of the Shewhart chart with estimated parameters
for standard normal and t (v = 100) distributions.

SDRL Standard Normal Distribution T-Distribution v = 100

δ/m 25 50 100 250 500 1000 25 50 100 250 500 1000

0 601.54 473.20 420.75 387.76 379.99 375.44 601.69 468.55 416.69 389.69 376.91 373.30
0.5 333.88 232.92 193.19 169.15 161.43 158.10 340.19 241.98 197.21 172.49 164.11 160.46
1 88.35 61.71 52.00 46.39 45.00 44.24 91.10 64.04 53.93 47.96 46.61 45.29

1.5 24.05 18.52 16.40 15.20 14.85 14.67 25.00 19.21 16.92 15.71 15.33 15.20
2 8.24 6.88 6.32 5.97 5.90 5.85 8.73 7.10 6.48 6.22 6.11 6.11

2.5 3.40 3.04 2.86 2.76 2.72 2.71 3.60 3.16 2.99 2.86 2.84 2.83
3 1.66 1.54 1.48 1.44 1.43 1.42 1.70 1.59 1.54 1.49 1.48 1.47

3.5 0.90 0.85 0.83 0.81 0.81 0.81 0.94 0.89 0.86 0.84 0.84 0.84
4 0.51 0.49 0.48 0.48 0.48 0.48 0.54 0.51 0.51 0.50 0.50 0.50

4.5 0.30 0.29 0.28 0.28 0.28 0.28 0.32 0.31 0.30 0.29 0.29 0.29
5 0.17 0.16 0.16 0.16 0.16 0.16 0.18 0.17 0.17 0.17 0.17 0.17

L 2.962 2.983 2.9925 2.997 2.999 3 2.974 2.995 3.005 3.010 3.012 3.012

2.3. Presence of Outliers in the Shewhart Chart with Estimated Parameters

Although the estimation of the unknown parameters in phase-I samples plays its role on the
efficiency of the control chart in phase-II. The drop in the efficacy of the chart performance is not limited
to this fact alone, rather it extends to presence of outlying/extreme values in the phase-I samples.
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In this Section, we study the effect of outliers in the phase-I samples on the performance and
accuracy of the Shewhart chart. Here, through Monte Carlo simulation, we generate the m phase-I
samples from a mixture distribution i.e., (1− α)100% from assumed (normal or t-distribution) and
the remaining α100% from a chi-square distribution with n degrees of freedom denoted by χ2

(n).
Subsequently, the estimated parameters emerging from the m samples have an extreme values effect
on the control chart in phase-II. That is, each observation of the phase-I sample is generated from the
following expression:

(1− α)N
(
µ, σ2

)
+ α

[
N

(
µ, σ2

)
+ w χ2

(n)

]
or

(1− α)t(v) + α
[
t(v) + w χ2

(n)

] (4)

where α > 0, is the probability of having a multiple of χ2
(n) added to the assumed distribution,

serving as the outliers in the samples. In addition, w ≥ 1 is the magnitude of the outlier. We develop an
algorithm from the R language, similar to that in Section 2.2, but the samples are from the environment
described in (4). We set µ = 0, σ2 = 1, v = 100, w = 3, and α ε[0, 0.01]. We design the Shewhart chart
using the same parameters L and m as in Section 2.2.

In general, the pattern exhibited by the RL properties implies the following:

• Increasing the m phase-I samples in the presence of outliers, gets the ARL0’s closer to the
theoretical values.

• Reducing the value of α, the percentage of outliers present in the m samples also brings the ARL0’s
closer to the theoretical values.

Unfortunately, neither of the two suggested remedies is practicable in real life. Thus, we propose
outliers detecting structures through the robust Turkey and MAD detection models.

