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Abstract: Job shop scheduling problem (JSSP) has high theoretical and practical significance in
academia and manufacturing respectively. Therefore, scholars in many different fields have been
attracted to study this problem, and many meta-heuristic algorithms have been proposed to solve
this problem. As a meta-heuristic algorithm, particle swarm optimization (PSO) has been used to
optimize many practical problems in industrial manufacturing. This paper proposes a hybrid PSO
enhanced with nonlinear inertia weight and and Gaussian mutation (NGPSO) to solve JSSP. Nonlinear
inertia weight improves local search capabilities of PSO, while Gaussian mutation strategy improves
the global search ability of NGPSO, which is beneficial to the population to maintain diversity and
reduce probability of the algorithm falling into the local optimal solution. The proposed NGPSO
algorithm is implemented to solve 62 benchmark instances of JSSP, and the experimental results are
compared with other algorithms. The results obtained by analyzing the experimental data show that
the algorithm is better than other comparison algorithms in solving JSSP.

Keywords: job shop scheduling problem; particle swarm optimization; Gaussian mutation; nonlinear
inertial weight

MSC: 90C59; 54A05

1. Introduction

Job Shop Scheduling Problem (JSSP) is a simplified model of many practical scheduling problems,
including aircraft carrier scheduling, airport dispatching, high-speed rail scheduling, automobile
pipeline, etc. Therefor, JSSP has high theoretical significance and practical significance. JSSP studies
how to process n jobs on m machines to optimize the processing performance. In order to optimize
the processing performance, it is necessary to determine the processing start moment or completion
moment or processing sequence of each job on each machine under the premise of meeting the process
constraints. The final processing time for all jobs is called makespan [1].

Similar to most discrete optimization problems, JSSP is also a type of strong NP-hard problem:s,
which have non-polynomial time complexity and complex solution space structure, and usually need to
adopt appropriate strategies to reduce the search range and problem complexity. Traditional operations
research methods solve problems by establishing mathematical models. The typical representatives of
such methods include branch and bound algorithm (BAB) [2], Lagrangian relaxation method (LR) [3],
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dynamic programming algorithm (DR) [4], etc. BAB is a kind of algorithm commonly used to solve
integer programming problems, which belongs to enumeration method. In the process of solving
problems, BAB uses a mechanism that gives the upper and lower search limits of the solution to
exclude solutions that are not between the upper and lower limits, thereby reducing the dimensionality
of the subset of solutions to be selected and finding the target value more quickly. Experimental results
show that the BAB is effective in solving small-scale scheduling problems, but the calculation time is
often too long in solving large-scale problems. In the LR, when solving problems, some constraints of
problems are relaxed appropriately to simplify the original problem, and then the optimal solution
or approximate solution can be obtained by updating the Lagrangian operator. The DP algorithm
decomposes the problem to be solved into several sub-problems, it first solves the sub-problems,
and then obtains the solution of the original problem from the solution of these sub-problems.
Generally, the above methods are effective only when solving small-scale problems, and have strong
dependence on the problem to be solved, and are not suitable for solving actual production problems.
However, heuristic algorithm can get the approximate optimum or optimum in acceptable time, which
mainly includes two categories: constructive heuristic algorithms and meta-heuristic algorithms.
Although the constructive heuristic algorithms can find the solution of the problem in the solution
space, it depends on local information of the scheduling problem, and the solution obtained is generally
the local optimal solution; meta-heuristic algorithms is a type of optimization algorithm that is inspired
by natural principles and formulaically describes natural principles through computer language.
It can get the optimum or approximate optimum solution in an acceptable time, and it has become
a kind of practical and feasible algorithm for solving various scheduling problems. Meta-heuristic
algorithms mainly include: artificial bee colony algorithm (ABC) [5,6] clonal selection algorithms
(CSA) [7,8], simulated annealing algorithm (SA) [9], genetic algorithm (GA) [10-13], bat algorithm
(BA) [14], whale optimization algorithm (WOA) [15], biogeography based optimization algorithm
(BBO) [16,17], particle swarm optimization algorithm (PSO) [18-20], differential evolution algorithm
(DE) [21], ant colony optimization algorithm (ACO) [22,23], etc.

