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Abstract: This article describes the features of bio-convection and motile microorganisms in
magnetized Burgers’ nanoliquid flows by stretchable sheet. Theory of Cattaneo–Christov mass
and heat diffusions is also discussed. The Buongiorno phenomenon for nanoliquid motion in a
Burgers’ fluid is employed in view of the Cattaneo–Christov relation. The control structure of
governing partial differential equations (PDEs) is changed into appropriate ordinary differential
equations (ODEs) by suitable transformations. To get numerical results of nonlinear systems, the bvp4c
solver provided in the commercial software MATLAB is employed. Numerical and graphical data
for velocity, temperature, nanoparticles concentration and microorganism profiles are obtained by
considering various estimations of prominent physical parameters. Our computations depict that
the temperature field has direct relation with the thermal Biot number and Burgers’ fluid parameter.
Here, temperature field is enhanced for growing estimations of thermal Biot number and Burgers’
fluid parameter.

Keywords: Burgers’ nanofluid; heat generation/absorption; bio-convection; Cattaneo–Christov
relations; motile microorganisms; numerical solution

1. Introduction

Nowadays investigators are showing huge interest in nanofluid heat transfer applications.
Based on the empirical results, working fluids in various technical and medical fields have been found
to have the robust features of heat transfer, mass and density during the flow. While different base
liquids have similar heat transfer capability, due to poor thermal efficiency, such liquids are typically
not favored for heat transport applications. In order to overcome this problem, heat efficiency of such
conventional techniques can be boosted by the usage of some nanoparticles additives. Suspension of
regular fluids with nano-size materials is deemed to become most efficient solution to enhance heat
transport that has been used in a wide range of products in different air-conditioning systems. With this
concept, convectional fluids with lower heat efficiency have been substituted by nanoliquids that are
capable of transmitting further heat to devices. Compared to ordinary fluids, nanoliquids are generally
extra stable in terms of heat and momentum transfer. Such nanomaterials can be enhanced by utilizing
different metals such as gold, silver, copper, steel, borides, oxides and nitrides with special caution.

Choi [1] introduced the term “nanofluid”. Buongiorno [2] analyzed the concept of natural
convective transport in a nanofluid. Many researchers have studied the nature of the nanofluid flow
via Brownian motion and thermophoretic factors. Turkyilmazoglu [3] researched the influence of
single-phase nanoliquids and its linear stabilization. Ellahi et al. [4] studied nano-sized hafnium
particles. The results of second-order slip over a Poiseuille nanoliquid flow subject to the impact of Stefan
blows in channels were identified by Alamri et al. [5]. Khan et al. [6] analyzed the conservation-based
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performance evaluation of hybrid nanoliquid-assisted composite materials. Irfan et al. [7] researched
the movement of EMHD nanoliquids over fixed thickness sheets. Reddy et al. [8] analyzed the
movement of chemically reacting stagnation point Powell-Eyring nanoliquids flowing through an
inclined cylinder subject to energy activation and Cattaneo–Christov heat transfer. Khan et al. [9]
observed the behavior of nonlinear heat radiation by using nanomaterials and activation energy.
Agamid et al. [10] discussed the unsteady flow of carbon nanotubes based-fluids between two moving
disks. Uddin et al. [11] addressed the actions of nanomaterials to disperse blood across a cylindrical
tube utilizing a single kernel. Abbas et al. [12] investigated the non-uniform hemodynamic nanoliquid
motion. Babazadeh et al. [13] discussed the process of modifying Lorentz’s force over nanoparticles
flowing inside two disks. Alamri et al. [14] examined the impact of mass transport on the second-grade
liquid movement. Niazmand et al. [15] discussed the impact of nanoparticles in a lamp-driven
cylindrical cavity. Steady 2D convective viscous nanoliquid flow by a stretchable cylinder with
a chemical process was explored by Mondal et al. [16]. Saif et al. [17] addressed hydromagnetic
Jeffrey nanoliquid flow through a curved stretched surface. Nanoliquid turbulence and flow in an
annular space was studied mathematically and experimentally by Abdulrazzaq et al. [18]. Saeed et
al. [19] analyzed the transport of heat through a porous stretched cylinder and Darcy-Forchheimer
hybrid-nanoliquid movement. Souayeh et al. [20] examined radiative heat transition and slippery flow
through nanofluid. Tlili et al. [21] studied boundary-layer MHD flow subject to convection features
across a wedge. Farhangmehr et al. [22] numerically investigated the MHD flow of a nanofluid
over a moving surface. Many researchers have worked on nanofluids as may be seen in various
publications [23–30].

The occurrence of bioconvection is correlated with microorganisms and biological solutions. Such a
practice is generally noted in dilute liquids in which microorganisms travel upward in a suspended
liquid resulting in instability due to concentration stratification. The bioconvection mechanism is
understood by Rayleigh-Bernard convection which is also visible in the reversal of the nanofluid
instability caused by the haphazard motion of nanomaterials. The key difference between molecules and
a biological suspension is that nanomaterials are not self-propelled and they follow Brownian motion
owing to hydrodynamic instability. Introduction of swimming gyrotactic motile microorganisms into a
nanoliquid is known to cause a significant change in the fluid convection behavior. Kuznetsov and
Avramenko [31] have introduced the bioconvection of nanomaterials through a horizontal convection
sheet in the occurrence of swimming microorganisms. Ghorai and Hill [32] additionally clarified
that bioconvection can be utilized to illustrate the process of impulsive model improvement in
fluids containing microorganisms like bacteria and algae. Atif et al. [33] scrutinized the homogenous
micropolar bioconvective fluid flow with nanoparticles and gyrotactic microorganisms. Khan et al. [34]
inspected 2D bioconvection coupled stress fluid flow with nanoparticles, magnetic field and gyrotactic
motile microorganisms. Amirsom et al. [35] presented theoretical research on the 3D movement of
bioconvection nanoliquids comprising gyrotactic motile microorganisms throughout a bi-axial stretched
sheet. Zhang et al. [36] determined the features of activation energy in radiative rate-type nanofluid
with bioconvection aspect configured by stretching/shrinking disks. Usman et al. [37] studied the model
of three-dimensional nanoliquid bioconvection with a stagnation connection. Basir et al. [38] proposed
nanoliquid laminar convective MHD flow through heat, mass and gyrotactic microorganism transfers.
The bioconvection motion of a Carreau nanofluid over a wedge was addressed by Muhammad et
al. [39]. Mansour et al. [40] presented a mathematical analysis of magneto-hydrodynamic convective
flow with gyrotactic motile microorganisms in a squared lid-driven space. Li et al. [41] investigated
the bioconvection flow of generalized second grade nanofluids under the effect of Wu’s slip. Waqas et
al. [42] scrutinized the non-thermal radiation behavior in Oldroyd-B nanofluid flow with swimming
motile microorganisms past a rotating disk. More works on bioconvection can be found in [43–50].

