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Abstract: The subshift of finite type property (also known as the Markov property) is ubiquitous in
dynamical systems and the simplest and most widely studied class of dynamical systems are S-shifts,
namely transformations of the form Tg,: x = Bx +a mod 1 acting on [~a/(B—1),(1—a)/(B—1)],
where (B,&) € A is fixed and where A := {(8,&) € R?: B € (1,2) and 0 < a < 2 — B}. Recently,
it was shown, by Li et al. (Proc. Amer. Math. Soc. 147(5): 2045-2055, 2019), that the set of (B, «)
such that Tg, has the subshift of finite type property is dense in the parameter space A. Here,
they proposed the following question. Given a fixed f € (1,2) which is the n-th root of a Perron
number, does there exists a dense set of « in the fiber {3} x (0,2 — B), so that Ty , has the subshift of
finite type property? We answer this question in the positive for a class of Pisot numbers. Further,
we investigate if this question holds true when replacing the subshift of finite type property by the
sofic property (that is a factor of a subshift of finite type). In doing so we generalise, a classical result
of Schmidt (Bull. London Math. Soc., 12(4): 269-278, 1980) from the case when a = 0 to the case when
a € (0,2 — B). That is, we examine the structure of the set of eventually periodic points of T, when
B is a Pisot number and when p is the n-th root of a Pisot number.

Keywords: S-expansions; shifts of finite type; periodic points; iterated function systems

1. Introduction, Motivation and Main Results

1.1. Introduction and Motivation

The pioneering work of Rényi [1] and Parry [2] on B-shifts and expansions have motivated a
wealth of results providing practical solutions to a variety of problems. For instance, they arise as
Poincaré maps of the geometric model of Lorenz differential equations [3], and Daubechies et al. [4]
proposed a new approach to analog-to-digital conversion using B-expansion. A summary of some
further applications can be found in [5]. Through their study, many new phenomena have appeared,
revealing a rich combinatorial and topological structure, and unexpected connections to probability
theory, ergodic theory, number theory and aperiodic order [6-8]. Additionally, through understanding
B-shifts and expansions, advances have been made in the theory of Bernoulli convolutions [9,10].

For B > 1and x € [0,1/(B — 1)], an infinite word (wy,),cn over the alphabet {0,1} is said to be a
B-expansion of x if

[e¢]
x=Y wi B
k=0

When B € N, all except a countable set of real numbers have a unique B-expansion. On the other
hand, Erdos, Jo6 and Komornik [11] showed, if § is less than the golden mean, then for every

Mathematics 2020, 8, 903; d0i:10.3390/math8060903 www.mdpi.com/journal/mathematics


http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
http://www.mdpi.com/2227-7390/8/6/903?type=check_update&version=1
http://dx.doi.org/10.3390/math8060903
http://www.mdpi.com/journal/mathematics

Mathematics 2020, 8, 903 2of 16

x € (0,1/(B—1)), the set of B-expansions of x has cardinality equal to the cardinality of the continuum.
Siderov [12] extended this result by showing, if § is strictly less than two, then for Lebesgue almost all
x € [0,1/(B —1)], the cardinality of the set of f-expansions of x is that of the continuum.

Through iterating the interval maps Gg: [0,1/(8—1)] Oand Lg: [(B—2)/(B—1),1] O defined by

if x <1/, 2 — ifx<1-1/8,
Galx) = Bx ifx<1/B and  Ly(x) = Bx+2—pB ifx< /B
Bx —1 otherwise, Bx+1— otherwise,

one obtains subsets of {0, 1} known as the greedy and lazy B-shifts, respectively. Each point w* of
the greedy B-shift and each point w™ of the lazy B-shift corresponds to a B-expansion of a unique point
in [0,1/(B —1)]. Note, if w™ and w™ are B-expansions of the same point, then w™* and w™ are not
necessarily equal, see Example 1 and [6,13,14].

There are several ways in which one may generate S-expansions of real numbers, other than using
the greedy and lazy B-shifts. For example, via intermediate B-shifts legt « These symbolic spaces are

coding spaces associated with intermediate B-transformations Tﬁi,a: [—a/(B—1),1—-a)/(B—1)] O,
where (B,&) € A== {(b,a) € R?: b € (1,2) and a € [0,2 — B]} and where the interval maps Tﬁiﬂ are
defined as follows. For p = pg . == (1 —a)/p, set

. o
T‘th(x):: {,Bx+1x if x <p, and Ty, (x) = {,Bx+1x ifx <p,

Bx+a—1 otherwise, Bx+a—1 otherwise.

Observe that Ty (x) = 1— T/;fz_ﬁ_a(l —x),and if « = 0, then Gg = T;,; and if & = 2 — B,
then Lg = Tg Further, —a/(f —1) and (1 —«)/(B — 1) are fixed points for Tﬁiﬂ and the unit interval
[0,1] is a trapping region for Tgfa, that is if x € [0,1], then (Tﬁi)”(x) € [0,1], for all n € N; and if
x€e(—a/(B—1),00U(1,(1—a)/(B—1)), then there exists an m € N such that (Tﬁiﬂx)m(x) € [0,1].