To obtain good performance, a meta-heuristic algorithm needs to find some strategies to balance
the local search capability (exploitation) and global search capability (exploration) of the algorithm [24].
The advantage of meta-heuristic algorithms is that it can combine the both in an optimal way in
theory. However, when solving practical problems, the population size cannot reach the infinite
in theory, and the fitness function cannot fully reflect the real adaptability of individuals, and the
behavior of individuals can not perfectly reproduce the intelligence of individuals in nature, the above
factors limit the performance of algorithms. Therefore, it has become a hot issue in the field of
meta-heuristic algorithm research to more effectively balance exploration and exploitation by mixing
different strategies in the algorithm. In recent years, many hybrid meta-heuristic algorithms have
been used to solve JSSP. Wang and Duan [25] introduced chaos theory into the biogeographical
optimization algorithm (BBO) to improve stability and accelerate convergence rate of the algorithm.
Lu and Jiang [26] divided the bat optimization algorithm (BA) into two subpopulation, and added
parallel search mechanism, communication strategy, and improved population discrete update method
in the algorithm to solve the low-carbon JSSP. Rohainejad et al. [27] combined firefly algorithm (FA)
and tabu search alogorithm (TS), which effectively reduced the overtime cost in JSSP, and made the
algorithm more robust. Babukartik et al. [28] added the search strategy of the cuckoo algorithm (COA)
into the ACO to improve the exploitation the efficiency of the algorithm for solving JSSP. Yu et al. [29]
added a disturbance mechanism on the basis of DE and chaos theory to reduce the possibility of
premature convergence of the teaching-learning-based optimization algorithm (TLB). Lu et al. [30]
improved the social hierarchy and genetic factors of the multi-target gray wolf optimization algorithm
(GWO) to enhance exploration and exploitation, thereby improving the efficiency in solving the
dynamic JSSP. Min Liu et al. [31] added the Levy flight and DE into the WOA for solving JSSP. The Levy
flight strategy enhanced the global search capability and convergence rate. The DE to enhance the
local optimization capability of the algorithm and to keep the diversity of the scheduling scheme to
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prevent the algorithm from premature convergence. Nirmala Sharma et al. [32] improved the iterative
formula for onlooker bees in ABC to solve JSSP. Xueni Qiu et al. [33] combined artificial immune system
(AIS) theory and PSO to solve the JSSP. The algorithm adopts clone selection and immune network
theories to simulate the basic processes of immunity, cloning, hypermutation, antibody selection, etc.,
while using the PSO to accelerate the search process. Atiya Masood et al. [34] proposed a hybrid
genetic algorithm to solve the multi-objective JSSP. Adel Dabah et al. [35] added a parallel strategy to
the tabu search algorithm (TS) to improve the capability of the TS to solve the problem of blocking
JSSP. Hong Lu and Yang Jing [36] proposed a new PSO based on the clonal selection theory to avoid
premature convergence. R.E. Abdel-Kade [37] introduced two neighborhood-based operators in the
PSO to improve the diversity of the population for solving JSSP. The diversity operator improves
population diversity by repositioning neighboring particles, and the local search operator performs
local optimization on neighboring regions. T.-K.Dao et al. [38] proposed a parallel BA with mixed
communication strategy for solving JSSP. Each subpopulation of the algorithm is associated with each
other through communication strategy and shares the computing load on the processor. The algorithm
has excellent accuracy and convergence rate. Tianhua Jiang et al. [39] proposed an hybrid WOA for
solving the energy-efficient JSSP.

More and more hybrid meta-heuristic algorithms and are used to solve]SSP [31]. However,
the above algorithms mainly overcome the shortcomings of algorithms by increasing the diversity
of the population, preventing algorithms from falling into the local optimal solution, and increasing
the stability of algorithms. Few scholars analyze the performance of the algorithm from the
perspective of balancing the global search capability and local search capability of the algorithm. In fact,
the performance of meta-heuristic algorithm largely depends on whether the global search capability
and local search capability of the algorithm can be effectively balanced. Furthermore, the two strategies
we integrated, including Gaussian mutation and nonlinear inertia weighting strategy, are common
analysis strategies when viewed separately. However, when Gaussian mutation and nonlinear
programming are integrated together, it shows the superiority of the integration strategy in expanding
the scale of individual variation and ensuring the stability of individual scale. From the perspective
of the stability of individual evolution, the advantages of integration strategies are more obvious in
the later stages of individual evolution. The spatial dissipation of individual populations gradually
slows down, the internal energy entropy gradually decreases, the trend of population convergence
is more stable, and the evolution of individuals gradually stabilizes. Therefore, in this research,
it is important to balance the global search and local search capabilities of the algorithm through
different strategies to overcome the shortcomings of PSO. Similar to other meta-heuristic population
intelligence algorithms (PIA), PSO is an innovative global optimization algorithm first proposed by
Dr. Kennedy and Dr. Eberhart in 1995 [40]. Compared with other PIA, PSO has a simple concept,
few parameters and fast convergence rate. Therefore, the particle swarm algorithm has become a
very successful algorithm and has been used to optimize various practical problems. The unique
information exchange and learning methods of PSO makes the movement of the whole population in
the same direction, which endows the PSO with strong search performance and high adaptability to
optimization problems. Meanwhile, the PSO algorithm has a strong exploitation but its exploration
is very poor [41-45]. Exploitation and exploration are local optimization capability and global
optimization capability of algorithms respectively. If a meta-heuristic algorithm is to have good
search performance, it should be able to effectively balance exploitation and exploration in the iterative
process of the algorithm. Similar to other random algorithms, PSO also has shortcomings: when the
initial solution is far away from the global optimal solution, PSO often appears premature convergence
and local stagnation. In order to overcome the above shortcomings of PSO, it is necessary to introduce
some strategies to effectively balance exploitation and exploration. This paper proposes a hybrid PSO
enhanced by nonlinear inertia weight and Gaussian mutation (NGPSO) to solve JSSP. In the exploration
stage, PSO mixes Gaussian mutation to improve the global search capability of the algorithm. In the
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exploration stage, the nonlinear inertia weight is used to improve the change rules of population to
improve the local optimization performance.

The rest of this paper is structured as follows: Section 2 introduces the basic PSO algorithm.
Section 3 describes the proposed NGPSO algorithm, and analyzes the reason why the nonlinear inertial
weight operator and Gaussian mutation strategy are merged into the PSO. Section 4 introduces the
application of NGPSO in the JSSP. Section 5 analyzes the experimental results of NGPSO in solving
JSSP benchmark instances. Finally, Section 6 gives a brief summary and outlook for future work.

2. An Overview of the PSO

For a long time, population intelligence and evolutionary algorithms have attracted scholars in
various research fields. Researchers can derive inspiration from the behavior of biological populations
in nature or the laws of biological evolution to design algorithms [46]. As one of many swarm
intelligence algorithms, PSO has been proven effective in various optimization fields [47-52].