The objective of the present research article is to explore the bio-convection flow of a magnetized
Burgers’ nanofluid subject to the presence of swimming motile microorganisms. The Buongiorno
expressions for nanoliquid motion in the Burgers’ fluid are employed in view of generalized Fourier’s
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and Fick’s laws. Partial differential equations (PDEs) are changed into appropriate ordinary differential
equations (ODEs) by suitable transformations [51–54]. To perform numerical computations of nonlinear
expressions, the bvp4c solver in the commercial software MATLAB is employed. Numerical and
graphical results for velocity, nanofluid temperature, nanofluid concentration, microorganisms, skin
friction, Nusselt, Sherwood and motile density numbers are obtained by considering various estimations
of physical numbers.

2. Mathematical Formulation

A mathematical relation is designed for 2D Burgers nanofluid flow with Cattaneo–Christov models,
motile microorganisms and bioconvection past a stretching sheet. Impacts of Brownian movement and
thermophoresis diffusion are also taken into account. Furthermore, stagnation point flow and thermal
and solutal stratifications are scrutinized. Wall temperature of nanoparticles (Tw), wall concentration of
nanoparticles (Cw) and wall motile microorganisms (Nw) are considered. Moreover, (T∞) is the ambient
temperature, (C∞) is the ambient concentration and (N∞) is the ambient microorganism. The velocity
components are associated in the way of x-axis and y-axis which are depicted in Figure 1.
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Figure 1. Flow model of the problem.

The rate-type liquid expressed via a Burgers’ liquid is:(
1 + λ1

D
Dt

+ λ2
D2

Dt2

)
S = µ

(
1 + λ3

D
Dt

)
A1 (1)

Here (S) stands for extra stress tensor, (µ) for the dynamic viscosity of the fluid,(
A1 = (∇.V) + (∇.V)T

)
for the first Rivilin-Ericksen tensor and

(
D
Dt

)
for the upper convective derivative.

The continuity and momentum expressions for present flow are:

∇.V = 0, (2)

ρ f
dV
d

t = −∇p + divS + J1 × B, (3)
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where the energy law conservation for the present model is:(
ρCp

)dT
dt
−

(
ρCp

)[
DB∇C.∇T +

DT

D∞
(∇T)2

]
= −∇.q + Q0(T − T∞), (4)

in which (q) stands for heat flux satisfy the following property:

q + λ1

[
∂q
∂t

+ V.∇q− q.∇V + (∇.V)q
]
= −k∇T, (5)

where the nanoparticles concentration for the present flow model is:

dC
dt
−

DT

D∞
∇

2T = −∇.J − kc(C−C∞), (6)

in which (J) stands for the mass flux satisfying the following property:

J + λc

[
∂J
∂t

+ V.∇J − J.∇V + (∇.V)J
]
= DB∇C. (7)

Here (ν) stands for kinematic viscosity, (λ1) for the fluid relaxation time, (λ2) for material
parameter of the Burgers’ fluid, (λ3 ≤ λ1) for the fluid retardation time, (λc) for the mass relaxation
time, (λt) for the thermal relaxation time, (T) for the liquid temperature, (C) for the liquid concentration,
(T∞) for the ambient temperature, (C∞) for the ambient concentration, (DB) for the diffusion coefficient,
(J1) for the current density, (q) for the heat flux and (J) for the mass flux. The governing expressions
for the current flow model are:

∂u
∂x

+
∂v
∂y

= 0, (8)

u∂u
∂x + v ∂v

∂y + λ1

[
u2 ∂2u

∂x2 + v2 ∂2v
∂y2 + 2uvv ∂2u

∂x∂y

]
+λ2

 u3 ∂3u
∂x3 + v3 ∂3v

∂y3 + u2
(
∂v
∂x

∂2u
∂x∂y −

∂u
∂x
∂2v
∂x2 +

∂u
∂x
∂2u
∂x2

)
+ 3v2

(
∂v
∂y

∂2u
∂y2 +

∂u
∂y

∂2u
∂x∂y

)
+3uv

(
u ∂3u
∂x2∂y + v ∂3u

∂x∂y2

)
+ 2uv

(
∂v
∂y

∂2u
∂x∂y + ∂v

∂x
∂2u
∂y2 +

∂u
∂y

∂2u
∂x2 −

∂u
∂y

∂2v
∂x∂y

) 
= vλ3

[
v ∂

3v
∂y3 + u ∂3u

∂x∂y2 −
∂u
∂x
∂2u
∂y2 −

∂u
∂y

∂2v
∂y2

]
+ v

[
∂2u
∂y2

]
+ dUe

dx

−
σB2

0
ρ

[
u−Ue + λ1v∂u

∂y + λ2

(
u∂v
∂x
∂2u
∂y2 − v∂u

∂x
∂2u
∂y2 + uv ∂2u

∂x∂y + v2 ∂2u
∂y2

)]
+ 1
ρ f


(
1−C f

)
ρ fβ

∗∗g∗(T − T∞) −
(
ρp − ρ f

)
g∗(C−C∞)