Every element of QjE . 1s a p-expansion of a unique point in the interval [0,1/(B — 1)], see (3),
and Qg , = QE, e Q;/ , is invariant under the (left) shift map o and closed in {0, 13 namely (g, isa
subshift. Here {0,1} is equipped with the discrete topology and {0,1}" is endowed with the product
topology. Further, the dynamical systems (()/:3t ) and ([0,1], Tlix) are topologically conjugate, that is
they have ‘the same” dynamical properties.

Subshifts of finite type play an essential role in the study of dynamical systems, and can be
completely described by a finite set of forbidden words (see Section 2.1). They also have a simple
representation as a finite directed graph, and thus, dynamical and combinatorial questions concerning
subshifts of finite type can be phrased in terms of an adjacency matrix, making them much more
tractable. Hence, it is of interest to classify the points (B, &) € A for which Q)4 , a subshift of finite type.
One of our aims is to give new insights towards such a classification.

Given (B, a) € A, the unique points in QE , and Qg{ , that yield a B-expansion of p are called the
kneading invariants of (g .. These invariants are extremely useful since they completely determine
Qp ., see Theorem 3 due to [15-17]. Moreover, the -shift (g, is a subshift of finite type if and only
if the left shift of the kneading invariants are periodic, see Theorem 4 due to Ito and Takahashi [18],
and Parry [19], for the case « € {0,2 — B}, and Li et al. [20], for the case thatw € (0,2 — B). These results
immediately give us that the set of parameters in A which give rise to B-shifts of finite type is countable.
In a second article [5] by Li et al., it was shown that this set of parameters is in fact dense in A.
In contrast, the structure of the set of (B, ) in A for which Qg , is topologically transitive, with respect
to the (left) shift map, is notably different to the set of (8, «) in A for which Qg , is a subshift of finite
type. It is worth noting that the former of these two sets has positive Lebesgue measure and is far from
being dense in A, see Theorem 6 due to Palmer [21] and Glendinning [22].
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The results of [23,24] in tandem with those discussed above, yield the following.

(i)  If the B-shift Qg , is a subshift of finite type, then &« € Q(p).
(ii)  If Bis not the positive nth-root of a Perron number, for some 1 € N, then the set of a with ()5, a
subshift of finite type is empty.

Indeed, we require g € (1,2) to be a maximal root of a polynomial with coefficients in {—1,0,1},
and a € Q(B), for Qg , to be a subshift of finite type. This leads to the following natural question,
to which we give a partial answer to in Theorem 1.

Question A. Let B € (1,2) denote the positive n'™-root of a Perron number, for some n € N. Is the set of a
with Qo a subshift of finite type dense in (0,2 — B)?

Another class of subshifts which is of interest here are those which are factors of a subshift of
finite type. Such subshifts are called sofic; indeed, every subshift of finite type is sofic, but not vise
versa. Kalle and Steiner [25] proved that a B-shift ()4 , is sofic if and only if its kneading invariants
are eventually periodic. Combining this result with those of Li et al. [5], one obtains that the set of
(B &) € Awith Qg , soficis dense in A. This naturally leads to the study of (eventually) periodic points.

Bertrand [26] and Schmidt [27], and subsequently Boyd [28-30] and Maia [31], addressed the
following question. For a fixed 8, what are the values of x € [0, 1] which are eventually periodic under
Gp? Recall, a point x is eventually periodic under Gg if and only if the cardinality of {Gg(x): n € N}
is finite. Letting Preper(p) denote the set of x which are eventually periodic under Gg, Schmidt points
out that if x, y € Preper(B) N [0, 1], then there is no obvious reason why x 4+ y mod 1 should also be an
element of Preper(f) N [0, 1]. In light of this, it is surprising that certain f > 1 have the same behaviour
as integers, in the sense that if § is a Pisot number, then Preper() N [0,1] = Q(p) N[0, 1]. A natural
question to ask here is:

Question B. What is the structure of the set Preper™ (B, a) of eventually periodic points under Tl;;?

In Theorem 2, we show that, if B € (1,2) is a Pisot number and if « € Q(B) N (0,2 — B),
then Preper™(B,a) = Q(B) N Jg., where Jg, denotes the domain of T/%a' We also obtain a partial
converse and in Corollary 1, we relate these results back to Question A.

1.2. Statement of Main Results

Our main contributions in this article and to the story of periodic B-expansions, is to show the
following results, namely Theorems 1 and 2, and Corollaries 1 to 3.

For B € (1,2) set A(B) := {(B,a) € R?: 0 < a < 2 — B} and recall that the multinacci number B,
of order m > 2 is the unique real solution to the equation x™ = x"~! 4 ... 4+ x + 1 in the interval (1,2).
Note, the sequence (B)5;_, is strictly increasing and converges to 2, and that j; is the golden mean.

Theorem 1. Fix an integer m > 2. The set of (B, ) in A(Bm) with Qp,, o a subshift of finite type is dense in
the fiber A(Bm)-

The main difficulty in proving Theorem 1 was in finding a way to compare the space (g, , and
Qg,, o, for a fixed m and a # a’. We achieved this by embedding all B,,-transformations into a single
(multi-valued) dynamical system and carrying out our analysis in this larger system.

