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Abstract: Supply chain management models integrate upstream and downstream organizations to
enable rapid response to consumer needs. For the manufacturing industry, the process quality of
suppliers is thus the foundation of sustainable growth for firms and an important indicator of whether
a firm can effectively reduce waste and protect the environment. To this end, this paper proposes
a model of supplier selection for manufacturers based on process quality assessment. First of all,
Six Sigma quality index Qpk is adopted as the assessment tool to conveniently measure the quality
level of process. Practical applications require estimates of Qpk from the data collected to analyze the
process quality of each supplier. The fact that uncertainty is unavoidable in the collected data means
that using the crisp estimate of Qpk can lead to misjudgment of the process quality. To enhance the

reliability of evaluation and reduce the risk of misjudgment, the fuzzy number ˜̂Qpk is proposed to
perform the fuzzy testing of two indices Qpk provided by suppliers with the intent of making reliable
decisions on supplier selection.

Keywords: Six Sigma quality index; process quality; fuzzy number; fuzzy testing; supplier selection

1. Introduction

Due to globalization, firms have been developing technologies and products with large markets
and high added value based on industry differences and similarities as well as the potentially massive
demands of future markets to satisfy the requirements of various consumers and achieve sustainable
development. To maintain industrial competitiveness, firms must continually enhance their technical
capabilities, improve product quality, shorten lead time, and cut down costs. They must also maintain
flexible production processes and respond quickly to changes in the market. These capabilities
are well supported by supply chain management models that integrate upstream and downstream
organizations. The growing prevalence of these intercorporation business models have led to the
introduction of strategic alliances in which profits are shared with supply chain members so as to
enable rapid response to consumer needs.

A good supply chain requires coordination among many cooperating organizations, among
which material suppliers or service providers have the closest relationship with firms. When a firm
is allied with a good supplier, it can obtain the support of outsourced services and even increase the
competitiveness of the entire industry chain. In contrast, working with a supplier performing poorly
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may result in inconsistent product quality and delayed deliveries, thereby causing the firm to lose its
competitive advantage in the market. Current trends in business development have made supplier
quality vital to a firm’s operational success. The development of an objective supplier selection model
therefore represents a valuable contribution to the field.

As time goes on, changes in corporate competitive models, production strategies, and industry
characteristics mean the factors that firms take into consideration in supplier selection and their relevant
weights also change. In existing literature regarding supplier selection, the three attributes frequently
employed to evaluate suppliers are quality, cost price, and delivery [1–5]. However, as Kellner et al. [6]
pointed out, supplier selection usually involves multiple criteria, and criteria often conflict with each
other. For instance, lower procurement costs may mean inconsistent quality with respect to components
and parts. This may affect the firm’s processing performance and product quality. Chen and Chen [7]
indicated that shortening the lead time may also affect product quality. As a result, firms should
endeavor to maintain or enhance product quality as their primary objective with the prerequisite of not
delaying the lead time. Furthermore, the most important attribute for a firm in evaluating the optimal
supplier is to have quality [8–10] as their primary consideration in supplier selection. By comparison,
high process quality and good service are the most important attributes for strategic partners.

On the other hand, increasing awareness of the need for environmental protection and sustainable
development has also placed the environmental impact of products under scrutiny. Many nations and
firms have thus been advocating for a circular economy in recent years. This entails dismantling the
conventional linear economy in favor of industry models that circulate resources. In the industrial
production and consumption system of a linear economy, resources undergo the process of take, make,
use, and dispose. This means that many resources are only used once before they are considered devoid
of usefulness and value. In contrast, a circular economy emphasizes the full utilization of resources to
eliminate waste. This increases resource utilization efficiency and strikes a balance between the needs
of the economy and the environment. Clearly, the implementation of a circular economy contributes
to minimizing pollution in production and consumption as well as turning waste into resources or
nonhazardous waste.

Increasing environmental awareness has solidified the place of the 4Rs in the production and
supply systems of firms in pursuit of sustainable development. To attain the production requirements
of this trend, increasing the process quality of products is a crucial implementation strategy. Increasing
process quality reduces scrap and rework rates of production (reduce), increases product availability
and thereby increases the proportion of products that are reused (reuse), and ensures the quality of
all product components, which not only enhances their recovery rate (recover) but also increases the
likelihood of their transformation into new products (recycle). Thus, quality improvement in processes
can effectively assist firms in striking a balance between the needs of the economy and the environment
to attain sustainable development. Ahujaet and Khamba [11] and Cornuel [12] also indicated that
quality enhancement has become a trend in organizational operation and management as well as a
critical factor of sustainable development. From the above, we can see that the process quality of
products is the foundation of corporate survival and an important indicator of whether a firm can
protect the environment by reducing waste. Thus, this paper proposes a model for optimal supplier
selection based on process quality from the perspective of a circular economy.