−(N −N∞)g∗γ
(
ρm − ρ f

) ,

(9)

u∂T
∂x + v∂T

∂y = α
(
∂2T
∂y2

)
− λ1

 u2 ∂2T
∂x2 + v2 ∂2T

∂y2 + 2uvv ∂2T
∂x∂y + ∂T

∂x

(
u∂u
∂x + v∂u

∂y

)
+ ∂T
∂y

(
u∂v
∂x + v ∂v

∂y

) 
+λ∗tτDB

[
u ∂2C
∂x∂y

∂T
∂y + u∂C

∂y
∂2T
∂x∂y + v∂

2C
∂y2

∂T
∂y + v∂C

∂y
∂2T
∂y2

]
+ 2λ∗tτ

DT
D∞

 u∂T
∂y

∂2T
∂x∂y

+u∂
2T
∂y2

∂T
∂y


+ Q0
ρCp

(T − T∞) + λ∗t
Q0
ρCp

(
v∂T
∂y + u∂T

∂x

)
+ 1

(ρc) f

∂
∂y

(
16σ∗T3

∞

3k∗

(
∂T
∂y

))
(10)

u∂C
∂x + v∂C

∂y = DB

(
∂2C
∂y2

)
− λ∗c

 u2 ∂2C
∂x2 + v2 ∂2C

∂y2 + 2uv ∂2C
∂x∂y + ∂C

∂x

(
u∂u
∂x + v∂u

∂y

)
+ ∂C
∂y

(
u∂v
∂x + v ∂v

∂y

) 
−

DT
T∞

[
u ∂3T
∂x∂y2 + u∂

3C
∂y3 + ∂2T

∂y2

]
−Kr2(C−C∞)

(
T

T∞

)n
exp

(
−Ea
kT

)
− λ∗ckc

(
v∂C
∂y + u∂C

∂x

)
,

(11)

u
∂N
∂x

+ v
∂N
∂y

+
bWc

(Cw −C∞)

[
∂
∂y

(
N
∂C
∂y

)]
= Dm

∂2N
∂y2 , (12)
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u = Uw = cx, v = 0, −k ∂T
∂y = h f (Tw − T),−DB

∂C
∂y = hg(Cw −C),

−Dm
∂N
∂y = hn(Nw −N) at y = 0,

(13)

v→ 0,
∂u
∂y
→ 0, T→ Tw, C→ Cw, N→ Nw as y→∞ (14)

Here
(
α = k

ρCp

)
stands for the thermal diffusivity, (ρ) for the density, (p) for the pressure,

(
Cp

)
for

the specific heat capacity and (k) for the liquid thermal conductivity. The appropriate transformations
are expressed by:

ψ = x
√

cν f (ζ), u = cx f ′(ζ), v = −
√

cν f (ζ), θ(ζ) = T−T∞
Tw−T∞ ,

φ(ζ) = C−C∞
Cw−C∞ , χ(ζ) = N−N∞

Nw−N∞ , ζ = y
√

c
ν

. (15)

PDEs are altered to the following ODEs by utilizing the above transformations:

f ′′′ + f f ′′ − ( f ′)2 + α1
[
2 f f ′ f ′′ − f 2 f ′′′

]
− α2

[
3 f 2( f ′′ )2

− 2 f ( f ′)2 f ′′ − f 3 f iv
]

+α3
[
( f ′′ )2

− f f iv
]
−M2[α2 f f ′′′ − α1 f f ′′ + f ′] + K2 + M2K + λ(θ−Nrφ−Ncχ) = 0,

(16)

(
1 + 4

3 Rd
)
θ′′ + Pr

(
fθ′ + Nbθ′φ′ + Nt(θ′)2

)
+ δθ+ δλT fθ′

+PrλT

(
− f f ′θ′ − f 2θ′′ − 2Nt fθ′θ′′

−Nb fθ′φ′′ −Nb fθ′′φ′

)
= 0,

(17)

φ′′ + LePr fφ′ − LePrσ∗(1 + δ0θ)
n exp

(
−E

1+δ0θ

)
φ− k1λC fφ′

+LePrλC
[
− f f ′φ′ − f 2φ′′ − Nt

Nbθ
′′′ f + Nt

Nbθ
′′

]
= 0,

(18)

χ′′ + Lbχ′ f − Pe[φ′′ (χ+ δ) + χ′φ′] = 0, (19)

f = 0, f ′ = 1, θ′ = −γ1(1− θ(ζ)),φ′ = −γ2(1−φ(ζ)),
χ′ = −γ3(1− χ(ζ)) at ζ = 0,

(20)

f ′ → K, f ′′ → 0,θ→ 0, φ→ 0, χ→ 0 as ζ→∞, (21)

where (Pr) stands for the Prandtl number, (Nt) for the thermophoresis parameter, (λT) for the thermal
relaxation parameter, (Nb) for the Brownian motion parameter, (Nc) for the bioconvection Rayleigh
parameter, (Rd) for the thermal radiation parameter, (α1,α3) for the Deborah numbers, (α2) for the
Burgers’ fluid parameter, (M) for the magnetic parameter, (Lb) for the bioconvection Lewis parameter,
(Pe) for the Peclet parameter, (δ) for the microorganism difference number, (Le) for the Lewis number,
(λC) for the mass relaxation parameter, (E) for the activation energy, (Nr) for the buoyancy ratio
number, (δ0) for the temperature difference parameter and (σ∗) for the chemical reaction parameter,
which are defined as follows:

Pe =
bWc

Dm
, Lb =

ν
Dm

, δ =
N∞

Nw −N0
,
}

,

Pr = ν
α , Nt = τDT(Tw−T∞)

νT∞ ,λT = cλ∗t, Nb =
τDB(Cw−C∞)

ν , δ = νQ0
c(ρc) f

}
,

Rd =
4σ∗T3

∞

k∗

Le =
α

DB
,λC = aλ∗c, E =

Ea

kT∞
δ0 =

Tw − T0

T∞
, σ∗ =

νKr2

a

}
,
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α1 = cλ1,α2 = cλ2, β3 = cλ3

M =
(
σlB2

0
ρ f U0

) 1
2
,λ

(
=

(1−C∞)γ(Tw−T0)β
∗∗

aUw

)
,

Nr =
(ρp−ρ f )(Cw−Co)

(1−C∞)(Tw−T0)
, Nc =

γg(ρm−ρ f )(Nw−N0)

(1−C∞)(Tw−T0)β∗∗


, (22)

3. Numerical Approach

Due to the accuracy and efficiency, the nonlinear ODEs (16)–(19) with boundary restrictions (20)
and (21) are solved numerically by using the bvp4c solver in the MATLAB computational software.
Fourth-order collocation method is described via the bvp4c technique. Furthermore, the Lobatto-IIIa
relation is considered to have a tolerance factor of 10−7. Initially the set of nonlinear ODEs are converted
into a first order initial value problem. Let:

f = p1, f ′ = p2, f ′′ = p3, f ′′′ = p4, f iv = p′4,θ = p5,θ′ = p6,
θ′′ = p′6,φ = p7,φ′ = p8, ,φ′′ = p′8,χ = p9,χ′ = p10,χ′′ = p′10