PSO is an innovative global optimization algorithm first proposed by Dr. Kennedy and Dr. Eberhart
in 1995 [39,53]. It conducts a collaborative global search by simulating the foraging behavior of
biological populations such as birds and fish [54]. The PSO algorithm can enhance the information
exchange between in the population individuals by exchanging learning information, and then promote
the evolution direction of the population to be consistent. This mode of information exchange resulting
from population individuals gives the PSO algorithm a strong search capability and a higher degree of
adaptability to optimization problems. In a d-dimensional solution space [55], a particle i includes
two vectors: one is a speed vector V; = (vj1,02,053, -+ ,0i4), and the other is a position vector
X; = (%1, X2, X3, - - - , Xjq) [56]. Each individual in the population will iterate through two formulas.
The particle speed and position update formula is as follows:

t+1

v = woly + crrig(pbestly — xiy) + caraq(gbestiy — xjy) 1)

t+1 ot t+1
Xig = Xig+ 0y )

where, w is the inertia weight, which is an important parameter affecting the search performance
of the algorithm [57], its value indicates the amount of particles inheriting the current individual
speed. c1 and c; are called acceleration factors, c; is called cognitive coefficient, which represents the
self cognitive experience of particles, c; is called social coefficient, which represents the capability of
particles to learn from the current global optimal solution; rq and ; are two independent random
numbers with sizes between [0, 1] [37]; pbest;; is the extreme value of particle i in the d-th dimension,
gbest;; is the global extremum of all particles in the d-th dimension.

3. NGPSO Algorithm

The performance of the hybrid meta-heuristic optimization algorithm relies on the complementary
advantages of optimization strategies, that is, some strategies have better local search capabilities,
and the other strategies have better global search capabilities. As a verification index describing
the performance of individual iterations in swarm intelligence algorithms, how to improve both
the local optimization and global optimization capabilities of the algorithm has become the key to
improving the performance of the algorithm [58-61]. From the perspective of the iterative process of
the algorithm, the global search capability is essentially the full-area search level determined by the
iterative individual’s breadth-first principle, which shows that the algorithm can search a larger area
in the solution space to obtain a better solution [62]. On the other hand, the local search capability
is essentially the sub-area search level determined by the iterative individual’s depth-first principle,
which can use the searched area to improve the problem solution, prevent the algorithm from falling
into a stagnation state, and provide the possibility for the algorithm to continue to iterate in the search
area and finally obtain a high-precision optimal solution. Therefore, balancing the full-area search
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level and the sub-area search level becomes the key to optimize the search capability and alleviate the
premature convergence of the algorithm.

3.1. Nonlinear Inertia Weight Improves the Local Search Capability of PSO (PSO-NIW)

PSO is a very successful algorithm, often applied for solving various practical problems.
Nevertheless, similar to other optimization algorithms, PSO also has shortcomings [63], we need
to adopt appropriate strategies to improve its shortcomings. The inertial weight w, as a learning level
and distribution proportion for balancing particle behavior, indicates the degree of influence of the
pre-particle speed on the current particle speed, and determines the search ability of the algorithm.
For this reason, we can choose a suitable inertia weight as the improvement strategy of the algorithm,
which can enhance the convergence rate and solution accuracy of PSO. At present, the linear decreasing
strategy of inertia weight is commonly used, also called linear adjustment w strategy [64]. In an actual
iteration process, w will show a linear decreasing trend as the number of individual iterations increases.
When considering the actual optimization problem, the global search is always used first to quickly
converge the population iteration space to a certain area, then to obtain high-precision solutions
through local search. The w update formula is as follows:

iter X (Wiax — Winin)
itermax

®)

W = Wmax —

where wy,5x and wy,;, are the maximum and minimum inertia weights respectively; iter and itery
are the current and maximum times of iterations respectively. Generally, the value of w is initialized to
0.9 and then linearly decreased to 0.4, which will get better results. However, the search process for the
solution of the problem in practical problems is often non-linear. Therefore, the linearly decreasing
strategy of inertia weight is not suitable for solving practical problems. Therefore, in this paper,
a nonlinear inertia weight adjustment curve is used to adjust w, as shown in Equation (4):

iter X (Wmax — Wi . iter - 7T
W = Wmax — ( mm) X sm(i‘
itermax 2 - itermax

(4)

3.2. Gauss Mutation Operation Improves the Global Search Capability of PSO (PSO-GM)

Gaussian distribution, also called normal distribution, is usually expressed as N(j, (72), where
# and 02 is mean value and standard deviation respectively, and the Gaussian distribution has 3 — ¢
rules, that is, The random numbers generated according to Gaussian distribution [65] have 68%, 95%
and 99.7% probability fall into the intervals of [y — o, i + o], [ — 20, u + 20| and [y — 30, u + 30},
respectively. From the point of view of population energy, Gaussian variation can be considered
as a kind of energy dissipation [66]. Because the diversity of population increases, the entropy of
population becomes higher, which reduces the energy of population and makes the population have
higher stability and adaptability. The Gaussian 3 — ¢ distribution rule provides a good mathematical
theoretical support for optimizing the distribution of individuals in the solution space. If the variable
x follows Gaussian distribution, the probability density function of the random variable x is shown
in Equation (5):

_ 1 (x—p)?
f(X) - U\/EEXP[_ 202 } (5)

The Gaussian distribution function of the random variable x is as follows [67]:

_ 1 G s
(P(x) - o_mexp[[w - 202 dt] (6)

Gaussian mutation is a mutation strategy composed of random disturbances generated
by Gaussian distribution based on the original individual. In this paper, the d-dimensional
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Gaussian mutation operator is N; = (n;1,nj0, 13, -+ ,nig), and N; = (nj, 1,153, - -, 1iy) follows
the standard Gaussian distribution N(y,0?). Gaussian mutation of d-dimensional individual
P; = (pi, Pio, Pi3, - - - » Pia) can be expressed as follows:

P{:Pi—FPi'Ni (7)

where P; - N; = (pi X nj1, pin X Njp, piz X nj3,- -+, Pia X Nig), P is the individual after Gaussian
mutation. Then we use the greedy selection strategy to prevent the algorithm population from
degenerating, the specific operations are as follows:

P;, otherwise.