This result answers Question A for the class of multinacci number which belong to the wider class
of algebraic numbers known as Pis6t numbers. Although many parts of our proof generalise from the
class of multinacci numbers to the class of Pisot numbers, a central result (Proposition 1) which states
that the upper kneading invariant is periodic if and only if the lower kneading invariant is periodic
does not easily generalise, see Example 2 for examples of (B, &) € A where this is not the case.
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In the hope of circumventing this we turn our attention to Question B and examine the set of
eventually periodic points under T[;ta.

Theorem 2. Let B € (1,2) and a € Q(B) N (0,2 — B) be fixed, and let Jg ,, denote the domain of Tgfa.

(i) IfQNJga C Preper™(B,a), then B is either a Pisot or a Salem number.
(i) If B is a Pisot number, then Preper™ (B, a) = Q(B) N Jpu:

Theorem 2(i) also hold when Jg , is replaced by [0, 1], since [0, 1] is a trapping region for Tg 4.

As indicated above, Theorem 2 generalises the results of Schmidt [27]. Indeed, our proof is
motivated by that of [27], with the following crucial difference. In the setting of [27], namely when
a = 0, a key fact that is used is to any point x there exists a point y arbitrarily close to x and integers
m and n, such that Gg+k(y) is arbitrarily close to zero for all k € {0,1,...,m}. However, this is not
the case, when a > 0. To circumvent this, we appeal to the kneading theory of Milnor and Thurston
discussed in Section 2.2. We also remark that a similar question to Question B was considered by
Baker [32]; via different methods to ours, and also Schmidt’s, Theorem 2(i) may be concluded from the
work of Baker and Theorem 2(ii) can be seen as a strengthening of Baker’s results.

Further, as a consequence of Theorem 2(ii) and a result of [25], see Theorem 5, we obtain the
following partial solution to Question A.

Corollary 1. Let B € (1,2) be a Pisot number. The set of (B, a) in A(B) for which Qg 4 is sofic is dense in the
fiber A(B).

In addition to this, combining the results of Palmer [21] and Glendinning [22] as well as
Parry [21,33] with Theorems 1 and 2, we may
(i)  determine a set of & which lie dense in a subset of positive Lebesgue measure of the fibre A( L/my
for all integers m and n > 2, and

7

(i)  classify the set Preper(B, ), in the case that B is the n-th root of a Pisot number and T , is
non-transitive.

In order to state these results we require a few preliminaries.

Let n and k € N with k < n and ged(n, k) = 1be given, and lets € {0,1,...,k — 1} be such that
n =smod k. For j € {1,2,...,s}, define V; and r; by jk = V;s +r;, where r; € {0,1,...,s — 1}, and k;
by V; = hy +hy + - - 4 hj. For p € (1,21/"] set

o 1 —,Bn+1+,3n+2ﬁ—1
Ina(B) = [,B(ﬁ”—l—f—---—i—l)' BB T+ - +1) },and
1)
gy [T 1) B W) g (
nk : ﬁ(‘Bn—1+...+1) ’ ﬁ(ﬁ”*1+-"+1) ’
where, for2 <j <s,
hj v
Wi = Zﬁ(vsfvj,l—i)mﬂfj and W = Z‘B(sti)m+sfl @)
i=1 i=1

see Figure 1 for a sketch of the intervals I, x(8). If B = 21/", then I,(B) is a single point and,
if B € (0,2!/"), then I,, x(B) is an interval of positive Lebesgue measure. Further, for a fixed g € (1,2),
in [22], it was shown that the Lebesgue measure of

{«€©2-VB):ke{1,....1} with ged(1,k) = 1and « € (/) }
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remains bounded away from zero as I € N tends to infinity.

Corollary 2. Let m and n > 2 denote two integers, and let k € N be such that k < n and ged(n, k) = 1.

There exists a dense set of & in I,  ({/Bm) with Q Bma subshift of finite type. Moreover, if B is a Pisot

number, then there exists a dense set of « in I, ({/B) with Q) Ea sofic.

Before stating our final corollary we require one last preliminary. For (B,&) € A, Parry [33]
constructed an absolutely continuous Tp ,-invariant probability measure, which we denote by vg 4.
Halfin [34] verified that the density /g, is non-negative and Hofbauer [16,35,36] proved that vg , is
ergodic and maximal. Further, the results of Palmer [21] and Glendinning [22] give us that vg, has
support equal to [0, 1] if and only if Tg , is topologically transitive.

Corollary 3. Let n and k € N, let B denote a Pisot number and let « € Q(B) N [0,2 — B]. Defining
Ky = D‘n,k(ﬁ/“) € In,k( (/B) by

“1:(ﬂ—aﬂL—VFﬂ—qu—V@ . ak:(u—axL—VE?y_;ﬂmwg_Q@)

p-1 p-1 '

where s € {0,1,...,k — 1} satisfies n = s mod k and W is as in (2), and setting ®(x) = ({/B —1)x + a1,
we have

n—1
Preper™ (/B an) Nsupp(vy . ) = U (T g, )/(@(Q(B)N[01)).
i=0 !