}
, (23)

p′4,=

p4 + p1p3 − (p2)
2 + α1

[
2p1p2p3 − p2

1p4
]
− α2

[
3p2

1(p3)
2
− 2p1(p2)

2p3
]

+α3
[
(p3)

2
]
−M2[α2p1p4 − α1p1p3 + p2] + K2 + M2K + λ(p5 −Nrp8 −Ncp9)(

α3p1 − α2p3
1

) (24)

p′6,=

Pr
(
p1p6 + Nbp6p8 + Nt(p6)

2
)
+ δp5 + δλTp1p5 + PrλT

(
−p1p2p6

−Nbp1p6p′8

)
(
PrλT f 2 + PrλT2Ntp1p6 + PrλTNbp1p8 − 1− 4

3 Rd
) (25)

p′8 = −LePrp1p8 + LePrσ∗(1 + δ0p5)
n exp

(
−E

1+δ0p5

)
p7 + k1λCp1p8

−LePrλC
[
−p1p2p8 − p2

1, p′8 −
Nt
Nb p′6p1 +

Nt
Nb p′6

]
,

(26)

χ′′ = −Lbp10p1 + Pe
[
p′8(p9 + δ) + p9p8

]
= 0, (27)

with:
p1 = 0, p2 = 1, p8 = −γ1(1− p7(ζ)), p8 = −γ2(1− p7(ζ)),
p10 = −γ3(1− p9(ζ)) at ζ = 0,

(28)

p2 → K, p3 → 0, p5 → 0, p7 → 0, p9 → 0 as ζ→∞. (29)

4. Results and Discussion

In this segment, the physical significance of prominent parameters like thermophoresis parameter
Nt(0.1 ≤ Nt ≤ 2.2), magnetic parameter M(0.1 ≤M ≤ 1.2), Burgers fluid parameter α2(0.1 ≤ α2 ≤ 2.2),
Deborah number α1(0.1 ≤ α1 ≤ 1.5), bioconvection Rayleigh number Nc(0.1 ≤ Nc ≤ 2.2), Deborah
number α3(0.1 ≤ α3 ≤ 2.2), buoyancy ratio parameter Nr(0.1 ≤ Nr ≤ 2.0), velocity ratio parameter
K(0.2 ≤ K ≤ 1.6), mixed convection parameter λ(0.1 ≤ λ ≤ 2.2), thermal relaxation parameter
λT(0.1 ≤ λT ≤ 2.2), thermal Biot number γ1(0.1 ≤ γ1 ≤ 1.0), Prandtl number Pr(2.0 ≤ Pr ≤ 5.0),
activation energy parameter E(0.1 ≤ E ≤ 2.0), solutal Biot number γ2(0.1 ≤ γ2 ≤ 1.6), thermal
radiation number Rd(0.1 ≤ Rd ≤ 1.6), Brownian motion number Nb(0.1 ≤ Nb ≤ 0.8), Lewis parameter
Le(1.2 ≤ Le ≤ 2.4), microorganism Biot number γ3(0.1 ≤ γ3 ≤ 1.6), Peclet number Pe(0.1 ≤ Pe ≤ 1.2)
and bioconvection Lewis number Lb(1.0 ≤ Lb ≤ 3.0) against velocity, temperature, volumetric
concentration of nanoparticles and motile microorganisms is deliberated through Figures 2–15.
Figure 2 represents the performance of velocity field f ′ for growing magnetic parameter M and Burgers’
parameter α2. Clearly the velocity of fluid f ′ reduces for growing estimations of the magnetic number
M and the Burgers’ parameter α2. This scenario is observed for different values of both numbers.
By raising the magnetic number, a resistive force is developed, which causes decay in the motion of the
Burgers’ nanofluid. The aspects of the Deborah number α1 and bioconvection Rayleigh number Nc
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versus velocity flow field f ′ are plotted in Figure 3. Reduction is observed in the velocity of the Burgers’
nanofluid f ′ due to the increased values of the Deborah number α1. Furthermore, it is analyzed
that the decay of velocity f ′ is due to rises in the bioconvection Rayleigh parameter Nc. Features of
the velocity f ′ due to the Deborah number for retardation α3 and the buoyancy ratio parameter Nr
are exhibited in Figure 4. The velocity of the Burgers’ nanofluid f ′ increases for a larger Deborah
number for retardation time parameter α3. It is also depicted that the velocity field f ′ diminishes with
a higher amount of the buoyancy ratio number Nr. The performance of the velocity ratio number K
and mixed convection parameter λ against the velocity f ′ is plotted in Figure 5. Here the velocity of
Burgers’ nanofluid f ′ is enhanced by increasing the values of the velocity ratio parameter K and mixed
convective number λ. The consequences of the thermal relaxation number λT and Burgers’ number α2