P { By 1f fit(F) > fit(P); @

3.3. The Main Process of NGPSO

The main process of the proposed hybrid NGPSO is given below:

Step 1: Initialize the population and related parameters, including the population size and
algorithm termination conditions;

Step 2: Initialize the speed and position of the particles, and record the pbest and gbest;

Step 3: Update the position and speed of all individuals according to the individual speed update
Equation (1) and position update Equation (2) in the PSO;

Step 4: In sequence to prevent the algorithm from premature convergence, the Gaussian mutation
is performed on individual individuals to generate new populations;

Step 5: Re-evaluate the adaptability of individuals in the new population. If the fitness of the new
individual is better than that of the previous generation, replace the previous generation with the new
individual, otherwise the original individual will not be changed;

Step 6: Update pbest and gbest;

Step 7: Judge whether the algorithm reaches the termination condition, if the individual iteration
accuracy reaches the termination condition, then end the algorithm, otherwise execute Step 3.

4. NGPSO for JSSP

4.1. The ]SSP Model

JSSP is a simplified model of various practical scheduling problems. It is currently the most
widely studied type of scheduling problem. JSSP description: There are m machines in a processing
system, which are required to process 7 jobs, and each job contains k processes. the processing time of
each process has been determined, and each job must be processed in the order of the process, the task
of scheduling is to arrange the processing scheduling sequence of all jobs, so that the performance
indicators are optimized under the premise of satisfying the constraints [68]. A common mathematical
description of the n/m/Cmax (wWhere Cmax is the maximum completion time, called makespan [69])
scheduling problem is as follows [70]:

min max { max c; 9
1§k§m{1§i§n 1k} ( )

s.t. Cik_pik+M(1 _aihk) 2 Cihri = 1/21' t /n;h/k: 1/2/" s, m;
C]k_Clk+M(1 _xl]k) 2 pl]/Z: 1/2/"' /n;k: 1/2/"' ,m;
cxy>0,i=12,--- ,m;k=1,2,---,m;

X =00rL;i,j =12, ,mk=12--,m.

(10)

where Equation (9) is the objective function; Equation (10) are the operation sequence of the jobs and
the processing machine determined by the constraints. Where cj; and pj are the completion time
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and processing time of the jobs i on the machine k; M is a sufficiently large real number; a;; and x;j
indicator factor and indicator variables, and their meaning is as follows [71,72]:

o 1,1f machine h processes job i before machine k, (1)
ihk 0, otherwise.

N 1,1f job i is processed on machine k before job j, (12)
ifk = 0, otherwise.

In addition, the disjunctive graph is also an important tool for describing JSSP. For the JSSP
of n x m (N operations), the corresponding disjunctive graph G = (V, A, E) is shown in Figure 1.
Where V is the vertex set formed by all operations, including two virtual operations of 0 and N + 1
(0 and N + 1 are the two states of the beginning and the end for processing jobs); A is an edge set
consisting of n sub-edges, the sub-edge formed by the solid line part is the processing path of a job on
all machines from the beginning to the end according to the constraints; E is the arc set composed of m
sub-edges, the sub-arc formed by the dotted line indicates the connection of the processing operations
on the same machine. If the maximum completion time is considered as an indicator, the solution
of JSSP will be transformed into a set of sequences (that is, trends) for each operation on the arc
(that is, the machine) as a priority decision. When several operations conflict on the same machine,
the above-mentioned jobs processing sequence will determine the sequence of operations. In the end
we will get a conflict-free directed acyclic graph about machine operation, the critical path length in
machine operation is makespan.

(1) The coding of the scheduling solution is complex and diverse, and the search method of the
algorithm is also diverse;

(2) The solution space is more complicated. The JSSP problem of n workpieces and m machines
contains (n!)™ kinds of arrangements;

(3) There are limitations of technical constraints, and the feasibility of the solution needs to
be considered;

(4) The calculation of scheduling indicators is longer than the search time of the algorithm;

(5) The optimization hypersurface lacks structural information. The solution space of the JSSP
problem is usually complicated, and there are multiple minimum values with irregular distribution.

Figure 1. Disjunctive graph of 3 jobs and 3 machines JSSP.