1.3. Outline

In Section 2 we give necessary definitions and results we require in our Proofs of Theorems 1 and 2.
Sections 3 and 4 are dedicated to proving Theorems 1 and 2, respectively. We conclude with Section 5.
The aim of this final section is to provide an overview of the results of [19,21,22,33] which in combination
with our results (Theorems 1 and 2) yields Corollaries 2 and 3.

2. Preliminaries

We divide this section into three parts: Sections 2.1 and 2.2 in which we discuss aspects of symbolic
dynamics and B-shifts; and Section 2.3 where we review results concerning a related class of interval
maps, namely uniform Lorenz maps, which are in essence scaled versions of p-transformations.

2.1. Subshifts

Let {0, 1}V denote the set infinite words over the alphabet {0,1}. We endow {0, 1} with the
topology induced by the (ultra) metric 2: {0, 1} x {0,1} — R defined by

@(w/v):{o fw=uv,

2—lwAvl+l £ £,

where |w Av| == min{i € N: w; # v;}, for w = (wy,wy,...) and v = (v1,1,,...). This topology
coincides with the product topology on {0, 1}, where {0, 1} is equipped with the discrete topology.
Forn € Nand w € {0,1}", we set w|, = (wy,...,w,) and call n the length of w|, denoted by |w|y|.
We define the (left) shift o on {0, 1}N by ¢(wy, wy,...) = (w2, w3, ...). A closed subspace Q of {0,1}
is a subshift if (Q) C Q, namely if ) is invariant under ¢ . Given a subshift ) and n € N, we set

Qln={(&1,82,...,¢n) € {0,1}": there exists w € Q with w|, = (&1,&2,...,&n)}
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and denote by O* = (J,,eny Q| the collection of all finite words. A subshift ) is said to be of finite
type if there exists a finite set F of finite words with

(i) vl ¢gFforallve QandneN;
(i) ifv € {0,1}N\ O, then there exist integers n > 0 and m > 0 such that ™ (v)|, € F.

The set F is often referred to as the set of forbidden words of Q. If O C {0,1}" is a factor of a
subshift of finite type, then it is called sofic.
We call a word w € {0,1}" periodic with period n € N, if (wy, ..., wy) = (Wm—1ynt1s- - -» Wmn)

for all m € N, and write w = (wW,...,wy). The smallest such n is called the period of
w. Similarly, a word w € {0,1}" is said to be pre-periodic with period n € N, if there
exists k € N with (w1, Wken) = (Okp(m—1yng1s -+ Wkpmn) for all m € N, and write

w = (w1,..., Wk, Wks1,---,Wkrn)- The smallest such n is called the period of w.
2.2. Intermediate B-Shifts and Expansions
Let (B,a) € Abe fixed and set p = pg o == (1 —a)/p. Let ija: Jga — {0, 1}N be defined by
Tﬁi/a(x) = (0] (x), w5 (x),...),
where, forn € N,

and w, (x) =

o [0 I @ < 0 i (T;,)" ' (x) <p,
w(x) = ’ ’
1 otherwise.

1 otherwise,

We refer to T/Si,a as expansion maps. The image of Jg , under Tlix is denoted by Qif o and we set
Qp = Qg «UQg,. We call Tg .(p) the upper and T (p) the lower kneading invariant of Qg ,.

Remark 1. Let w = (w1, wy,...) and v = (v1, vy, ... ) respectively denote the upper and the lower kneading
invariant of Qg . By definition, w1 = v = 0and wy = vy = 1. It can also be shown, for k > 2 an integer,

that (wi, wii1,...) = (1) ifand only if &« = 2 — B, and that (v, viy1,...) = (0) ifand only if & = 0.

The inverse map 7tg,: {0, 1PN =7 g Of Tﬁjix is called the projection map and defined by
nﬁ,a(a)l,wz, ) =a(l- /3)*1 + Zwiﬁ*i.
i=1
An important property of Tﬁi and 71, is that the following diagram commutes.

+ v +
Qﬁ,a QM

Tt L jl’;ﬁc Tix( 2 T8, (3)

]/3,»4 T ]/S,ac

This result is verifiable from the definitions of the involved maps, see [15]. From this, one may

deduce, for x € [0,1+1/(B — 1)], that the words Tga(x —wa/(B —1)) are B-expansions of x. It is

worth noting that the expansion of a point x given by TE: o(x), namely the greedy B-expansion of x, is
lexicographically the largest f-expansion of x, and the expansion given by 74, g (x—2-p8)/(B—-1)),
namely the lazy B-expansion of x, is lexicographically the smallest f-expansion of x, see [11]. Further,

for Lebesgue all most all x, the expansion ija (x —a/(B — 1)) lie in between the greedy and the lazy
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B-expansions of x, with respect to the lexicographic ordering, see [37]. There also exist § such that the
only B-expansion of one is the greedy B-expansion, such f are called univoque, see [14].