2.4. Shewhart Chart with Outlier Detection Models

In the section, we propose two outlier-detecting models as remedy to the issues raised in
Sections 2.2 and 2.3. The Tukey and the MAD model-based Shewhart charts. Their procedures applied
in parallel to the Shewhart chart are described in the sub sections below:

2.4.1. The Tukey Shewhart Control Chart

For the phase-I samples, Ỹ be the median of all m × n observations. For any observation yo

if
∣∣∣∣yo − Ỹ

∣∣∣∣ > p× IQR, then yo is declared an outlier. Here IQR = Q3 −Q1 is the inter-quartile range of
the sample. Q3 and Q1 are the third and first quartiles, respectively, of all m× n phase-I observations.
The constant p on the other hand is the confidence factor of the Tukey’s detector, commonly chosen
between 1.5 and 3.0. The confidence factor should be carefully chosen, and not too small, to avoid
over detection. Also it should not be too large, to prevent under detection [18]. In this study,
we choose p = 2.2. Applying the same algorithm, parameters and limits employed in Section 2.2,
we incorporate the Tukey outlier-detector model on the phase-I samples to screen out the extreme
values present there in. Then we compute the IC ARL and SDRL values for the Shewhart chart based
on the Tukey model in phase-II, when the parameters are estimated.

2.4.2. The Median Absolute Deviation (MAD) Shewhart Control Chart

We define median absolute deviation (MAD) as the deviation of the dataset about the median

as MAD = median
(∣∣∣∣Yil − Ỹ

∣∣∣∣)/0.6574. Then it follows, that any observation yo from the sample that falls

outside the expression Ỹ ± b ∗MAD , is declared an outlier. Here b is the outlier detecting constant
and chosen 3.642 so that the percentage of screening by MAD is the same as Tukey. This has been done
to keep the comparison between two outlier detectors valid [19].

Furthermore, it is worth distinguishing between outlying and OoC sample points. The former
emerges from mphase-I samples, which are used to construct the control limits for the monitoring
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stage; phase-II; while the latter are the sample points that fall beyond the control limits in phase-II.
Therefore, the presence of outlying sample points in phase-I leads to wider control limits, rendering
the control charts less effective. A flowchart summarizing the procedure is depicted in Figure 1.Mathematics 2020, 8, x FOR PEER REVIEW 6 of 17 
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3. Results

In this section, we provide the results of the methodologies discussed in Section 2. These results
are presented in three folds, so is the discussion in the next section.

3.1. Practitioners’ Estimation Variability

Here, through the simulation results of the algorithm explained in Section 2.2, we observe the
variability that appears in the Shewhart control chart due to different choices of sample size m,
amongst practitioners. Tables 1 and 2 depict the Shewhart chart whose parameters, both mean and
variance, are estimated from m phase-I samples for both normal and non-normal distributions. It is
evident from the result, the effect of parameter estimation on the performance of the chart. The ARL0s
when δ = 0, are clustering around the target 370 with their respective L’s. However, when δ , 0,
we observe that the smaller m becomes, the less effective the Shewhart chart performance. The ARL1’s
are expected to be sufficiently small in order to detect any drift in the ongoing process, but as m gets
smaller, ARL1’s get bigger. Which implies the chart is less sensitive in identifying the presence of shifts
in the ongoing process early enough. Another noticeable effect of the parameter estimation on the
Shewhart chart is the decrement in the limits L, as m reduces. This should be recorded as an edge if the
corresponding phase-II charts detects shift earlier than when the parameters are known.

3.2. Effect of Outliers on the Shewhart Control Charts

In Tables 3 and 4, we present the simulation results of environment (4) discussed in Section 2.3.
From these results, the gross impact of outliers in the phase-I samples on the performance of the
Shewhart chart cannot be over emphasized. Having seen the pattern of the IC and OoC RL properties
in Tables 1 and 2, in order to save space, we restrict the performance evaluation to the IC RL properties.
That is, considering the case when δ = 0 only. From Tables 3 and 4, when α = 0, in the absence
of outlier, the ARL0’s are clustering around its target 370, irrespective of the amount of phase-I
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sample m. However, when α > 0, the ARL0’s deviate from the target, vigorously. As the amount of
phase-I samples m reduces, and the percentage of outliers present in the samples α increases, the more
the ARL0’s deviate from the target. Similarly the pattern of the SDRL, even more.

Table 3. ARL of the Shewhart chart in the presence of outliers with estimated parameters for standard
normal and t (v = 100) distributions.