4.2. Analysis of the Main Process of the NGPSO in Solving JSSP

When the NGPSO algorithm described in this section solves the JSSP problem, the analysis of its
solution space is essentially a combinatorial optimization problem(COP). How to achieve the exact
solution of the algorithm in the search space is the key to solving this problem. In sequence to make
the NGPSO algorithm to better solve the COP, the evaluation of each solution in the solution space
needs to be determined by the sequence of the NGPSO. As the individual discretization strategy,
the heuristic rule of smallest position value (SPV) can transform continuous optimization problems
into discrete optimization problems. At this time, the NGPSO algorithm can be reasonably used to
solve COP [73]. Furthermore, the processing sequence of the jobs are determined by the discrete
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solution, so that obtain the makespan value. The position vector of the particles is not the scheduling
sequence, but due to the sequence relationship of the components in the position vector, and each
particle corresponds to a scheduling sequence(namely, a scheduling scheme), we can use SPV rules
to transform the continuous position vector into discrete scheduling sequence. Specifically, the SPV
rule transform a particle’s position vector X; = [x;1, x5, -+, Xj,| into a job scheduling sequence
J = [J1,J2,---,]n]. In the SPV rule, the n components of the individual position vector are first
sorted in the forward direction, the level of the smallest component is set to 1. Then, the remaining
components are sequentially set to 2, - - - , 11, so that the particle position vector is transformed into
a job scheduling sequence. To illustrate the SPV rules more specifically, Table 1 gives an instance of
transformations from continuous position vectors to discrete scheduling sequences. In this example,
the position vector is X; = [0.36,0.01,0.67,0.69,1.19,1.02]. In X;, xj; is the smallest value of the
components, and its level is set to 1; similarly, the x;; level is set to 2, and so on to deduce the level
of the remaining position components. In the following steps, we will explain the specific operation
process of SPV rules in detail.

Table 1. A simple examples of the SPV rule.

Dimension 1 2 3 4 5 6
position value 036 001 067 069 119 1.02
smallest position value 2 1 3 4 6 5

First phase: Algorithm initialization.

Set the initial parameters of the algorithm, including the inertia weight, the maximum number
of iterations, and the population size. In order to solve the discrete J[SSP problem, an individual
position vector is generated by a random function, and the randomized individual position vector is
mapped into a discrete scheduling sequence by SPV rules. The specific operation: the position vector is
converted into a one-to-one mapping sequence, then the position vector with the constraint mapping
sequence is decoded within the necessary processing time to generate an initial scheduling scheme.
Obviously, this decoding method can generate a suitable scheduling sequence. In the description of
job processing time and job scheduling sequence in the 3 x 3 JSSP listed in Table 2, one dimension is
a independent operation of a job. A schedule list is  x m independent operations, so the size of a
scheduling list is n x m. After individual initialization, the fitness of the individuals in the population
is calculated, and the makespan is used as the target value. Figure 2 shows the mapping process
between individual position variables and scheduling sequences. A job contains three operations,
so a job appears exactly 3 times in the scheduling list. Figure 3 shows a feasible scheduling scheme
generated from the scheduling list of Figure 2.

Component
postion vatne | 013054/ 0.23|-0.63(0.240.56 | 0.88 | 0.81 | 0.94
sort
-0.63(-0.54(0.13(0.23 | 0.24 ( 0.56 { 0.81 | 0.88 0.94)

SPV value | 4 2 1 3 5 6 8 7 9

operation
scheduling J2 J1 J1 J1 J2 J2 J3 J3 J3

list

Figure 2. The mapping between individual position vectors and scheduling sequences in the 3 x 3
JSSP problem.
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Table 2. Processing data of a 3 x 3 JSSP.

Operations Number

Projects Jobs
1 2 3
J1 3 3 2
operation time ]2 1 5 3
J3 3 2 3

J1 M1l M2 M3
machine sequence J2 M1l M3 M2
J3 M2 Ml M3

MI J2| J1 | 33 |

M2J3||J1|J2|

M3| b7 ||J1|J3|

1 7 9 12 Time

Figure 3. Scheduling scheme generated from the operation list in Figure 2.

Second phase: Update individual scheduling sequence

In this phase, as shown in Figure 4, each individual in the population updates the position through
Equations (1) and (2). The position coordinate of the current particles is formed by the pbest and gbest
in the population of the previous generation, which is a continuous vector [31]. Then a new scheduling
list is generated through SPV rules, as a new discrete vector, which can solve the JSSP. In the current
solution process, individuals are mainly searching randomly during the searching optimal solution,
and the nonlinear inertia weight can better reflect the nonlinear search process of the PSO, and can
improve the exploitation of the PSO. If the scheduling sequence corresponding to the current particle
individual is more adaptable than before, the local individual optimal value pbest of the original
individual will be replaced by the current individual position. If the fitness of the global extreme
point in the current population is higher than the global extreme point of the previous generation,
the current extreme point is used to replace the global extreme point gbest of the previous generation.

Operation schedutingtise | J2 | J1 | J1 [ J1 [ J2 [ J2 | J3 | J3 | J3

The current

particle individuat | Xil | Xi2 | Xiz | Xig | Xis | Xie | Xi7 [ Xig | Xig

A new position , , , , , , , , ,
vectorofcurrent | X 1 | X2 | X3 | Xig | Xis | Xi6 | Xi7 | Xis | Xio

particle individual

Component
e | 0.45(1.560.32{2.13 -0.12| 0.78 [ 0.89 | 1.25 -1.13
particle indivi

sort

-1.13|-0.12]0.32(0.45) 0.78 | 0.89 [ 1.25| 1.56 | 2.13

'SPV rule

Newoperation | y3 [ ya L y3 | J1 | J2 | I3 | I3 | J1 | 32

scheduling list

Figure 4. Update process of individual position vector.
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Third phase: Increase individual diversity

After the iteration of the previous stage, all iterative individuals have a tendency to move in the
same direction. Although this phenomenon contributes to the rapid convergence of the NGPSO,
it will reduce the population diversity. All particles will perform mutation operations through
Equations (6) and (7) to increase the diversity of the population to avoid the NGPSO from falling into
the local optimal solution prematurely and losing the global search capability. Select individuals in the
next generation population through greedy selection strategies. If the fitness of the new individual
after mutation is higher than that of the previous generation, the original particle will be replaced by
the new particle, otherwise the original particle will remain unchanged [74].