Example 1. For B = (1++/5)/2 and x = 1, we have the following.

T50(x) = (1,1,0) greedy golden mean-expansion of 1
T/girl,ﬁ/z(x —(1-p/2)/(B—1)) =(1,0) symmetric golden mean-expansion of 1
Tgop(x—(2—-B)/(B—1)) = (0, 1) lazy golden mean-expansion of 1

For B the largest positive real root ole4 278 4 10 7 26 A8 st landx =1,
Tﬁi,rx(x — oc/(,B — 1)) = (1, 1,1,0,0,1,0,1,1,1,0,0,1,0, 1,0),
forall « € [0,2 — BJ. In [13], it was shown, in this latter case, that B is the smallest univoque Pisot number.

Next, we recall a result which shows that QEF . is completely determined its kneading invariants.
Theorem 3. [15-17] Letting <, <, =, = denote the lexicographic orderings on {0, 1}N, we have that

Q/Jsr,a = {w e {0, 1}N: forall n € Ny, 0" (w) < Tg . (P) or Tgf (p) = a”(w)} ,

Qg = {w € {0,1}: forall n € Ny, 0"(w) = Tg,(p) or TE_ (p) < a”(w)} .

A necessary and sufficient condition on the kneading invariants of an intermediate S-shift for
determining when it is a subshift of finite type is as follows.

Theorem 4 ([2,18,20]). For (B,«) € A, the intermediate shift Qg , is a subshift of finite type if and only if

U(Tﬁjfa(p)) are both periodic.

With the above at hand, it is natural to ask if B € (1,2) and & € (0,2 — B), then is true that Tl;t «(P)

is periodic if and only if Tga (p) is periodic and vice versa? In Proposition 1 we show that this is indeed
the case when f is a multinacci number. However, there exist values of § € (1,2) for which this does
not hold, as the following counterexample demonstrates. Thus, it would be interesting to investigate if
there exists other values of g € (1,2), for which Tg . (p) is periodic if and only if T (p). In fact this
idea is very closely linked to the concept of matching which has recently attracted much attention, see
for instance [38,39].

Example 2. Letting p = /B and a = 2 — By, we have that Tg—’x(p) = (1,0,0,1) and 75, (p) = (0, 1,1,0).

Recall, B, denotes the second multinacci number, namely the golden mean.

Kalle and Steiner [25] developed an analogous result to Theorem 4 for determining when a S-shift
is sofic; this allows us to conclude Corollary 1 from Theorem 2. Their result states the following.

Theorem 5 ([25]). The subshift Qg 4 is sofic if and only if ija (p) are both pre-periodic.

Our next proposition (Proposition 1) plays a key role in the proof of Theorem 1. We note that
after the writing of this paper we became aware of [38] in which a proof of this result also appears.
However, for completeness we include a short justification for which we require an auxiliary lemma
(Lemma 1).
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Proposition 1. Fix an integer m > 2 and let & € A(Bm)\{0,2 — Bn}. The kneading invariant Tlg’ma(p) is
periodic if and only if the kneading invariant Tg o(p) is periodic.

Lemma 1. Under the assumptions of Proposition 1, we have

(Pl = (10,0,...,0,0) and 5 (p)lwi1 = (0L1,...,1,1).

m—times m—times

Proof. We present the proof for 75 . (p); the proof for TJ;“ . (p) follows analogously. From Remark 1
we know Tl;a(p)b = (0,1), and, since B, > B2, by definition (Tl;m,a)z(p) = Bm +a —1> p. Suppose,
forsomej € {1,2,...m — 1}, that

Tﬁj,,,a(p”]""‘l = (01,1,...,1,1).

j—times
Let So(x) := Bmx + a and S1(x) := Bmx + a — 1. It suffices to show that
B(T5, ) (p) +a = B(S1 0 So(p)) + o> 1.

To this end, observe that

B(S]oSo(p)) +a =B+ (Bt B 4+ But1) = BBl — =P
> Bt =Bl Bl = =B = B~ Bl B~ =B = L.

The first line follows from an elementary induction argument and the definition of S; and S;;
the second line holds since & > 0; the last and penultimate lines are a consequence of the facts (Bx)ken
is an increasing sequence and ;1 is the unique real zero of the polynomial A — o — o —x—1
in (1,2). O

Proof of Proposition 1. By Lemma 1, we have

T a(P) w1 = (1,0,0,...,0,0) and 75 (p)lm+1 = (0,1,1,...,1,1).

m—times m—times

Letting 59 and Sp be as in the proof of Lemma 1, an elementary calculation yields the following.