In view of the fact that the value of Six Sigma quality index (SSQI) Qpk represents the achieved
quality level for a process of interest, we used it to assess the process quality provided by suppliers.
In practice, the Qpk value must be calculated using the collected sample data. This increases uncertainty
assessment due to sampling error. Consequently, using point estimates Q̂pk for index calculation
may procure inaccuracy in assessing the process quality provided by a supplier. For this reason, we
attempted to derive the 100(1− α)% confidence interval (CI) of Qpk and applied this in development
of a supplier selection model aimed at long-term collaboration. On the other hand, the inherent
uncertainty in the collected data is unavoidable. Therefore, the approach with crisp estimate of Qpk is
not suitable for use in the quality assessment of a supplier. To enhance the reliability of evaluation
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and reduce the risk of miscalculation, we proposed a triangular-shaped fuzzy number (TFN) of
Q̂pk and further developed a fuzzy model of selecting a supplier with the intent of making reliable
selection decisions for optimal supplier selection. Thus, in addition to ensuring that the products
produced by firms satisfy the needs of the end customer, the proposed model can also lead firms
toward sustainable development.

The structure of this paper is as follows. In Section 2, the SSQI Qpk corresponding to assessing the
quality level of each process characteristic is given. Section 3 presents the derivation of 100(1− α)%
confidence intervals for Qpk. In Section 4, the fuzzy hypothesis testing for two indices Qpk is proposed
to select a supplier with consideration of data imprecision. An illustrative example is conducted in
Section 5 to demonstrate the applicability of the proposed fuzzy testing approach for supplier selection.
The conclusion and the summary of this paper are drawn in Section 6.

2. SSQI Qpk

A process capability index (PCI) uses numerical quantification to examine the relationship between
process performance and product specification. Many studies have used PCIs to judge whether a
given process reaches the ability or quality demanded by customers [13–20]. At present, Cpk is the
most frequently used PCI for manufacturing industries [21]. A general formula of Cpk is as follows:

Cpk = min
{

USL− µ
3σ

,
µ− LSL

3σ

}
(1)

where µ and σ denote the process mean and standard deviation of the process, respectively, and USL
and LSL represent the upper and lower specification limits, respectively. As indicated by Boyles [22],
the measurement index Cpk is defined by process yield. Under the assumptions that the process data

follows N
(
µ, σ2

)
, the relationship between process yield and Cpk is 2Φ

(
3Cpk

)
− 1 ≤ Yield% ≤ Φ

(
3Cpk

)
.

Clearly, process yield can be reflected fully by Cpk.
Six Sigma strategies introduced in the 1980s can identify and eliminate the causes of process defects

to enhance the quality of the output of a process [23–25]. Linderman et al. [26] observed that the quality
of a given process achieves the 6σ level when σ = d/6 and

∣∣∣µ− T
∣∣∣ ≤ 1.5σ, where d = (USL− LSL)/2.

This means that only when σ = d/k and
∣∣∣µ− T

∣∣∣ ≤ 1.5σ can the quality for a given process in question
be claimed to achieve the kσ level. Based on the above criteria, numerous researchers have conducted
studies on the relationship between quality level in Six Sigma and various PCIs to judge whether the
quality of a given process achieves the level required by customers [27–31]. Although these studies
effectively evaluated process quality level, their PCI values could only indicate the range of the achieved
quality level. To overcome this inconvenience in assessing the quality level, Chen et al. [32] proposed
the SSQI Qpk based on the concept of quality level in Six Sigma. A general formula of Qpk is as follows:

Qpk = min
{

USL− µ+ 1.5σ
σ

,
µ− LSL + 1.5σ

σ

}
(2)

Unfortunately, a single index value does not convey sufficient information. In the event that the
quality level corresponding to a quality characteristic does not meet the needs of customers, the Qpk
value cannot point toward the cause of poor performance or provide the manufacturer with reference
for improvement. In view of the fact that γ and δ can analyze the degrees of variance and shift in quality
characteristics, respectively, many researchers convert PCIs into both of their functions. This approach
can lead manufacturers to formulate targeted improvement measures [33–37]. γ and δ are the precision
and accuracy indices [38], respectively, defined as follows:

γ =
σ
d

and δ =
µ− T

d
(3)
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where T denotes the process target value. Clearly, in case the quality of a given process achieves the kσ
level, Equation (3) can be re-expressed based on the previous point as follows:

γ =
σ
d
=

1
k

and |δ| =

∣∣∣µ− T
∣∣∣

d
≤

1.5
k

(4)

Thus, according to Equation (2), Qpk can be written as functions of γ and δ to more accurately
indicate the causes of poor process quality level:

Qpk = min
(

1− δ
γ

+ 1.5,
1 + δ
γ

+ 1.5
)
=


1−δ
γ + 1.5, for δ > 0

1
γ + 1.5, for δ = 0
1+δ
γ + 1.5, for δ < 0

(5)

From Equations (4) and (5), Qpk = k can be obtained. This means that the value k of Qpk equals the
kσ level achieved for the quality of an interested process. Thus, Qpk makes manufacturers conveniently
available to analyze the quality level and the cause of poor quality. Furthermore, Chen et al. [32]
indicated that Qpk has a one-to-one relationship Yield% ≥ 2Φ

(
Qpk − 1.5

)
− 1 with process yield. It is

relatively easy to see that a larger Qpk means better process performance and higher process yield.

3. Confidence Interval of Qpk

In practice, both σ and µ are definitely unknown population parameters. For this reason,
manufacturers need to estimate σ and µ from collected sample data and judge whether the quality
level corresponding to a quality characteristic achieves the required needs of customers. Without loss
of generality, we assumed that the quality characteristic X with two-sided specification limits follows
N

(
µ, σ2

)
. We can obtain n sample observations X1, X2, · · · , Xn via random sampling. Furthermore,

let Y = (X − T)/d, then Y ∼ N
(
δ,γ2

)
. The estimate of Qpk can be expressed as follows:

Q̂pk =


1−δ̂
γ̂ + 1.5, for δ̂ > 0

1
γ̂ + 1.5, for δ̂ = 0
1+δ̂
γ̂ + 1.5, for δ̂ < 0

(6)

where δ̂ =
(
X − T

)
/d = Y =

∑n
i=1 Yi/n, X =

∑n
i=1 Xi/n, γ̂ = s/d =

√∑n
i=1

(
Yi −Y

)2
/n,

s =

√∑n
i=1

(
Xi −X

)2
/n. Clearly, Q̂pk is the maximum likelihood estimate (MLE) of Qpk because

s2 and X are the MLEs of σ2 and µ, respectively.
However, the structure of the samples may not be exactly the same as that of the population,

which means that it is impossible to completely eliminate sampling error. Consequently, the estimated
value Q̂pk cannot be expected to be equal to the true value of Qpk. It is clear that using Q̂pk to judge the
quality level of a given process may lead to misjudgment. In contrast, the CI is a range that estimates
where the true population value lies. For this reason, many studies have employed the CI to judge
whether the quality of a given process achieves the level required by customers [39–44]. In view of this,
we derived the 100(1− α)% CI for Qpk to analyze whether the quality level of an interested process
meets the acceptable level. This approach effectively handles the uncertainty involved in process
quality assessment. We then used the CI to develop a supplier selection model.

First, let Z =
√

n
(
δ̂− δ

)
/γ and K = nγ̂2/γ2. Then, K and Z follow χ2

n−1 and N(0, 1), respectively,
under the assumption of normality. This implies P(Kl ≤ K ≤ Ku) = 1−α′ and P{−Zu ≤ Z ≤ Zu} = 1−α′,
where Zu denotes Zα′/2, and Kl and Ku denote χ2

α′/2,n−1 and χ2
1−(α′/2),n−1

, respectively. More specifically,

χ2
α′/2,n−1 denotes the lower α′/2 quantile of χ2

n−1, and Zα′/2 is the upper α′/2 quantile of N(0, 1),
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where α′ = 1−
√

1− α and α is the significance level. As δ̂ and γ̂2 are mutually independent, so are Z
and K. Based on this relationship, the following equation can be easily obtained:

P{Kl ≤ K ≤ Ku,−Zu ≤ Z ≤ Zu} = 1− α (7)

Equivalently,

P
{
γ̂

√
n

Ku
≤ γ ≤ γ̂

√
n
Kl

, δ̂−
γZu
√

n
≤ δ ≤ δ̂+

γZu
√

n

}
= 1− α (8)

The interval of δ,
[
δ̂−Zu

(
γ̂/
√

Kl
)
, δ̂+ Zu

(
γ̂/
√

Kl
)]