5. Experimental Results and Analysis

In this study, nonlinear inertia weights (NIW) and Gaussian mutation (GM) strategies are used to
improve the basic PSO. We will verify the effectiveness of the two strategies in solving the JSSP problem
by comparing the four algorithms PSO-NF, PSO-GM, and PSO. In total, 62 JSSP benchmark instances
from Dr. Ling Wang’s book: JSSP and Genetic Algorithms [75]. Including five ABZ benchmarks, this
type of problem was given by Adams in 1988, including two different scales of five classic problems,
where the scale of ABZ5 and ABZ6 is 10 x 10, and the scale of ABZ7, ABZ8 and ABZ9 is 20 x 15; three
FT benchmarks, this type of problem was put forward by Fisher and Thompson in 1963, including
three typical problems FT06, FT10 and FT20, with scales of 6 x 6, 10 x 10 and 20 x 5 respectively;
40 LA benchmarks, this type of question was given by Lawrence in 1984, named LA1 ~ LA40, and
divided into eight different scale questions, namely 10 x 5, 15 x 5,20 x 5, 10 x 10, 15 x 10, 20 x 10,
30 x 10, 15 x 15; 10 ORB benchmarks, this type of problem was given by Applegate in 1991, named
ORB1 ~ ORB10, with a scale of 10 x 10; and four YN benchmarks, This type of problem was put
forward by Yamada et al. in 1992, including four typical problems, called YN1 ~ YN4, with a scale of
20 x 20. Table 3 shows the results of 33 JSSP benchmark instances running 30 times on a computer
equipped with Windows 7 (64) system, 8 GB RAM, Intel Core i7, CPU 3.4 GHZ, and MATALAB
2017a. OVCK in Table 3 is the optimal value currently known, the best is the optimal value in 30 runs,
the optimal solution is marked in bold, and Avg is the average value in 30 runs. The following
conclusions can be drawn from the experimental results shown in Table 3: The NGPSO, PSO-NIW,
PSO-GM, and PSO algorithms obtained 26, 17, 21, and 14 optimal solutions from 33 benchmark
instances. In solving simple problems, the performance of the four algorithms is similar, but for
complex problems, the performance of the NGPSO algorithm is significantly better than the other
three algorithms. When comparing the average test results of the four algorithms for JSSP, the number
of optimal values obtained by the NGPSO algorithm is the largest number of 33 times in total, which
exceeds the number of optimal values obtained by other algorithms. In addition, in the numerical
experiment test, the population number is set to 100, the maximum number of iterations is set to 10, 000.

To further verify the effectiveness of the proposed NGPSO, the NGPSO is compared with
PSO1 [36], PSO2 [76], CSA, GA, DE, and ABC, where PSO1 algorithm is based on tabu search algorithm
(TS) and SA improved PSO. The TS makes the algorithm jump out of the local optimal value by
retrieving the tabu search table. The SA prevents the algorithm from falling into a local optimal value
with a certain probability. Combining local search and global search, PSO can achieve higher search
efficiency. PSO2 algorithm uses GA and SA to overcome the shortcomings of PSO. Where crossover
operation and mutation operation of GA can update the algorithm search area, SA can improve
the local search capability. Tables 4 and 5 describes the performance comparison between different
algorithms. OVCK in Tables 4 and 5 is the optimal value currently known, the best is the optimal value
in 30 runs, the optimal solution is marked in bold, The parameter settings of the four comparison
algorithms are as follows: the population size is 150, and the maximum number of iterations is 1000.
The following results can be obtained from Tables 4 and 5: (1) For the best value, the NGPSO algorithm
obtained 12 known optimal solutions in 29 benchmark instances, PSO1, PSO2, CSA, GA, DE, and ABC,
obtained eight, five, three, five, nine, and six known optimal solutions, respectively. (2) For the average
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value (Avg), the average value obtained by the NGPSO algorithm is smaller than other algorithms in
most instances.

Table 3. Comparison of NGPSO, PSO-NIW, PSO-GM, PSO.