(Tg, )" (p) = S 0 S1(p) =a(By ' + B2+ + Pt 1) = apy;

B
(Tg, )" (p) = ST o So(p) = al(By " + B 24+ Bu+ 1)+ (Bl =B ' =B 2= —Bu—1)
w(Bp B B+ 1) = apy

Thus, 74 .(p) is periodic if and only if TE’ ' »(p) is periodic. O

2.3. Uniform Lorenz Maps

A class of interval maps closely related to intermediate -transformations, and which have been
well studied, are Lorenz maps. They are expanding maps with a single discontinuity. Here, we consider
the sub-class of uniform Lorenz maps Uﬁip : [0,1] © defined, for p € (1,2) and g € [1—-1/B,1/B], by

if
qu(x) = {,Bx PYST o nd U

; (x) = Bx ifx <g,
Bx+1—-p ifx>gq. 4

C\Bx+1-8 ifx>q,
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Let us now describe the relation between uniform Lorenz maps and B-transformations. For this
we require the following concept, which determines when two dynamical systems are ‘the same’.
Let X and Y denote two topological spaces and let f: X O and g: Y . We call f and g topologically
conjugate if there exists a homeomorphism /i: X — Y with ho f = go h. The maps f and g are called
topologically semi-conjugate if & is a continuous surjection.

An elementary calculation shows that T;f“ and Ugfl Ha—1)/B
the conjugating homeomorphism is given by x — (B —1)(x +a/(B —1)).

Similar to B-transformations, Lorenz maps have associated expansion maps yg g [0,1] — {0, 1}N
defined by ‘u?;q(x) = (v (x),v5 (x),...), where, for n € N,

are topologically conjugate, where

and v, (x) = {O if (uﬁ—,q)nq(x) <gq,

(x) = if(uﬁq)n 1(9‘) <4,
x) = ’
1 otherwise,

1 otherwise,

and an associated projection map pg: {0, 1}N — [0,1] given by pplwy,wy, ... ) = (B—1) X2, w;B~.
As in the setting of Section 2.2 we have that the following diagram commutes.

l%,q([ozl]) —r y:ﬁt,q([oll])

PﬁL Mg ME}( Pp

[0,1] [0,1]
U,

Additionally, we have the following monotonicity result.

Proposition 2. [15,40] Let B € (1,2) be fixed. The map x y;x(x) is right-continuous and strictly
increasing. Similarly, x — M, () is left-continuous and strictly increasing. Moreover, points of discontinuity,
for both maps, only occur at periodic points.

The main benefit of using uniform Lorenz maps stems from the idea that every B-trnasformation
has a realisation as a uniform Lorenz map, as discussed above, and that every uniform Lorenz map is
defined on [0, 1] and has the same fixed points. Thus, it allows one to easily compare the kneading
invariants of systems with the same expansion rate, namely S, but with different translates, namely «.

3. Fiber Denseness of Intermediate B-Shifts of Finite Type: Proof of Theorem 1

The aim of this section is to prove Theorem 1. We divide the proof into two parts. We show that
the sets Per™(B) := {a € A(B): Tl%a(p) is periodic}, for a given B € (1,2), are dense in A(B) with
respect to the Euclidean norm, and with the help of Proposition 1, we have that Tg“k . 18 periodic if and

only if Tg, 0 1 periodic. Theorem 1 follows by combining these two results together with Theorem 4.
kX

Proof of Theorem 1. Fix (B,a) € A witha ¢ {0,2—B}. Letq = 1+ (o« —1)/p, so that Uiq is
topologically conjugate to T;,X. It is sufficient to show that there exists g5 sufficiently close to g in
((B—1)/B,1/B) with ygqi (gF) periodic. We present the proof for ﬂ;;q’ (g5 ); the proof for ‘u;q+ ()

follows analogously. To this end, suppose Mg, q(q) is not periodic, otherwise set g; = q. Fixk € N
and set

67 = min{p*|(U) () —ql: 1 € {1,2,...k}}.



Mathematics 2020, 8, 903 10 of 16

Observe yg,q,(q’) lke1 = 1p (1) ki1, forallg’ € [g — Jlgq),q). Let j > k be the maximal integer

such that

(90— = ng, @l (n

ﬁ/qf

M
Igqu(glg‘?)

I 51 =0 and (g, (@) = 1.
k
The existence of j is given by Proposition 2. Let A C [q — J, q) be defined by

A={xelg—8",0): 15, (x)]; = 1, (9)]j and (s5,(x))j41 = 0}.

Proposition 2 ensures that A is a non-empty, connected and closed, in particular that g; :=
sup(A) € A. By way of contradiction, suppose that y e _(g5) is not periodic, in which case,

Uy V(a5) <45

By Proposition 2, there exists (5](?:1) > 0 so that, if ¢ € (gs,9s + 5](151)) then oo (g5 )i+ =
o (4 (q ’)| j+1 This implies ¢ € A; contradicting the fact g; is the supremum of A. Therefore,
since (5 < B, giveng € (1-1/B,1/B) and € > 0, there exist g; € (1 —1/8,q) and k € N
withg —gq; < (SIE ) < eand y;q; (g5 ) periodic.