ARL Standard Normal Distribution T-Distribution v = 100

α/m 25 50 100 250 500 1000 25 50 100 250 500 1000

0 371.20 369.51 370.29 369.59 370.72 370.85 370.65 369.57 369.28 370.85 369.11 370.87
0.001 424.76 401.49 392.98 389.92 388.74 389.13 418.21 394.60 386.19 385.76 385.04 381.04
0.002 484.38 435.14 417.35 410.86 409.61 408.88 478.03 424.90 408.83 405.04 403.56 398.94
0.003 540.09 469.66 440.42 431.91 429.47 428.70 534.47 458.93 435.77 424.67 424.75 422.44
0.004 602.97 507.51 469.33 452.76 450.30 449.72 587.12 500.66 457.98 443.64 444.15 437.50
0.005 664.58 545.85 494.67 477.03 471.98 471.09 650.79 528.62 489.31 469.04 461.71 461.22
0.006 731.55 588.72 525.81 500.69 495.46 493.34 718.10 569.85 512.77 491.40 486.42 481.51
0.007 788.48 629.88 554.41 525.13 519.74 516.88 758.54 604.64 539.10 514.95 509.78 504.97
0.008 861.51 673.43 586.11 551.83 544.06 541.56 837.89 652.55 578.41 541.64 531.29 528.75
0.009 931.14 726.12 618.88 579.38 569.55 565.85 916.99 693.94 606.71 568.85 560.07 552.75
0.01 996.35 773.78 654.18 607.70 596.56 592.55 953.61 745.34 634.00 593.84 586.09 575.08

L 2.962 2.983 2.9925 2.997 2.999 3 2.974 2.995 3.005 3.010 3.012 3.012

Table 4. SDRL of the Shewhart chart in the presence of outliers with estimated parameters for standard
normal and t (v = 100) distributions.

SDRL Standard Normal Distribution T-Distribution v = 100

α/m 25 50 100 250 500 1000 25 50 100 250 500 1000

0 607.93 473.75 419.35 388.27 379.67 375.44 595.89 468.00 418.16 382.43 375.42 369.72
0.001 1238.32 664.83 467.76 414.51 400.57 394.71 1150.79 635.34 463.74 411.63 395.24 385.68
0.002 1704.83 838.46 515.41 441.77 423.19 415.18 1802.06 760.16 508.22 433.04 416.23 406.03
0.003 2041.64 991.95 568.33 468.17 446.51 436.26 2096.30 913.63 558.95 460.42 441.81 431.04
0.004 2410.92 1176.26 630.64 497.30 469.60 459.66 2354.27 1184.84 606.26 486.65 462.63 447.94
0.005 2689.45 1294.24 687.44 528.00 494.90 481.60 2626.16 1192.76 683.26 517.24 485.89 473.05
0.006 2994.88 1502.07 756.39 559.42 521.35 505.08 2871.17 1449.52 699.03 546.74 512.57 494.30
0.007 3193.80 1637.48 822.18 592.02 549.29 530.76 2956.37 1514.95 757.01 573.97 540.59 519.76
0.008 3480.50 1799.40 888.29 627.68 578.43 557.35 3370.66 1664.42 912.65 618.19 564.09 544.14
0.009 3772.38 1994.86 959.76 664.49 607.34 582.18 3703.48 1766.87 955.78 655.56 594.72 571.46
0.01 4012.72 2139.41 1028.74 702.52 638.62 612.00 3823.24 2009.14 980.24 685.94 628.22 591.55

L 2.962 2.983 2.9925 2.997 2.999 3 2.974 2.995 3.005 3.010 3.012 3.012

3.3. Improvement of Tukey and MAD Outlier Detection Models on Shewhart Chart Performance

While incorporating the procedures in Sections 2.4.1 and 2.4.2, the simulation results are presented
in Tables 5–8 respectively. Tables 5 and 7 represents the ARL result for Tukey and MAD outlier detection
models respectively, as Tables 6 and 8 are the corresponding SDRL results. The effect of these detection
models are noticed as ARLs and SDRLs are closer to when there is an absence of outliers or even better.
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Table 5. ARL of the Shewhart chart with Tukey outlier detection for standard normal and t
(v = 100) distributions.