NGPSO PSO-NIW PSO-GM PSO
Instance OVCK

Best Worst Avg Best Worst Avg Best Worst Avg Best Worst Avg
FT06 55 55 55 55 55 55 55 55 55 55 55 55 55
FT10 930 930 1056 955 930 1118 967 930 1073 959 932 1149 977
FT20 1165 1210 1311 1247 1178 1253 1249 1167 1313 1256 1180 1274 1261
LAl 666 666 666 666 666 666 666 666 666 666 666 666 666
LA2 655 655 655 655 655 655 655 655 655 655 655 655 655
LA3 597 597 676 635 597 680 539 609 679 646 624 690 653
LA4 590 590 622 609 613 646 627 604 635 618 627 678 634
LA5 593 593 593 593 593 593 593 593 593 593 593 593 593
LA6 926 926 926 926 926 926 926 926 926 926 926 926 926
LA7 890 890 890 890 890 890 890 890 890 890 890 890 890
LA8 863 863 863 863 863 863 863 863 863 863 863 863 863
LA9 951 951 951 951 951 951 951 951 951 951 951 951 951
LA10 958 958 997 969 963 1053 998 958 1022 988 958 1069 999
LA11 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222 1222
LA12 1039 1039 1039 1039 1039 1039 1039 1039 1039 1039 1039 1039 1039
LA13 1150 1150 1150 1150 1150 1150 1150 1150 1150 1150 1150 1150 1150
LA14 1292 1292 1292 1292 1292 1292 1292 1292 1292 1292 1292 1292 1292
LA15 1207 1207 1207 1207 1207 1207 1207 1207 1207 1207 1207 1207 1207
LAl6 945 945 945 945 945 992 978 945 972 956 962 994 980
LA17 784 794 803 798 811 878 849 784 866 833 822 879 836
LA18 848 848 999 913 848 1033 924 848 1054 933 857 1088 957
LA19 842 842 1032 905 889 1087 923 878 1073 933 891 1131 946
LA20 902 908 1228 965 1113 1342 1127 1009 1304 1130 1152 1385 1223
LA21 1046 1183 1271 1208 1190 1318 1224 1046 1324 1230 1201 1398 1244
LA22 927 927 989 966 936 1014 979 927 1112 982 957 1194 992
LA23 1032 1032 1245 1123 1109 1299 1203 1097 1283 1196 1100 1307 1208
LA24 935 968 1153 983 998 1184 1076 935 1166 1047 1003 1182 1089
LA25 977 977 1089 994 987 1145 1018 980 1129 1007 991 1211 1014
LA26 1218 1218 1443 1311 1233 1489 1383 1226 1442 1362 1287 1459 1399
LA27 1235 1394 1476 1412 1423 1499 1445 1403 1478 1431 1396 1503 1477
LA28 1216 1216 1440 1381 1230 1457 1390 1219 1444 1387 1290 1445 1379
LA29 1152 1280 1397 1304 1310 1429 1339 1344 1450 1410 1339 1557 1412
LA30 1355 1335 1567 1417 1404 1620 1503 1396 1592 1500 1428 1701 1511

In this table, the bold text in the OVCK column means is the optimal value currently known.The bold text in
the Best column indicates that the algorithm found OVKC. For the convenience of comparison, it is marked in
bold here.

In order to evaluate the performance of NPSO more intuitively, the convergence curve of the

algorithms used for comparison in solving the ABZ6 instance is shown in Figure 5, where the vertical
axis is makespan, and the horizontal axis is the number of iterations. It can be observed from the
convergence images of Figure 5a,b that the convergence rate of NGPSO is slower than other comparison
algorithms in the early stage of algorithm iteration, this shows that the algorithm has stronger global
search capability than other comparison algorithms in the early stage of iteration, and the algorithm is
not easy to fall into the local optimal solution in the early stage. In addition the NGPSO algorithm still
maintains a strong search capability in the later period of the algorithm iteration. From the perspective
of the entire iterative process, the global search capabilities and local search capabilities of NGPSO
algorithm have been effectively balanced, which shows that the introduction of NIW and GM into PSO
can effectively improve PSO, and is more suitable for solving JSSP than other comparison algorithms.
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Table 4. Comparison of NGPSO, PSO1, PSO2, CSA.
NGPSO PSO1 PSO2 CSA
Instance OVCK

Best Worst Avg Best Worst Avg Best Worst Avg Best Worst Avg

ABZ5 1234 1234 1457 1311 1234 1466 1323 1287 1487 1344 1234 1583 1447
ABZ6 943 943 1219 1093 943 1223 1137 954 1235 1120 1004 1284 1121
ABZ7 656 713 997 862 689 1087 901 664 1176 925 985 1329 1150
ABZ8 665 729 1298 1031 819 1470 1285 927 1483 1232 1199 1589 1337
ABZ9 679 930 1015 976 985 1024 990 958 1016 982 1008 1079 1034
ORB1 1059 1174 1297 1226 1214 1317 1276 1177 1282 1235 1232 1374 1353
ORB2 888 913 1038 957 969 1074 989 943 1010 970 1022 1114 1070
ORB3 1005 1104 1243 1172 1144 1265 1181 1166 1270 1192 1228 1295 1267
ORB4 1005 1005 1163 1140 1005 1182 1066 1016 1167 1078 1046 1211 1132
ORB5 887 887 1002 987 887 1028 994 913 1013 988 877 1092 997
ORB6 1010 1124 1203 1170 1187 1245 1221 1171 1247 1213 1191 1265 1222
ORB7 397 397 464 440 435 468 447 397 468 441 458 482 460
ORB8 899 1020 1106 1054 1018 1163 1056 899 1155 1080 1073 1173 1085
ORB9 934 980 1128 1032 1012 1139 1043 1021 1154 1042 1011 1150 1032
ORB10 944 1027 1157 1048 1040 1143 1067 1036 1154 1063 944 1204 1097
LA31 1784 1784 2143 1972 1784 2149 1986 1849 2156 1961 1872 2212 2057
LA32 1850 1850 2202 1987 1850 2237 1996 1944 2248 2002 1982 2397 2123
LA33 1719 1719 2001 1894 1719 2035 1907 1719 2022 1897 1829 2155 1956
LA34 1721 1721 2060 1939 1878 2147 1963 1721 2126 1955 2060 2304 2187
LA35 1888 1888 2212 1986 1888 2271 2010 1930 2308 2039 1918 2431 2181
LA36 1268 1408 1665 1523 1396 1691 1545 1415 1703 1562 1511 1775 1660
LA37 1397 1515 1693 1560 1524 1792 1623 1551 1787 1635 1613 1805 1743
LA38 1196 1196 1596 1388 1332 1781 1569 1198 1610 1454 1483 1708 1624
LA39 1233 1662 1799 1701 1712 1725 1718 1711 1825 1748 1731 1833 1768
LA40 1222 1222 1537 1413 1289 1583 1425 1244 1615 1423 1453 1661 1528
YN1 888 1248 1346 1291 1303 1411 1346 1259 1395 1289 1291 1426 1318
YN2 909 911 1208 1102 927 1198 1109 932 1226 1117 1042 1318 1207
YN3 893 893 1376 1189 903 1344 1201 893 1457 1255 1003 1487 1311
YN4 968 984 1299 1106 979 1376 1137 1008 1410 1124 1153 1677 1329