changes over temperature field θ are examined in Figure 6. An increment in the thermal relaxation
parameter λT corresponds to a weaker temperature field θ. It is also noted that the temperature field θ
upsurges for a higher magnitude of the Burgers’ parameter α2. The thermal relaxation parameter is
directly proportional to the thermal relaxation time. A greater thermal relaxation parameter indicates
a higher relaxation time which produces a weaker temperature field. Figure 7 depicts the effects of
the thermal Biot number γ1 and thermophoresis parameter Nt versus the temperature field θ. It is
noted that the temperature field θ upsurges with a larger thermal Biot number γ1. Here it is also
witnessed that the temperature field θ augments with rising variation of the thermophoresis number
Nt. A growing thermophoresis number depicts a stronger thermophoretic force which produces a
stronger temperature field. Figure 8 shows the physical appearance of the Prandtl number Pr and the
thermal radiation parameter Rd against the temperature field θ. It can be verified that the temperature
distribution θ is retarded by varying the Prandtl number Pr. Here, it is also noted that the temperature
θ is increased with higher estimations of the thermal radiation parameter Rd. Figure 9 examines the
variation in nanoparticles concentration φ for different estimations of the thermophoresis parameter Nt
and the activation energy parameter E. It is noted that the volumetric concentration of nanoparticles φ
is upgraded by increasing the estimations of the thermophoresis parameter Nt. It is also analyzed that
the volumetric concentration of nanoparticles φ is enlarged with larger estimations of the activation
energy parameter E. Figure 10 elucidates the behavior of the solutal Biot number γ2 and the buoyancy
ratio parameter Nr with the concentration of nanoparticles φ. Here the concentration of nanoparticles
φ is enhanced for a larger solutal Biot number γ2 and the buoyancy ratio parameter Nr. Features of the
effect of the Brownian motion number Nb and Burgers’ number α2 on the volumetric concentration
of nanoparticles φ are plotted in Figure 11. It is illustrated that the nanoparticles concentration φ is
decayed with a larger Brownian motion number Nb. It is also analyzed that the concentration field φ is
knocked down due to the Burgers’ parameter α2. Brownian motion develops due to the occurrence of
nanoparticles and results in the decay of the nanoparticle concentration thickness. The characteristics
of the Prandtl number Pr and Lewis number versus volumetric concentration of nanoparticles φ are
shown in Figure 12. It is observed that the concentration field φ diminishes for a higher Prandtl
number Pr and Lewis number Le. The Lewis number is inversely proportional to the Brownian
diffusivity. A greater Lewis number indicates a lower Brownian diffusivity which produces a weaker
nanoparticles concentration field. Figure 13 shows the microorganism’s field χ for various values
of the Burgers’ parameter α2 and the buoyancy ratio parameter Nr. An increment in the Burgers’
parameter α2 and buoyancy ratio parameter Nr leads to a stronger microorganism profile χ. Figure 14
displays the characteristics of the microorganism Biot number γ3 and bioconvection Rayleigh number
Nc against the swimming motile microorganism profile χ. The swimming motile microorganism field
χ is increased as the enlarging microorganism Biot number γ3 and bioconvection Rayleigh number
Nc increase. The outcomes of the microorganism profile χ versus Peclet Pe and bioconvection Lewis
Lb parameters are shown in Figure 15. The swimming motile microorganism field χ declines with
the Peclet number Pe and the bioconvection Lewis number Lb. From Table 1, it can be noted that
the skin friction coefficient − f ′′ (0) increases for M and Nr. From Table 2, it can be concluded that
the local Nusselt number −θ′(0) declines with growing variations of Nb and Rd. From Table 3, it is
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analyzed that the local Sherwood number −φ′(0) increases with K. The microorganism density number
−χ′(0) reduces for Pe while it is enhanced with growing estimations of γ3 (see Table 4). Table 5 is
constructed to validate the presented numerical solution with previously determined solution in a
limiting situation. It is witnessed that the presented numerical solution shows good agreement with
the solution previous reported by Iqbal et al. [30] in a limiting situation.
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Table 2. Variations of −θ′(0) for M, K, Nb, Nt γ1.

M K Nb Nt Rd γ1 −θ
′

(0)

0.1
0.5
1.0

0.1 0.3 0.2 0.4 0.3
0.2060
0.2048
0.2035

0.4
0.2
0.5
0.8

0.3 0.2 0.4 0.3
0.2068
0.2114
0.2149

0.4 0.1
0.1
0.4
0.8

0.2 0.4 0.3
0.2059
0.2026
0.1982

0.4 0.1 0.3
0.1
0.4
0.8

0.4 0.3
0.2078
0.2033
0.1968

0.4 0.1 0.3 0.2
0.1
0.8
1.6

0.3
0.3130
0.1961
0.1824

0.4 0.1 0.3 0.2 0.4
0.1
0.5
1.0

0.0871
0.2791
0.3787

Table 3. Variations of −φ′(0) for M, K, Nb, Nt γ2.

M K Nb Nt Rd γ2 −φ
′

(0)

0.1
0.5
1.0

0.1 0.3 0.2 0.4 0.3
0.2303
0.2295
0.2287

0.4
0.2
0.5
0.8

0.3 0.2 0.4 0.3
0.2310
0.2377
0.2346

0.4 0.1
0.1
0.4
0.8

0.2 0.4 0.3
0.2087
0.2399
0.2451

0.4 0.1 0.3
0.1
0.4
0.8

0.4 0.3
0.2424
0.2236
0.2033

0.4 0.1 0.3 0.2
0.1
0.8
1.6

0.3
0.2278
0.2316
0.2346

0.4 0.1 0.3 0.2 0.4
0.1
0.8
1.6

0.0860
0.4802
0.7137
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Table 4. Variations of −χ′(0) for M, K, λ, Nr, γ3, γ3, Pe and Lb.

M K λ Nr γ3 Pe Lb −χ
′

(0)

0.1
0.5
1.0

0.1 0.1 0.1 0.3 0.1 0.1
0.2786
0.2771
0.2755

0.4
0.2
0.5
0.8

0.1 0.1 0.3 0.1 0.1
0.2796
0.2855
0.2907

0.4 0.1
0.2
0.8
1.6

0.1 0.3 0.1 0.1
0.2776
0.2781
0.2788

0.4 0.1 0.1
0.2
1.0
2.0

0.3 0.1 0.1
0.2775
0.2774
0.2773

0.4 0.1 0.1 0.1
0.1
0.8
1.6

0.1 0.1
0.0900
0.4251
0.5793

0.4 0.1 0.1 0.1 0.3
0.2
0.5
1.0

0.1
0.2757
0.2565
0.2265

0.4 0.1 0.1 0.1 0.3 0.1
1.0
2.0
3.0

0.2373
0.2973
0.3184

Table 5. Comparative outcomes of −θ′(0) for various estimations of Pr when λ = Nr = Nc = E =

Le = Lb = 0.