ARL Standard Normal Distribution T-Distribution v = 100

α/m 25 50 100 250 500 1000 25 50 100 250 500 1000

0 363.24 363.44 364.17 364.36 365.34 366.80 358.67 358.71 357.97 358.10 359.64 357.52
0.001 365.71 366.33 366.48 366.83 367.56 368.22 361.59 360.26 357.98 362.04 359.85 360.39
0.002 367.81 367.30 368.51 368.71 369.89 366.67 364.59 363.25 359.73 359.63 363.42 361.61
0.003 370.30 370.04 370.91 371.14 370.90 371.03 365.85 365.75 364.12 361.29 362.85 362.73
0.004 372.35 371.48 372.44 372.76 372.72 374.13 368.84 365.44 365.73 365.64 365.87 366.25
0.005 376.13 374.05 374.49 373.95 375.73 377.23 370.27 368.13 366.95 366.59 366.89 367.05
0.006 377.97 376.06 376.96 376.61 376.88 379.44 372.27 368.44 368.28 371.20 371.40 370.77
0.007 380.13 378.38 379.03 378.98 379.15 379.44 374.78 372.44 371.54 370.82 370.45 371.76
0.008 383.48 380.17 380.51 380.63 380.56 381.29 378.04 372.69 372.06 373.31 376.35 374.45
0.009 386.35 383.02 383.50 382.73 383.29 382.84 377.58 374.74 371.66 375.88 375.09 372.29
0.01 388.82 384.62 385.57 383.80 384.95 386.39 381.84 377.80 378.17 377.29 378.48 374.09

L 2.962 2.983 2.9925 2.997 2.999 3 2.974 2.995 3.005 3.010 3.012 3.012

Table 6. SDRL of the Shewhart chart with Tukey outlier detection for standard normal and t
(v = 100) distributions.

SDRL Standard Normal Distribution T-Distribution v = 100

α/m 25 50 100 250 500 1000 25 50 100 250 500 1000

0 596.32 468.02 414.04 383.16 374.68 368.66 607.33 467.10 411.17 377.81 369.81 360.34
0.001 600.30 472.43 417.55 385.96 377.25 372.35 612.79 467.20 406.53 380.03 366.57 366.34
0.002 607.28 476.91 419.54 388.33 379.39 371.64 627.84 471.38 410.10 376.44 372.50 365.67
0.003 615.99 477.95 422.41 389.95 380.10 375.45 617.88 474.03 415.42 378.88 374.34 366.23
0.004 615.39 481.58 423.16 392.96 382.24 377.77 636.02 476.02 416.09 385.14 377.04 371.24
0.005 625.95 486.00 427.29 393.54 385.71 380.37 650.31 480.25 420.69 387.36 377.24 370.45
0.006 636.60 488.82 430.22 396.23 386.61 383.77 637.39 483.89 423.95 390.68 383.17 376.49
0.007 646.05 490.89 433.11 399.86 389.30 384.98 630.84 488.73 429.10 390.52 381.42 377.88
0.008 656.27 496.12 435.44 400.84 391.44 385.54 654.64 489.53 430.19 391.87 386.60 378.02
0.009 654.98 500.43 439.24 403.24 393.19 387.01 675.27 499.78 423.47 395.23 385.19 380.11
0.01 669.83 502.93 441.89 404.61 395.16 390.51 672.71 493.77 436.38 399.23 390.17 380.26

L 2.962 2.983 2.9925 2.997 2.999 3 2.974 2.995 3.005 3.010 3.012 3.012

Table 7. ARL of the Shewhart chart with median absolute deviation (MAD) outlier detection for
standard normal and t (v = 100) distributions.