In this table, the bold text in the OVCK column means is the optimal value currently known.The bold text in
the Best column indicates that the algorithm found OVKC. For the convenience of comparison, it is marked in
bold here.
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Figure 5. Objective functions convergence curves (Subgraphs a, b respectively represent the convergence

curves of different comparison algorithms when solving ABZ6.) (a) Comparison of NGPSO, PSO1,
PSO2, CSA in ABZ6; (b) Comparison of NGPSO, GA, DE, ABC in ABZ6.
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Table 5. Comparison ofNGPSO, GA, DE, ABC.

NGPSO GA DE ABC
Best Worst Avg Best Worst Avg Best Worst Avg Best Worst Avg

ABZ5 1234 1234 1457 1311 1234 1460 1336 1234 1465 1347 1236 1572 1443
ABZ6 943 943 1219 1093 954 1247 1142 948 1179 1103 992 1285 1138
ABZ7 656 713 997 862 729 1128 927 720 1166 918 973 1239 1106
ABZ8 665 729 1298 1031 805 1386 1242 822 1384 1165 748 1314 1137
ABZ9 679 930 1015 976 988 1124 1003 926 1023 988 944 1052 989
ORB1 1059 1174 1297 1226 1210 1348 1296 1191 1302 1244 1213 1320 1306
ORB2 888 913 1038 957 958 1064 997 932 1125 965 947 1096 988
ORB3 1005 1104 1243 1172 1136 1273 1201 1154 1281 1203 1228 1295 1267
ORB4 1005 1005 1163 1140 1005 1178 1057 1005 1183 1135 1005 1239 1142
ORB5 887 887 1002 987 913 1125 1006 887 1046 994 877 1092 1017
ORB6 1010 1124 1203 1170 1187 1349 1227 1171 1247 1213 1194 1277 1236
ORB7 397 397 464 440 397 479 456 397 468 441 397 471 455
ORBS8 899 1020 1106 1054 1038 1188 1068 899 1149 1067 1043 1164 1076
ORB9 934 980 1128 1032 997 1158 1042 1003 1184 1055 1011 1150 1032
ORB10 944 1027 1157 1048 1024 1242 1107 1026 1163 1059 944 1164 1147
LA31 1784 1784 2143 1972 1784 2216 1978 1784 2177 1978 1784 2241 2078
LA32 1850 1850 2202 1987 1862 2249 2003 1935 2250 2013 1903 2344 2013
LA33 1719 1719 2001 1894 1786 2126 1923 1719 2103 1914 1749 2052 1948
LA34 1721 1721 2060 1939 1889 2155 1972 1721 2140 1953 1764 2054 1962
LA35 1888 1888 2212 1986 1888 2310 2015 1926 2319 2044 1902 2332 2135
LA36 1268 1408 1665 1523 1416 1631 1566 1423 1698 1557 1411 1765 1650
LA37 1397 1515 1693 1560 1549 1812 1647 1544 1767 1628 1524 1783 1646
LA38 1196 1196 1596 1388 1211 1682 1467 1214 1607 1450 1196 1609 1425
LA39 1233 1662 1799 1701 1677 1831 1782 1688 1845 1732 1681 1840 1746
LA40 1222 1222 1537 1413 1263 1602 1438 1255 1602 1431 1257 1610 1424

Instance OVCK

YN1 888 1248 1346 1291 1288 1430 1351 1260 1419 1292 1288 1419 1306
YN2 909 911 1208 1102 934 1201 1116 946 1240 1125 979 1253 1126
YN3 893 893 1376 1189 914 1355 1212 893 1387 1262 904 1422 1218
YN4 968 984 1299 1106 993 1384 1149 993 1426 1133 1082 1327 1129

In this table, the bold text in the OVCK column means is the optimal value currently known.The bold text in
the Best column indicates that the algorithm found OVKC. For the convenience of comparison, it is marked in
bold here.

6. Conclusions

This paper proposes the NGPSO algorithm to solve the JSSP problem. Nonlinear inertial weight
(NIW) and Gaussian mutation (GM) strategies are introduced to basic PSO, where NIW is used
to improve the local exploration of the NGPSO algorithm, the GM is used to improve the global
exploration and maintain the population diversity of the NGPSO. In other words, NIW and GM have
jointly improved the exploitation and exploration of PSO. In order to verify the effectiveness of the
introduced strategies, firstly, the proposed NGPSO is used to solve 33 JSSP benchmark instances. It can
be concluded that the proposed strategies can improve the performance of the PSO in solving JSSP
problems. In addition, compared with PSO1, PSO2 in published papers and basic CSA, the proposed
NGPSO algorithm can achieve better results than the comparison algorithm. On the whole, NGPSO can
effectively solve the JSSP. In the future, the algorithm needs to be further applied to other scheduling
problems, such as flexible job shop scheduling problem. In addition, the algorithm needs more rigorous
formal proof, such as the convergence analysis of the algorithm.
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