Pr Iqbal et al. [30] Present Results

0.7 0.45312 0.45312

2.0 0.90894 0.90894

7.0 1.88986 1.88985

5. Conclusions

The effects of bio-convection and motile microorganisms in a magnetized Burgers’ nanofluid flow
due to a stretching sheet are studied. Cattaneo–Christov double diffusion theory is also discussed.
The Buongiorno phenomenon for nanoparticles motion in a Burgers’ fluid is employed in view of
the Cattaneo–Christov relations. The velocity field of a Burgers’ nanofluid is a diminishing function
of the Burgers’ fluid parameters. The velocity field of a Burgers’ nanofluid decays for buoyancy
ratio and bioconvection Rayleigh numbers while it is enhanced for a mixed convective number.
A reduction in temperature is analyzed for growing estimations of the thermal relaxation parameter.
An increment in the thermal Biot, thermophoresis and radiation parameters leads to a stronger
temperature field. Nanoparticles concentration is reduced for growing Brownian motion and Lewis
numbers. The microorganism profile is enhanced by growing estimations of the microorganism Biot
and bioconvection Rayleigh numbers. The microorganism field is reduced by increasing estimations of
the Peclet and bioconvection Lewis numbers.

Funding: This research was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University,
Jeddah, Saudi Arabia under grant No. (D-035-130-1437).

Acknowledgments: This work was supported by the Deanship of Scientific Research (DSR), King Abdulaziz
University, Jeddah, under grant No. (D-035-130-1437). The author, therefore, gratefully acknowledge the DSR
technical and financial support.

Conflicts of Interest: The author declares no conflict of interest.



Mathematics 2020, 8, 1186 15 of 17

References

1. Choi, S.U.S. Enhancing Thermal Conductivity of Fluids with Nanoparticles; FED 231/MD; ASME: New York, NY,
USA, 1995; pp. 99–105.

2. Buongiorno, J. Convective transport in nanofluids. ASME J. Heat Transf. 2006, 128, 240–250. [CrossRef]
3. Turkyilmazoglu, M. Single phase nanofluids in fluid mechanics and their hydrodynamic linear stability

analysis. Comput. Methods Programs Biomed. 2020, 187, 105171. [CrossRef]
4. Ellahi, R.; Hussain, F.; Abbas, S.A.; Sarafraz, M.M.; Goodarzi, M.; Shadloo, M.S. Study of two-phase

Newtonian nanofluid flow hybrid with Hafnium particles under the effects of slip. Inventions 2020, 5, 6.
[CrossRef]

5. Alamri, S.Z.; Ellahi, R.; Shehzad, N.; Zeeshan, A. Convective radiative plane Poiseuille flow of nanofluid
through porous medium with slip: An application of Stefan blowing. J. Mol. Liq. 2019, 273, 292–304.
[CrossRef]

6. Khan, A.M.; Jamil, M.; Mia, M.; He, N.; Zhao, W.; Gong, L. Sustainability-based performance evaluation of
hybrid nanofluid assisted machining. J. Clean. Prod. 2020, 257, 120541. [CrossRef]

7. Irfan, M.; Farooq, M.A.; Iqra, T. A new computational technique design for EMHD nanofluid flow over a
variable thickness surface with variable liquid characteristics. Front. Phys. 2020, 8, 66. [CrossRef]

8. Reddy, S.R.R.; Reddy, P.B.A.; Rashad, A.M. Activation energy impact on chemically reacting Eyring–Powell
nanofluid flow over a stretching cylinder. Arab. J. Sci. Eng. 2020, 45, 5227–5242. [CrossRef]

9. Khan, S.U.; Tlili, I.; Waqas, H.; Imran, M. Effects of nonlinear thermal radiation and activation energy
on modified second-grade nanofluid with Cattaneo-Christov expressions. J. Therm. Anal. Calorim. 2020.
[CrossRef]

10. Alghamdi, M. On magnetohydrodynamic flow of viscoelastic nanofluids with homogeneous-heterogeneous
reactions. Coatings 2020, 10, 55. [CrossRef]

11. Uddin, S.; Mohamad, M.; Rahimi-Gorji, M.; Roslan, R.; Alarifi, I.M. Fractional electro-magneto transport of
blood modeled with magnetic particles in cylindrical tube without singular kernel. Microsyst. Technol. 2020,
26, 405–414. [CrossRef]

12. Abbas, M.A.; Bhatti, M.M.; Sheikholeslami, M. Peristaltic propulsion of Jeffrey nanofluid with thermal
radiation and chemical reaction effects. Inventions 2019, 4, 68. [CrossRef]

13. Babazadeh, H.; Muhammad, T.; Shakeriaski, F.; Ramzan, M.; Hajizadeh, M.R. Nanomaterial between two
plates which are squeezed with impose magnetic force. J. Therm. Anal. Calorim. 2020. [CrossRef]

14. Balankin, A.S.; Golmankhaneh, A.K.; Patiño-Ortiz, J.; Patiño-Ortiz, M. Noteworthy fractal features and
transport properties of Cantor tartans. Phys. Lett. A 2018, 382, 1534–1539. [CrossRef]

15. Niazmand, A.; Sola, J.F.; Alinejad, F.; Dehgolan, F.R. Investigation of mixed convection in a cylindrical lid
driven cavity filled with water-Cu nanofluid. Inventions 2019, 4, 60. [CrossRef]

16. Mondal, H.; Das, S.; Kundu, P.K. Influence of an inclined stretching cylinder over MHD mixed convective
nanofluid flow due to chemical reaction and viscous dissipation. Heat Transf. 2020, 49, 2183–2193. [CrossRef]

17. Bhatti, M.M.; Michaelides, E.E. Study of Arrhenius activation energy on the thermo-bioconvection nanofluid
flow over a Riga plate. J. Therm. Anal. Calorim. 2020. [CrossRef]

18. Abdulrazzaq, T.; Togun, H.; Goodarzi, M.; Kazi, S.N.; Ariffin, M.K.A.; Adam, N.M.; Hooman, K. Turbulent
heat transfer and nanofluid flow in an annular cylinder with sudden reduction. J. Therm. Anal. Calorim.
2020, 141, 373–385. [CrossRef]

19. Saeed, A.; Tassaddiq, A.; Khan, A.; Jawad, M.; Deebani, W.; Shah, Z.; Islam, S. Darcy-Forchheimer MHD
hybrid nanofluid flow and heat transfer analysis over a porous stretching cylinder. Coatings 2020, 10, 391.
[CrossRef]

20. Souayeh, B.; Kumar, K.G.; Reddy, M.G.; Rani, S.; Hdhiri, N.; Alfannakh, H.; Rahimi-Gorji, M. Slip flow and
radiative heat transfer behavior of Titanium alloy and ferromagnetic nanoparticles along with suspension of
dusty fluid. J. Mol. Liq. 2019, 290, 111223. [CrossRef]