, may or may not include 0. We examined these
two cases. Let straight line L and set CR be as follows:

L : δ = 0 and CR =

{
(γ, δ)

∣∣∣∣∣∣γ̂
√

n
Ku
≤ γ ≤ γ̂

√
n
Kl

, δ̂−
γZu
√

n
≤ δ ≤ δ̂+

γZu
√

n

}
(9)

Case 1. 0 ∈
[
δ̂−Zu

(
γ̂/
√

Kl
)
, δ̂+ Zu

(
γ̂/
√

Kl
)]

When the intersection between L and CR is not an empty set (i.e., L ∩ CR , φ), 0 ∈[
δ̂−Zu

(
γ̂/
√

Kl
)
, δ̂+ Zu

(
γ̂/
√

Kl
)]

. We can thus infer that δ = 0. Thus, Qpk = γ−1 + 1.5. In this
case, Equation (8) can be re-expressed as follows:

P
{
γ̂

√
n

Ku
≤ γ ≤ γ̂

√
n
Kl

}
= 1− αs (10)

Clearly, when 0 ∈
[
δ̂−Zu

(
γ̂/
√

Kl
)
, δ̂+ Zu

(
γ̂/
√

Kl
)]

, the 100(1− α)% CI of Qpk,
[
LQpk, UQpk

]
, can be

written as follows:

[
LQpk, UQpk

]
=

(Q̂pk − 1.5
)√Kl

n
+ 1.5,

(
Q̂pk − 1.5

)√Ku

n
+ 1.5

 (11)

Case 2. 0 <
[
δ̂−Zu

(
γ̂/
√

Kl
)
, δ̂+ Zu

(
γ̂/
√

Kl
)]

When the intersection between L and CR is an empty set (i.e., L ∩ CR = φ), 0 <[
δ̂−Zu

(
γ̂/
√

Kl
)
, δ̂+ Zu

(
γ̂/
√

Kl
)]

. We can infer that δ , 0. We can then derive the 100(1− α)% CI of
Qpk when δ > 0 and δ < 0:

a. When δ > 0, Equations (5) and (8) indicate that Qpk = (1− δ)γ−1 + 1.5 and δ̂ − Zu
(
γ̂/
√

Kl
)
> 0, so

Q̂pk =
(
1− δ̂

)
γ̂−1 + 1.5. Equation (8) can therefore be rewritten as follows:

P
{

1−δ̂
γ −

Zu√
n
+ 1.5 ≤ 1−δ

γ + 1.5 ≤ 1−δ̂
γ + Zu√

n
+ 1.5, γ̂

√
n

Ku
≤ γ ≤ γ̂

√
n
Kl

}}
= 1− α

⇒ P
{

1−δ̂
γ̂

(√
Kl
n

)
−

Zu√
n
+ 1.5 ≤ Qpk ≤

1−δ̂
γ̂

(√
Ku
n

)
+ Zu√

n
+ 1.5

}
= 1− α

⇒ P
{(

Q̂pk − 1.5
)√Kl

n −
Zu√

n
+ 1.5 ≤ Qpk ≤

(
Q̂pk − 1.5

)√
Ku
n + Zu√

n
+ 1.5

}
= 1− α

(12)

Clearly, when 0 <
[
δ̂−Zu

(
γ̂/
√

Kl
)
, δ̂+ Zu

(
γ̂/
√

Kl
)]

and δ̂ − Zu
(
γ̂/
√

Kl
)
> 0, the 100(1− α)% CI of

Qpk,
[
LQpk, UQpk

]
, can be written as follows:

[
LQpk, UQpk

]
=

(Q̂pk − 1.5
)√Kl

n
−

Zu
√

n
+ 1.5,

(
Q̂pk − 1.5

)√Ku

n
+

Zu
√

n
+ 1.5

 (13)
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b. Similarly, when δ < 0, Equations (5) and (8) indicate that Qpk = (1 + δ)γ−1 + 1.5 and δ̂+Zu
√
γ̂/Kl < 0,

so Q̂pk =
(
1 + δ̂

)
γ̂−1 + 1.5. Equation (8) can therefore be rewritten as follows:

P
{

1+δ̂
γ −

Zu√
n
+ 1.5 ≤ 1+δ

γ + 1.5 ≤ 1+δ̂
γ + Zu√

n
+ 1.5, γ̂

√
n

Ku
≤ γ ≤ γ̂

√
n
Kl

}}
= 1− α

⇒ P
{

1+δ̂
γ̂

(√
Kl
n

)
−

Zu√
n
+ 1.5 ≤ Qpk ≤

1+δ̂
γ̂

(√
Ku
n

)
+ Zu√

n
+ 1.5

}
= 1− α

⇒ P
{(

Q̂pk − 1.5
)√Kl

n −
Zu√

n
+ 1.5 ≤ Qpk ≤

(
Q̂pk − 1.5

)√
Ku
n + Zu√

n
+ 1.5

}
= 1− α

(14)

c. Clearly, when 0 <
[
δ̂−Zu

(
γ̂/
√

Kl
)
, δ̂+ Zu

(
γ̂/
√

Kl
)]

and δ̂+ Zu
√
γ̂/Kl < 0, the 100(1− α)% CI of

Qpk,
[
LQpk, UQpk

]
, can be written as follows:

[
LQpk, UQpk

]
=

(Q̂pk − 1.5
)√Kl

n
−

Zu
√

n
+ 1.5,

(
Q̂pk − 1.5

)√Ku

n
+

Zu
√

n
+ 1.5

 (15)

For reasons of convenience, based on Equations (11), (13), and (15), LQpk and UQpk of the
100(1− α)% CI for Qpk can be expressed as follows:

LQpk =
(
Q̂pk − 1.5

)√Kl
n
− I ×

Zu
√

n
+ 1.5 (16)

UQpk =
(
Q̂pk − 1.5

)√Ku

n
+ I ×

Zu
√

n
+ 1.5 (17)

where I = 0 if 0 ∈
[
δ̂−Zu

(
γ̂/
√

Kl
)
, δ̂+ Zu

(
γ̂/
√

Kl
)]

, and I = 1 if 0 <
[
δ̂−Zu

(
γ̂/
√

Kl
)
, δ̂+ Zu

(
γ̂/
√

Kl
)]

.

4. A Fuzzy Model of Supplier Selection

4.1. Model of Supplier Selection by General Hypothesis Testing

To effectively construct an objective and scientific supplier selection model, we used statistical
hypothesis testing to assist firms in comparing the index Qpk provided from two suppliers and further
established criteria for judgment. We let Qpki and Qpkj represent the process quality level of suppliers i
and j, respectively, where ∀i , j. The statistical hypothesis testing of the process quality levels between
suppliers i and j is as follows: {

H0 : Qpki = Qpkj
H1 : Qpki , Qpkj

(18)

Using Equations (11), (13) and (15), we can obtain the 100(1− α)% CIs Di =
[
LQpki, UQpki

]
and

D j =
[
LQpkj, UQpkj

]
for Qpki and Qpkj, respectively. We thus employed CI to compare the process

quality levels between suppliers i and j. The recommended selection criteria are as follows:

1. If Di ∩D j , φ, then LQpki ≤ UQpkj ≤ UQpki or LQpki ≤ LQpkj ≤ UQpki. In this case, we did not
reject H0 because of insufficient evidence, which means Qpki = Qpkj. The firm can select supplier
i or j as a long-term partner.

2. If Di ∩D j = φ, then we have sufficient evidence against the null hypothesis H0 to reject it.
The supplier the firm should choose as a long-term partner depends on the following conditions:
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(1) If UQpkj < LQpki, then Qpki > Qpkj. The firm should therefore choose supplier i to ensure
that their end products offer features required to meet customers’ needs and that they
progress toward sustainable development.

(2) Conversely, if LQpkj > UQpki, then Qpkj > Qpki. This means that the process quality level
of supplier j is higher than that of supplier i. The firm should therefore choose supplier j
as a long-term partner.

4.2. Fuzzy Estimator for Qpkh of Supplier h

As mentioned before, fuzziness and stochastic uncertainty exist in data collected from real-world
situations. Taking this into account, it is possible for the above hypothesis testing to make a misjudgment.
We thus proposed a TFN of Q̂pk and further developed a fuzzy model of selecting a supplier to enhance
the reliability of evaluation and reduce the risk of miscalculation. According to Equations (6), (11), (13)
and (15), we can obtain the Q̂pk of supplier h as follows:

Q̂pkh =


1−δ̂h
γ̂h

+ 1.5, for δ̂h −Zu
(
γ̂h/
√

Kl
)
> 0

1
γ̂h

+ 1.5, for 0 ∈
[
δ̂h −Zu

(
γ̂h/
√

Kl
)
, δ̂h + Zu

(
γ̂h/
√

Kl
)]

1+δ̂h
γ̂h

+ 1.5, for δ̂h + Zu
(
γ̂h/
√

Kl
)
< 0

(19)