ARL Standard Normal Distribution T-Distribution v = 100

α/m 25 50 100 250 500 1000 25 50 100 250 500 1000

0 363.24 363.44 364.17 364.36 365.34 366.80 358.67 358.71 357.97 358.10 359.64 357.52
0.001 365.71 366.33 366.48 366.83 367.56 368.22 361.59 360.26 357.98 362.04 359.85 360.39
0.002 367.81 367.30 368.51 368.71 369.89 366.67 364.59 363.25 359.73 359.63 363.42 361.61
0.003 370.30 370.04 370.91 371.14 370.90 371.03 365.85 365.75 364.12 361.29 362.85 362.73
0.004 372.35 371.48 372.44 372.76 372.72 374.13 368.84 365.44 365.73 365.64 365.87 366.25
0.005 376.13 374.05 374.49 373.95 375.73 377.23 370.27 368.13 366.95 366.59 366.89 367.05
0.006 377.97 376.06 376.96 376.61 376.88 379.44 372.27 368.44 368.28 371.20 371.40 370.77
0.007 380.13 378.38 379.03 378.98 379.15 379.44 374.78 372.44 371.54 370.82 370.45 371.76
0.008 383.48 380.17 380.51 380.63 380.56 381.29 378.04 372.69 372.06 373.31 376.35 374.45
0.009 386.35 383.02 383.50 382.73 383.29 382.84 377.58 374.74 371.66 375.88 375.09 372.29
0.01 388.82 384.62 385.57 383.80 384.95 386.39 381.84 377.80 378.17 377.29 378.48 374.09

L 2.962 2.983 2.9925 2.997 2.999 3 2.974 2.995 3.005 3.010 3.012 3.012
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Table 8. SDRL of the Shewhart chart with MAD outlier detection for standard normal and t
(v = 100) distributions.

SDRL Standard Normal Distribution T-Distribution v = 100

α/m 25 50 100 250 500 1000 25 50 100 250 500 1000

0 596.32 468.02 414.04 383.16 374.68 368.66 607.33 467.10 411.17 377.81 369.81 360.34
0.001 600.30 472.43 417.55 385.96 377.25 372.35 612.79 467.20 406.53 380.03 366.57 366.34
0.002 607.28 476.91 419.54 388.33 379.39 371.64 627.84 471.38 410.10 376.44 372.50 365.67
0.003 615.99 477.95 422.41 389.95 380.10 375.45 617.88 474.03 415.42 378.88 374.34 366.23
0.004 615.39 481.58 423.16 392.96 382.24 377.77 636.02 476.02 416.09 385.14 377.04 371.24
0.005 625.95 486.00 427.29 393.54 385.71 380.37 650.31 480.25 420.69 387.36 377.24 370.45
0.006 636.60 488.82 430.22 396.23 386.61 383.77 637.39 483.89 423.95 390.68 383.17 376.49
0.007 646.05 490.89 433.11 399.86 389.30 384.98 630.84 488.73 429.10 390.52 381.42 377.88
0.008 656.27 496.12 435.44 400.84 391.44 385.54 654.64 489.53 430.19 391.87 386.60 378.02
0.009 654.98 500.43 439.24 403.24 393.19 387.01 675.27 499.78 423.47 395.23 385.19 380.11
0.01 669.83 502.93 441.89 404.61 395.16 390.51 672.71 493.77 436.38 399.23 390.17 380.26

L 2.962 2.983 2.9925 2.997 2.999 3 2.974 2.995 3.005 3.010 3.012 3.012

For better visuals of the results, we depict the ARL results (Tables 3, 5 and 7) in Figures 2 and 3
and the SDRL results (Tables 4, 6 and 8) in Figures 4 and 5.
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4. Discussion

We summarize the findings of the study under the following subsections: (a) parameter estimation
effect on the Shewhart control chart, (b) effect of outliers on Shewhart X chart performance, and (c)
improvement of outliers screening models on the Shewhart X chart performance. Through the
discussion, we use the run length properties as a yardstick for measuring the performance of the charts.

4.1. Parameter Estimation Effect on the Shewhart X Control Chart

Theoretically, when the Shewhart charts parameters are known, the limit L corresponding to the
IC ARL0 = 370 is L = 3. When the parameters are estimated from phase-I samples, the first effect
of the estimation is the change in L. The control limit L deviates from its theoretical value as much
as the sample size m reduces. That implies, the smaller the sample size m, the farther the control
limit from the theoretical value. This is noticeable in Tables 1 and 2, as L changes as the sample size
does. We compute Ls based on 100,000 iterations of simulation. Secondly, in the introduction of shifts,
which makes the process OC, the RL properties values of the estimated parameters are bigger than
the theoretical values. This indicates that the chart with estimated parameters are slower in detecting
shifts in the process as compared to the chart with known parameters. For instance, (cf. Tables 1 and 2),
with m = 1000, δ = 0.5 the resulting ARL1 and SDRL1 are 156.42 and 158.84 for normal distribution
and 150.92 and 160.46 for t-distribution respectively. However, with m = 25, δ = 0.5 ARL1 and SDRL1

are 190.12 and 333.88 for normal distribution and 194.06 and 340.19 for t-distribution respectively.