21. Tlili, I.; Hamadneh, N.N.; Khan, W.A. Thermodynamic analysis of MHD heat and mass transfer of nanofluids
past a static wedge with Navier slip and convective boundary conditions. Arab. J. Sci. Eng. 2019, 44,
1255–1267. [CrossRef]

http://dx.doi.org/10.1115/1.2150834
http://dx.doi.org/10.1016/j.cmpb.2019.105171
http://dx.doi.org/10.3390/inventions5010006
http://dx.doi.org/10.1016/j.molliq.2018.10.038
http://dx.doi.org/10.1016/j.jclepro.2020.120541
http://dx.doi.org/10.3389/fphy.2020.00066
http://dx.doi.org/10.1007/s13369-020-04379-9
http://dx.doi.org/10.1007/s10973-020-09392-6
http://dx.doi.org/10.3390/coatings10010055
http://dx.doi.org/10.1007/s00542-019-04494-0
http://dx.doi.org/10.3390/inventions4040068
http://dx.doi.org/10.1007/s10973-020-09619-6
http://dx.doi.org/10.1016/j.physleta.2018.04.011
http://dx.doi.org/10.3390/inventions4040060
http://dx.doi.org/10.1002/htj.21714
http://dx.doi.org/10.1007/s10973-020-09492-3
http://dx.doi.org/10.1007/s10973-020-09538-6
http://dx.doi.org/10.3390/coatings10040391
http://dx.doi.org/10.1016/j.molliq.2019.111223
http://dx.doi.org/10.1007/s13369-018-3471-0


Mathematics 2020, 8, 1186 16 of 17

22. Farhangmehr, V.; Moghadasi, H.; Asiaei, S. A nanofluid MHD flow with heat and mass transfers over a sheet
by nonlinear boundary conditions: Heat and mass transfers enhancement. J. Cent. South Univ. 2019, 26,
1205–1217. [CrossRef]

23. Khan, M.; Irfan, M.; Khan, W.A. Impact of nonlinear thermal radiation and gyrotactic microorganisms on the
Magneto-Burgers nanofluid. Int. J. Mech. Sci. 2017, 130, 375–382. [CrossRef]

24. Khan, M.; Khan, W.A.; Alshomrani, A.S. Non-linear radiative flow of three-dimensional Burgers nanofluid
with new mass flux effect. Int. J. Heat Mass Transf. 2016, 101, 570–576. [CrossRef]

25. Khan, M.; Khan, W.A. Forced convection analysis for generalized Burgers nanofluid flow over a stretching
sheet. AIP Adv. 2015, 5, 107138. [CrossRef]

26. Hayat, T.; Waqas, M.; Shehzad, S.A.; Alsaedi, A. Mixed convection flow of a Burgers nanofluid in the presence
of stratifications and heat generation/absorption. Eur. Phys. J. Plus 2016, 131, 253. [CrossRef]

27. Hayat, T.; Aziz, A.; Muhammad, T.; Alsaedi, A. On model for flow of Burgers nanofluid with
Cattaneo—Christov double diffusion. Chin. J. Phys. 2017, 55, 916–929. [CrossRef]

28. Hayat, T.; Waqas, M.; Shehzad, S.A.; Alsaedi, A. On model of Burgers fluid subject to magneto nanoparticles
and convective conditions. J. Mol. Liq. 2016, 222, 181–187. [CrossRef]

29. Rashidi, M.M.; Yang, Z.; Awais, M.; Nawaz, M.; Hayat, T. Generalized magnetic field effects in Burgers’
nanofluid model. PLoS ONE 2017, 12, e0168923. [CrossRef]

30. Iqbal, Z.; Khan, M.; Ahmed, J.; Hafeez, A. Thermal energy transport in Burgers nanofluid flow featuring the
Cattaneo-Christov double diffusion theory. Appl. Nanosci. 2020. [CrossRef]

31. Kuznetsov, A.V.; Avramenko, A.A. Effect of small particles on this stability of bioconvection in a suspension
of gyrotactic microorganisms in a layer of finite depth. Int. Commun. Heat Mass Transf. 2004, 31, 1–10.
[CrossRef]

32. Ghorai, S.; Hill, N.A. Wavelengths of gyrotactic plumes in bioconvection. Bull. Math. Biol. 2000, 62, 429–450.
[CrossRef] [PubMed]

33. Atif, S.M.; Hussain, S.; Sagheer, M. Magnetohydrodynamic stratified bioconvective flow of micropolar
nanofluid due to gyrotactic microorganisms. AIP Adv. 2019, 9, 025208. [CrossRef]

34. Khan, S.U.; Waqas, H.; Bhatti, M.M.; Imran, M. Bioconvection in the rheology of magnetized couple stress
nanofluid featuring activation energy and Wu’s slip. J. Non Equilib. Thermodyn. 2020, 45, 81–95. [CrossRef]

35. Amirsom, N.A.; Uddin, M.J.; Basir, M.F.M.; Ismail, A.I.M.; Beg, O.A.; Kadir, A. Three-dimensional
bioconvection nanofluid flow from a bi-axial stretching sheet with anisotropic slip. Sains Malays. 2019, 48,
1137–1149. [CrossRef]

36. Zhang, T.; Khan, S.U.; Imran, M.; Tlili, I.; Waqas, H.; Ali, N. Activation energy and thermal radiation aspects
in bioconvection flow of rate-type nanoparticles configured by a stretching/shrinking disk. J. Energy Resour.
Technol. 2020, 142, 112102. [CrossRef]

37. Usman, M.; Hamid, M.; Rashidi, M.M. Gegenbauer wavelets collocation-based scheme to explore the solution
of free bio-convection of nanofluid in 3D nearby stagnation point. Neural Comput. Appl. 2019, 31, 8003–8019.
[CrossRef]

38. Basir, M.F.M.; Uddin, M.J.; Ismail, A.I.M. Scaling group analysis of mixed bioconvective flow in nanofluid
with presence of slips, MHD and chemical reactions. Preprints 2018. [CrossRef]

39. Muhammad, T.; Alamri, S.Z.; Waqas, H.; Habib, D.; Ellahi, R. Bioconvection flow of magnetized Carreau
nanofluid under the influence of slip over a wedge with motile microorganisms. J. Therm. Anal. Calorim.
2020. [CrossRef]