By the inspiration of Buckley [45], the α-cuts of the TFN ˜̂Qpkh for supplier h can be obtained
as follows: ˜̂Qpkh[α] =


[
Q̂pkh1(α), Q̂pkh2(α)

]
, for 0.01 ≤ α ≤ 1[

Q̂pkh1(0.01), Q̂pkh2(0.01)
]
, for 0 ≤ α ≤ 0.01

(20)

where Q̂pkh1(α) =
(
Q̂pkh − 1.5

)√Kl
n − I × Zu√

n
+ 1.5 and Q̂pkh2(α) =

(
Q̂pkh − 1.5

)√
Ku
n + I × Zu√

n
+ 1.5.

For 0.01 ≤ α ≤ 1, starting at 0.01 is arbitrary so we can begin at 0.001 or 0.005, etc. When α = 1,

then Q̂pkh1(1) =
[(

Q̂pkh − 1.5
)√

χ2
0.5,n−1/n

]
+ 1.5 = Q̂pkh2(1). Thus, the TFN ˜̂Qpkh of Q̂pkh can be defined

as follows: ˜̂Qpkh =
[
Q̂pkh1(0.01), Q̂pkh1(1) = Q̂pkh2(1), Q̂pkh2(0.01)

]
(21)

where

Q̂pkh1(0.01) =
(
Q̂pkh − 1.5

)√χ2
0.0025,n−1

n − I × Z0.0025
√

n
+ 1.5,

Q̂pkh1(1) = Q̂pkh2(1) =
(
Q̂pkh − 1.5

)√χ2
0.5,n−1

n + 1.5,

Q̂pkh2(0.01) =
(
Q̂pkh − 1.5

)√χ2
0.9975,n−1

n + I × Z0.0025
√

n
+ 1.5.

Under the circumstances, the membership function (MF) of ˜̂Qpkh can be presented as follows:

ψ˜̂Qpkh
(x) =



0, if x < Q̂pkh1(0.01)
α1, if Q̂pkh1(0.01) ≤ x < Q̂pkh1(1)
1, if x = Q̂pkh1(1) = Q̂pkh2(1)
α2, if Q̂pkh2(1) < x ≤ Q̂pkh2(0.01)
0, if Q̂pkh2(0.01) < x

(22)

where α1 and α2 are determined by Q̂pkh1(α1) = x and Q̂pkh2(α2) = x, respectively. Figure 1 presents

the MF of ˜̂Qpkh with Q̂pkh = 4, 0 <
[
δ̂h −Zu

(
γ̂h/
√

Kl
)
, δ̂h + Zu

(
γ̂h/
√

Kl
)]

for n = 50, 70, and 100.



Mathematics 2020, 8, 1420 8 of 14
Mathematics 2020, 8, x FOR PEER REVIEW 9 of 15 

 

 

Figure 1. The membership function (MF) of triangular-shaped fuzzy number (TFN) ˆ
pkhQ  with 

ˆ 4pkhQ  ,    ˆ ˆˆ ˆ0 ,h u h l h u h lZ K Z K      
 

 for 50n  , 70, and 100. 

 

Figure 2. The relationship of ˆ
pkiQ  and ˆ

pkjQ  in the decision rule. 

The ratio of two specific defined areas is used to perform testing with a TFN [45]. In view of 

this, we defined TA  as the total area under the graph of 
ˆ

( )
pkiQ

x  and RA  as the area under the 

graph of 
ˆ

( )
pkiQ

x  but to the right of the vertical line through c  (see Figure 2). Unfortunately, the 

complexity of 
ˆ

( )
pkiQ

x  greatly hinders the computing of TA  and RA . Thus, we proposed an 

approximate approach to compute TA  and RA  for making a final decision in fuzzy hypothesis 

testing. First, let 100l      because of 0.01 1  , where l  is the greatest integer that is less 

than or equal to 100 , then 1 1 0.01l     and 1,2, ,100l  . Obviously, ld  can be calculated 

as follows: 

Figure 1. The membership function (MF) of triangular-shaped fuzzy number (TFN) ˜̂Qpkh with Q̂pkh = 4,

0 <
[
δ̂h −Zu

(
γ̂h/
√
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)
, δ̂h + Zu

(
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√

Kl
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for n = 50, 70, and 100.

4.3. Fuzzy Model of Supplier Selection by Fuzzy Hypothesis Testing

We know from Section 4.1 that the quality level of supplier i is better than supplier j when
UQpkj < LQpki; conversely, the quality level of supplier j is better than supplier i when UQpki < LQpkj.