Proposition 1 implies that Per™ (B,,) = Per™ (B,), for all integers n > 2. Thus, we have that the
set{a € A(B): T, Ty, 1. (p) and T, .(p) are periodic} is dense in A(B) with respect to the Euclidean norm.
With this at hand, an application of Theorem 4 completes the proof. [

4. Periodic Expansions of Pisot and Salem Numbers: Proof of Theorem 2

Throughout this section, let B € (1,2) denote an algebraic integer with minimal polynomial
i-1
z)=) az + 2,
i=0
wherez € C,d € Nand ay,4ay,...,a4 € Z. In which case, x € Q(B) N J,a can be written in the form
=
=q ) pif' @
i=0

where p1, p2,...,pi-1 € Zand q € N. We assume that the integer g in (4) is as small as possible yielding
a unique representation for x. Let p1, P2, ..., Ps_1 € Z and and 7 € N denote the corresponding terms

for w € Q(B):
PR =
a=q""Y pip. &)
i=0

Fix a € Q(B) N (0,2—p) and x € Q(B) N Jg. with the forms given in (4) and (5). Fori € N,
let w"(x) respectively denote the i-th letter of Téﬁx (x). From the commutative diagram given in (3),
we have, for 7 a non-negative integer, that

() (x) < Zw x)B~ +«x2ﬂ> Ti)" (%). (©)
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Lemma 2. Forx € Q(B) N g4 and n € Ny, there exists a unique vector (rgn’i) (x),..., rb(i"’i) (x)) in Z% with
+ 1 d (n%£) j
p ) (x) = (@g) "t Yo" (0B @)
i=1
For ease of notation, and when the dependency on x is clear, we write r(nt) = (rgn’i), ., rtgn'i))

in replace of r("*) (x) = (rgn'i) (x),. rtgln ) (x)).

Proof. By (4)-(6) we have that

d ) d—1 .
P (x) =71 piaf — wi(x) +a = (Gg)” (q Yo piaB —dqwi(x)+q ) ﬁiﬁl> :
i=1 i=0

i=1

The result for n = 1 follows from the fact that g and 7 are fixed and that B := {8,8%,...,B8%} isa
basis for Q(B). An inductive argument yields the general result. [

Lemma 3. For x € Q(B) N Jpa, 1 € No and vy a Galois conjugate of B,

d—1 ) n ) n ) d )
" (q‘l Yoy = Y w0y HR Y 'r‘l> = @) "y ®
i=0 i=1 i=1 i—1
where @ = § ' Y4- 1 piy. Moreover, if |y| > 1and if x € Preper® (B, a) N Q(B), then
1 d—1 ) R = N )
g P =Wy ©)
i=0 Toi=

Proof. Combining (4), (6) and (7), we obtain that § satisfies the polynomial equation

n ) d )
(q Y piz — g Zw 4y (Z pjz ) <ZZ’>> I (10)
i=1 i=1

for all n > 0. Since v is a Galois conjugate of B, it is also a solution to (10), which proves (8). If |y| > 1
and if x € Preper® (B, a), then the cardinality of the set {r("*): n € Ny} is finite, and thus

ct = sup{max{\rlgn’i)k ke{l,...,d}}: ne N} <oo. (11)

Combining this with (8) we obtain

gt Z Py — Zw X)y~ +a27 < (q) " 'eEd|y|

Letting n tend to infinity in the above equation yields (9). O
With the above two lemmas at hand we are ready to prove Theorem 2(i).

Proof of Theorem 2(i). We show the result for Tgr , noting that the proof is analogous for Tﬁ_ .+ By way
of contradiction, suppose there exists a Galois conjugate v # B of p with |y| > 1. Letx € [a, B+ a — 1]
and let a,b € Jg, be such that a < b and Tgla(a) = Tga(b) = x. Setd = |7 — 71| and let
1 = max{B~,|y|~1}. Choose m € N with 4"+ /(1 —17) < (5/2

Let ', b' € QN Jg, with T/;a(aﬂm = 75,(@)|m and 15, (0) | = 75, (0')|m; the existence of a’

and V' is guaranteed by Proposition 2. By (3) and how 4’ and b’ have been chosen, we have that
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(wy (@), .. wh(a) = (wy ('), ... w5 (V)), w (a") = 0and w; (V') = 1. An application of Lemma 3
in tandem with (4), our hypothesis and the fact that - is a Galois conjugate of j, yields the following.

—i

« ; o
V= =g+ Lw )" =

=gt -yl = Ry )y
< |popt Ll /
< | B @0p - Lt @)p| + Lo @7 = Lo ()
i=2 i=1 i=2
< Y lwf (V) —wf (@) + Z w (V) = w @)y < 2" A=) <6
i=m+1 i=m+1

This yields a contradiction, and concludes the proof. [

For the proof of Theorem 2(ii) we require an additional lemma.

Lemma 4. Set B = yy and let 73, ...,y denote the Galois conjugates of B. For x € Q(B) N Jga, n € No and
ie{l1,2,...,d} set

d
9 (0) = g 3 et 2
k=1

The following are equivalent.