40. Mansour, M.A.; Rashad, A.M.; Mallikarjuna, B.; Hussein, A.K.; Aichouni, M.; Kolsi, L. MHD mixed
bioconvection in a square porous cavity filled by gyrotactic microorganisms. Int. J. Heat Technol. 2019, 37,
433–445. [CrossRef]

41. Li, Y.; Waqas, H.; Imran, M.; Farooq, U.; Mallawi, F.; Tlili, I. A numerical exploration of modified second-grade
nanofluid with motile microorganisms, thermal radiation, and Wu’s slip. Symmetry 2020, 12, 393. [CrossRef]

42. Waqas, H.; Imran, M.; Muhammad, T.; Sait, S.M.; Ellahi, R. Numerical investigation on bioconvection flow
of Oldroyd B nanofluid with nonlinear thermal radiation and motile microorganisms over rotating disk. J.
Therm. Anal. Calorim. 2020. [CrossRef]

43. Waqas, H.; Khan, S.U.; Imran, M.; Bhatti, M.M. Thermally developed Falkner-Skan bioconvection flow of a
magnetized nanofluid in the presence of a motile gyrotactic microorganism: Buongiorno’s nanofluid model.
Phys. Scr. 2019, 94, 115304. [CrossRef]

http://dx.doi.org/10.1007/s11771-019-4081-z
http://dx.doi.org/10.1016/j.ijmecsci.2017.06.030
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2016.05.056
http://dx.doi.org/10.1063/1.4935043
http://dx.doi.org/10.1140/epjp/i2016-16253-9
http://dx.doi.org/10.1016/j.cjph.2017.02.017
http://dx.doi.org/10.1016/j.molliq.2016.06.087
http://dx.doi.org/10.1371/journal.pone.0168923
http://dx.doi.org/10.1007/s13204-020-01386-y
http://dx.doi.org/10.1016/S0735-1933(03)00196-9
http://dx.doi.org/10.1006/bulm.1999.0160
http://www.ncbi.nlm.nih.gov/pubmed/10812715
http://dx.doi.org/10.1063/1.5085742
http://dx.doi.org/10.1515/jnet-2019-0049
http://dx.doi.org/10.17576/jsm-2019-4805-23
http://dx.doi.org/10.1115/1.4047249
http://dx.doi.org/10.1007/s00521-018-3625-8
http://dx.doi.org/10.20944/preprints201810.0097.v1
http://dx.doi.org/10.1007/s10973-020-09580-4
http://dx.doi.org/10.18280/ijht.370209
http://dx.doi.org/10.3390/sym12030393
http://dx.doi.org/10.1007/s10973-020-09728-2
http://dx.doi.org/10.1088/1402-4896/ab2ddc


Mathematics 2020, 8, 1186 17 of 17

44. Alwatban, A.M.; Khan, S.U.; Waqas, H.; Tlili, I. Interaction of Wu’s slip features in bioconvection of Eyring
Powell nanoparticles with activation energy. Processes 2019, 7, 859. [CrossRef]

45. Waqas, H.; Khan, S.U.; Hassan, M.; Bhatti, M.M.; Imran, M. Analysis on the bioconvection flow of modified
second-grade nanofluid containing gyrotactic microorganisms and nanoparticles. J. Mol. Liq. 2019,
291, 111231. [CrossRef]

46. Waqas, H.; Shehzad, S.A.; Khan, S.U.; Imran, M. Novel numerical computations on flow of nanoparticles
in porous rotating disk with multiple slip effects and microorganisms. J. Nanofluids 2019, 8, 1423–1432.
[CrossRef]

47. Wang, Y.; Waqas, H.; Tahir, M.; Imran, M.; Jung, C.Y. Effective Prandtl aspects on bio-convective thermally
developed magnetized tangent hyperbolic nanoliquid with gyrotactic microorganisms and second order
velocity slip. IEEE Access 2019, 7, 130008–130023. [CrossRef]

48. Tlili, I.; Waqas, H.; Almaneea, A.; Khan, S.U.; Imran, M. Activation energy and second order slip in
bioconvection of Oldroyd-B nanofluid over a stretching cylinder: A proposed mathematical model. Processes
2019, 7, 914. [CrossRef]

49. Ullah, M.Z.; Jang, T.S. An efficient numerical scheme for analyzing bioconvection in von-Kármán flow of
third-grade nanofluid with motile microorganisms. Alex. Eng. J. 2020. [CrossRef]

50. Shahid, A.; Huang, H.; Bhatti, M.M.; Zhang, L.; Ellahi, R. Numerical investigation on the swimming of
gyrotactic microorganisms in nanofluids through porous medium over a stretched surface. Mathematics 2020,
8, 380. [CrossRef]

51. Asma, M.; Othman, W.A.M.; Muhammad, T. Numerical study for Darcy-Forchheimer flow of nanofluid due
to a rotating disk with binary chemical reaction and Arrhenius activation energy. Mathematics 2019, 7, 921.
[CrossRef]

52. Zhu, J.; Xu, Y.; Han, X. A non-Newtonian magnetohydrodynamics (MHD) nanofluid flow and heat transfer
with nonlinear slip and temperature jump. Mathematics 2019, 7, 1199. [CrossRef]

53. Waini, I.; Ishak, A.; Pop, I. Hybrid nanofluid flow past a permeable moving thin needle. Mathematics 2020,
8, 612. [CrossRef]

54. Waini, I.; Ishak, A.; Pop, I. Squeezed hybrid nanofluid flow over a permeable sensor surface. Mathematics
2020, 8, 898. [CrossRef]

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/pr7110859
http://dx.doi.org/10.1016/j.molliq.2019.111231
http://dx.doi.org/10.1166/jon.2019.1702
http://dx.doi.org/10.1109/ACCESS.2019.2940203
http://dx.doi.org/10.3390/pr7120914
http://dx.doi.org/10.1016/j.aej.2020.05.017
http://dx.doi.org/10.3390/math8030380
http://dx.doi.org/10.3390/math7100921
http://dx.doi.org/10.3390/math7121199
http://dx.doi.org/10.3390/math8040612
http://dx.doi.org/10.3390/math8060898
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Mathematical Formulation 
	Numerical Approach 
	Results and Discussion 
	Conclusions 
	References