As Q̂pkh of supplier h changes into a TFN ˜̂Qpkh with consideration of data uncertainty, the decision
rule for fuzzy hypothesis testing of the index Q̂pkh provided from suppliers i and j is based on the

relationship between ˜̂Qpki and ˜̂Qpkj. Firstly, the situation of Q̂pkj > Q̂pki is discussed to develop the fuzzy
hypothesis testing model. With regard to this situation, it can be best explained by studying Figure 2.
It is worth mentioning that the individual vertices ψ˜̂Qpki

(x) and ψ˜̂Qpkj
(x) are at x = Q̂pki1(1) = Q̂pki2(1)

and x = Q̂pkj1(1) = Q̂pkj2(1), respectively. If the situation is Q̂pkj < Q̂pki, then the same conclusion will
be made as soon as these two are swapped.
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The ratio of two specific defined areas is used to perform testing with a TFN [45]. In view of this,
we defined AT as the total area under the graph of ψ˜̂Qpki

(x) and AR as the area under the graph of

ψ˜̂Qpki
(x) but to the right of the vertical line through c (see Figure 2). Unfortunately, the complexity of

ψ˜̂Qpki
(x) greatly hinders the computing of AT and AR. Thus, we proposed an approximate approach to

compute AT and AR for making a final decision in fuzzy hypothesis testing. First, let l = b100αc because
of 0.01 ≤ α ≤ 1, where l is the greatest integer that is less than or equal to 100α, then α′ = 1−

√
1− 0.01l

and l = 1, 2, · · · , 100. Obviously, dl can be calculated as follows:

dl =
(
Q̂pki − 1.5

)
√
χ2

1−((1−
√

1−0.01l)/2),n−1

n
−

√
χ2
(1−
√

1−0.01l)/2,n−1

n

+ I ×
2Z

(1−
√

1−0.01l)/2
√

n
(23)

It is worth noting that d0 = d1, which can be expressed as follows:

d0 = d1 =
(
Q̂pki − 1.5

)
√
χ2

0.9975,n−1

n
−

√
χ2

0.0025,n−1

n

+ I ×
2Z0.0025
√

n
(24)

Likewise, we let w = b100ac because of 0.01 ≤ α ≤ a. That is, l = 1, 2, · · · , h. In addition, c can be
obtained based on the following Equation (25).

c =
(
Q̂pkj − 1.5

)√χ2
(1−
√

1−0.01w)/2,n−1
n − I ×

Z
(1−
√

1−0.01w)/2
√

n
+ 1.5

=
(
Q̂pki − 1.5

)√χ2
(1−
√

1−0.01w)/2,n−1
n + I ×

Z
(1−
√

1−0.01w)/2
√

n
+ 1.5

(25)

Thus, rl can be expressed as follows:

rl =
(
Q̂pki − 1.5

)√χ2
1−((1−

√
1−0.01l)/2),n−1

n
+

Z
(1−
√

1−0.01l)/2
√

n
+ 1.5− c, l = 1, 2, · · · , h (26)

In addition, r0 = r1. Therefore, AT and AR can be approximately obtained as follows:

AT =
100∑
l=1

(
dl−1 + dl

2

)
× (0.01) and AR =

h∑
l=1

( rl−1 + rl
2

)
× (0.01) (27)

In conclusion, we can calculate the ratio of AR to AT according to Equation (27) and further make

reliable decisions to select the best supplier with our proposed fuzzy estimator ˜̂Qpkh. Thus, we chose
two numbers φ1 and φ2, such as 0 < φ1 < φ2 < 0.5, and the decision rules are as follows:

(1) If AR/AT ≤ φ1, then reject H0 and conclude that Qpki < Qpkj.

(2) For φ1 < AR/AT < φ2, make no decision on reject/not reject.
(3) For AR/AT ≥ φ2, do not reject H0 and conclude that Qpki = Qpkj.

According to the abovementioned evaluation rules, we conducted comparisons and tests on
all suppliers one after another so as to find the suppliers with better quality level. Furthermore,
the proposed fuzzy model is based on the CI of estimator Q̂pkh provided by supplier h. From the
perspective of statistical theory, the degree of imprecision can be indicated according to the length
of the CI. We can see from Equations (16) and (17) that the length of the confidence interval for Qpkh
of supplier h depends on sample size n and confidence level α. More specifically, the length of the
confidence interval for Qpkh decreases with an increase in n for fixed α, whereas the length of the
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confidence interval for Qpkh decreases with an increase in α for fixed n. Obviously, the stability of the
proposed fuzzy model depends on n and α. Thus, a number of researchers have applied this concept
to analyze the sensitivity and stability of the fuzzy model [46,47].