(i)  x € Preper®(B,a)
(i) max{sup{|o!" (x)|: n e No}: i € {1,...,d}} < 0
iii)  sup{max{|r" (x)|: k€ {1,...,d}}: n € No} < oo
Proof. A similar argument to that given in the proof of Lemma 3, where we obtained (11), shows (i)

implies (iii). That (iii) implies (ii) follows from (12). To complete the proof we show (ii) implies (i).
To this end, assume (ii) and set

") (x) ot ot (AP ()
i)\t v ) )

= M,B

By assumption, there exists c* € R with [|[v("®) (x)|| < ¢*, for all n € Ny. Since the Galois group of
a finite Galois extension acts transitively on the roots of any minimal polynomial, Mg is a non-singular
matrix. This implies there exists k* € Z with [|[t**)(x)|| < k*, for all n € Ny. Hence, as ") (x) € 74 it
follows that r("%) (x) = r("*)(x), and therefore pl(m’i) (x) = pf"’i) (x), for some m,n € Ny with m # n
andalli € {1,...,d}. An application of Lemma 2 and (6) yields the required result. [J
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Proof of Theorem 2(ii). Fixx € Q(p) N[0, 1] with the form given in (4). Asin Lemma4, set y; = fand
let 75, ..., 74 denote the Galois conjugates of B. Since, by assumption, 8 is a Pisot number, it follows
1 =max{|yj|: j €{2,...,d}} <1.Forje{2,3,...,d}, let

aj = g 2 171'

and set & := max{|&;|: j € {2,3,...,d}}. By (10) and (12) we have

d—1 o on—1 )
0" () < gt Y lpiln™ + Y (1wt
j=0 i=0

foralln € Nyand i € {2,...,d}. This in combination with (6) yields that Lemma 4(ii) is satisfied,
and thus x € Preper®(B,a). [

5. Periodic Expansions of Pisot and Salem Numbers: Proof of Corollaries 1 and 2

The aim of this final section is to provide an overview of the results of [19,21,22,33] which in
combination with our results (Theorems 1 and 2) yield Corollaries 2 and 3.

An interval map T: [a,b] O is called topologically transitive if for all open subintervals | there
exists m € N with

U T40) 2 (a,b).
k=0

For B € (1,2), Parry [19] showed T/3 _py2 1s topologically transitive if and only if § > V2.
This result was later generalised by Palmer [21] and Glendinning [22] who classified the set of points
(B, ) € A with Téfa is topologically transitive.

In order to state the results of Parry, Palmer and Glendinning we require the following. Letn, k € N
with 1 <k < nand ged(n, k) = 1, and let I, 1 (B) be as in (1). Define D, s to be the set

{(Ba)en:pe (1,2 and a € L1 (B)},

see Figure 1 for an illustration of the intervals I, ; and the regions Dy ,,.

B 21/2

D
l 1/3 Lip(B)

3 \Lh
ol1/4

\\\\\ AN

s

Figure 1. Plot of the parameter space A, together with boundary of the regions Dy 5, D13, D23, D1 4,
D34, , , , , and . Further, in blue, a sketch of the interval I »(B), where § is the
square root of the golden mean, is given.
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Theorem 6 ([19,21,22]). Let (B,a) € A. The tuple (B,&) € Dy, for some n,k € Nwith1 < k < n and
ged(k, n) = 1, if and only if Tﬁiﬂ is not topologically transitive.

A main ingredient in the proof of this result is to show that for given n,k € Nwith1 < k <n
and ged(n, k) = 1, there exists a one-to-one correspondence between points in A and points in D, k.
More precisely, on the one hand, given ([S ®) € A, there exists a unique a € I,;({/B), namely
a = a, (B, ), see Corollary 3, such that, T/5 ljo1) and (T \/Bﬂ)n | la,/B+a—1) T topologically conjugate

with conjugating map @ (x) := ({/B — 1)x + a; on the other hand, given (B,a) € D,,, there exists
a € [0,2 — B"], namely

—w(p 1)+ p1 L
B D et
—a(f" -1+ (-1 W ,
1-— B-1){- ,8*1)] otherwise.

such that (Ti )" \[a pra—1) and Tﬂ,1 are topologically conjugate, where the conjugating map is given
by x — (B —1)"!(x — a) and where s € {0,1,...,k — 1} satisfies n = s mod k and Wi is as defined
in (2). Moreover, in the case that 8 # 21/" and (B,a) € D,k

(T, (0, 1)) N (T5)(0,1)) = ©, (14)

foralli,j € {1,2,...,n} withi # j; in the case that 8 # 2!/" and « is the singleton in I, ;(8) the
intersection in (14) is a singleton when n # 2 and a two point set when n = 2. These observations
in tandem with Theorem 1 and Corollary 1 directly yield Corollary 2. In order to prove Corollary 3,
we require one final result.

Theorem 7 ([21,33]). Let (B, &) € A be fixed. The absolutely continuous measure vg , with density

Zﬁ (]1[0 ) —]l[o,wga)"(o»)

is invariant under T=. Moreover, the support of Vg, equals [0,1] and only if (B, &) & D, or if B = 21/ and
w is the single point of I, ;(21/™), for some n,k € N with k < n and ged(k,n) = 1. Further, in the case that
B # 2" and (B,a) € Dy, the support of Vg, 18 contained in the disjoint union of intervals,

U T (0 1))
i=1

Corollary 3 follows from this result in tandem with the observations directly proceeding it together
with Theorem 2.
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