4.2. Effect of Outliers on Shewhart X Control Chart performance

Haven noticed the effect of parameter estimation on Shewhart chart performance; one major
cause could be the presence of outliers in the dataset. The results in Tables 3 and 4 prove that extreme
values in the sample causes great havoc to the performance of the process. As discussed earlier in
Section 4, α = 0 indicates absence of outliers, and the presence of outliers if otherwise. We observe
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jumps in the values of IC ARL and SDRL from Tables 3 and 4. With different combinations of α and m,
we say the bigger the value of α and the smaller the value of m, the gross the effect of the outliers on the
chart. Take for instance, in the normal environment, the ARL and SDRL values of just 1% of outliers
(α = 0.01) for when m = 1000 as against when m = 25. It shocks to see the ARL and SDRL jumped
from 592.55 and 612.00 to 996.3 and 4012.72 respectively. However, in the t-distribution, ARL and
SDRL values of 1% of outliers (α = 0.01) for when m = 1000 as against when m = 25, are 575.08 and
591.55 to 953.61 and 3823.24 respectively.

4.3. Improvement of Outliers Screening Models on Shewhart Chart Performance

The proposed remedy for the effect of outliers on the Shewhart chart works perfectly.
The incorporation of Tukey and MAD outlier-screening models in the Shewhart chart normalizes the
outlier effects and restores the performance even much better than it was. To access the effect
of these two screening methods, we present Figures 2–5, displaying the IC ARL values with
m = 25, 50, 100, 250, 500 and 1000, and the magnitude w = 3, without outliers screening, alongside the
IC ARL whose outliers are screened with the Tukey and MAD-based models. The IC ARL that are
supposed to be around the target 370 has jumped to more than 250% increment due to the effect of
outliers. However, with our proposed screening models; both Tukey and MAD-based models; the IC
ARL is returned back to its target with less than 5% increment and decrement. The IC SDRL also
exhibits the same pattern; in fact, its improvement is more appreciable as compared to the ARL’s.

5. Illustrative Example

In the manufacturing industry, semiconductor lithography (photolithography) refers to the
formation of three-dimensional images on the substrate for subsequent transfer of the pattern to the
substrate. A keynote aspect of this process is the bake process, both the pre (soft)-bake and post
(hard)-bake. In this section, we implement the Shewhart chart with the proposed outlier detection
models on the flow width measurement of a hard bake process. In the subsequent subsections, we give
a brief overview of the hard-bake process and then application of the Shewhart chart on the dataset
extracted from such a process (the Basics of Microlithography n.d.).

5.1. The Post (Hard) Bake Process

A typical photolithography process consist of the following sequence of operation:
substrate preparation, photoresist spin coat, pre-bake, exposure, post-exposure bake, development
and finally the post-bake. The hard-bake process, as the name implies, is used to harden the final
resist image so that it will withstand the harsh environments of etching. This post-bake ensures
complete removal of solvent, improving adhesion in wet etch processes and resistance to plasma
etches. Practitioners use different temperatures depending on the material under study. However,
the temperature should be carefully chosen and not more than 200 ◦C. A major characteristic of
this process is the wafer. Recall that the word lithography is a combination of two Greek words:
lithos meaning stones and graphia, meaning to write. Our stones in this case are silicon wafers and the
patterns are written with photoresist, which are sensitive polymers. Figures 6 and 7 depict a typical
photolithography flowchart and the hard-bake process.
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In this section, we implement the findings of this study on a set of data generated from a 
semiconductor manufacturing of a hard-bake process, which monitors the flow width measurement 
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process. The data consist of 25 IC phase-I samples and 10 phase-II samples each of sample size 5. The 
process mean and standard deviation of the phase-I samples are 16.7163 and 3.5167, respectively. 
Therefore, we use these estimates to setup Shewhart chart control limits for monitoring phase-II 
samples. Figure 8 shows all phase-I sample points staying within the limits and 3 of the phase-II 
sample points stretching beyond the LCL making them OoC due to some assignable cause of 
variation. 

Prior to setting the limits, we test the data for possible autocorrelation. The data is 
autocorrelation-free as the Durbin–Watson (DW) test result proves. The value of the DW test 
statistics is 𝐷𝑊 =  1.7564 and the critical values at 1% level of significance are 𝑑 = 1.19, 𝑎𝑛𝑑 𝑑 =
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5.2. Application of Shewhart Control Charts with Outlier

In this section, we implement the findings of this study on a set of data generated from a
semiconductor manufacturing of a hard-bake process, which monitors the flow width measurement
of wafers [1]. The variable of interest is the flow width measurement (in microns) for the hard-brake
process. The data consist of 25 IC phase-I samples and 10 phase-II samples each of sample size 5.
The process mean and standard deviation of the phase-I samples are 16.7163 and 3.5167, respectively.
Therefore, we use these estimates to setup Shewhart chart control limits for monitoring phase-II
samples. Figure 8 shows all phase-I sample points staying within the limits and 3 of the phase-II
sample points stretching beyond the LCL making them OoC due to some assignable cause of variation.

Prior to setting the limits, we test the data for possible autocorrelation. The data is autocorrelation-free
as the Durbin–Watson (DW) test result proves. The value of the DW test statistics is DW = 1.7564 and the
critical values at 1% level of significance are dL = 1.19, and dU = 1.31. By the interpretation explained in
Table 9, we fail to reject the null hypothesis and conclude that there is no evidence of autocorrelation in
the data.
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Table 9. Interpretation of Durbin–Watson autocorrelation test.

Categories Decision Rules Decisions

0↔ dL = 1.19 Reject H0 : positive autocorrelation
dL = 1.19 ↔ dU = 1.31 Inconclusive
dU = 1.31 4↔ dL = 2.69 Do not reject H0 : no autocorrelation 1.31 < DW = 1.7564 < 2.69

4− dL = 2.69↔ 4− dU = 2.81 Inconclusive
4− dU = 2.81↔ 4 Reject H0 : negative autocorrelation

Furthermore, we introduce a 5% of outliers to the phase-I samples, to illustrate the argument that
the presence of outliers affects the performance of control charts. This subsequently increased the
mean and standard deviation by 4% and 25% respectively resulting to an increased UCL and decreased
LCL. The changes in the control limits implies a wider range of the boundaries. Therefore the resulting
control charts is less efficient as compared to the previous one without outliers. Figure 9 depicts this.
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5.3. Application of Shewhart Outlier Detection Model

Having established the deficiency of the Shewhart chart with outliers on the dataset; we employ
our proposed outlier detection model with the Shewhart chart explained in Section 2.4 to rectify this
shortcoming. Figure 10 shows the application of the Shewhart Tukey-based model. It is evident
there in that the chart was not only able to restore the efficiency of the chart as there were no outliers,
detecting 3 OoC sample points, but also to identify the outliers in the phase-I sample points. Similarly,
Figure 11 portrays the scenario when the Shewhart MAD-based model is applied on the monitoring
stage. Despite the presence of outlier in the dataset, the chart is able to detect the OC sample points as
much as it does when there were no outliers.
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6. Conclusions

In this article, we evaluate the performance of the Shewhart control chart for location monitoring
with estimated parameters. The study substantiates the effect of estimation error and the variability
in the practitioners’ choice of phase-I samples on the chart, especially when the samples are prone
to outliers. Increasing the phase-I sample size (although not practicably) will to some extent reduce
the gross impact on the Shewhart chart. The results of this study further prove that incorporation of
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the non-parametric outlier screening models, Tukey and MAD, in the design of the Shewhart chart is
more practicable as it requires less phase-I samples and yields better results. Another advantage of this
study lies in the simplicity of its design and ease of usage. The study rounds up with an illustrative
example with a photolithography real data. A comparison of the two detection models, Tukey and
MAD, reveals that duo relatively efficient. The study is limited to operate within the univariate setup,
while focusing on multivariate setup will be a great advantage and we plan a future study for that. Also,
proposed charts are memory-less, which implies they are suitable for monitoring large shift. However,
the idea of the study is not only applicable in Shewhart multivariate setup, but also extendable to
other control charts, like exponentially weighted moving average and cumulative sum charts both
univariate and multivariate setups.
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