5. Illustrative Example

In order to illustrate how the proposed approach can be utilized in practical applications,
we considered a case study involving a gear product. Gears change the direction and speed of
power within machines, making them an integral aspect of mechanized industries. In practice,
gear manufacturing follows the 4R concept and includes several procedures; grinding is one such
important process involving high precision and fairly small grinding surfaces. As grinding is associated
with several quality characteristics, we considered only the process quality level of the most crucial
quality characteristic, which is the internal diameter. Furthermore, there is no place in the world like
Taichung, Taiwan, with the entire machinery industry clustered together. In view of this, we assisted
a machine tool factory located in Taichung to select the optimal supplier of gear components. Thus,
the specification limits of internal diameter for the gear specified by the factory were set as follows:
LSL = 21.8 mm, T = 21.85 mm and USL = 21.9 mm. We applied the proposed approach to compare the
process quality offered by two gear suppliers located in Taichung, Taiwan.

For a mass-produced gear product, a process engineer used the simple random sampling to collect
60 samples each of internal diameter from Supplier 1 and Supplier 2 during the month of April 2020
(i.e., n = 60). However, the proposed supplier selection model in this paper is based on theoretical
assumptions of normality for the process data. Thus, we cannot use the proposed approach to select
a supplier when the collected data is not normally distributed. For this reason, we employed the
Anderson–Darling test to confirm the assumption of normality with p-value > 0.05. Therefore, it is
reasonable to assume that the collected data are normally distributed. Table 1 presents the statistics of
the collected samples.

Table 1. Statistics of collected samples.

Supplier Code Xh sh δ̂h γ̂h Q̂pkh

h = 1 21.8804 0.0075 0.608 0.149 4.131
h = 2 21.8913 0.0024 0.825 0.048 5.146

Supposing that significance level α is set to 0.05 (i.e., α′ = 0.025321),
[
δ̂−Zu

(
γ̂/
√

Kl
)
, δ̂+Zu

(
γ̂/
√

Kl
)]

= [0.57231, 0.64369] for Supplier 1 can be obtained, and it can be further concluded that
0 <

[
δ̂−Zu

(
γ̂/
√

Kl
)
, δ̂+Zu

(
γ̂/
√

Kl
)]

and δ̂ − Zu
(
γ̂/
√

Kl
)
> 0, respectively. Therefore, the 95% CI

D1 = [3.2887, 4.9368] of Qpk1 for Supplier 1 can be obtained from Equation (12). In a manner similar to
Supplier 1, we can derive the 95% CI D2 = [4.0901, 6.15129] of Qpk2 for Supplier 2. These results indicate
that LQpk2 ≤ UQpk1 ≤ UQpk2; therefore D1 ∩D2 , φ. As we do not have enough statistical evidence to
reject H0 : Qpk1 = Qpk2, we can conclude that there is no significant difference between the process quality
levels of Supplier 1 and Supplier 2.

As mentioned above, we can decide to reject H0 or not by comparing the CIs of Qpk1 and Qpk2.
However, taking into consideration data imprecision, we further employed the decision-making
procedure for fuzzy hypothesis testing of Qpkh to assess whether the relationship between the process

quality levels of Supplier 1 and Supplier 2 is equal or not. Thus, Q̂pk1 and Q̂pk2 became TFN ˜̂Qpk1

and ˜̂Qpk2, respectively, with our proposed approach. For the sake of illustration, Figure 3 plots the

relationship between ˜̂Qpk1 and ˜̂Qpk2 as it pertains to this example.
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Therefore, Equations (23) and (27) can be used to obtain AT = 83.0000. On the other hand,
a = 0.40258 and w = 40 can be solved with Equation (25). In such a case, c = 4.545096 and AR = 7.7737
are obtained from Equations (25)–(27). Thus, we can further calculate AR/AT = 0.0937. Let the two
numbers in the fuzzy testing be φ1 = 0.2 and φ2 = 0.4, AR/AT ≤ 0.2 can be found based on the
abovementioned criterion of judgment. Obviously, this result shows that the null hypothesis H0 of
the hypothesis testing can be rejected. There is sufficient evidence showing that a difference exists
between process quality levels of Supplier 1 and Supplier 2. However, a greater Q̂pk value indicates
higher process quality levels and higher process yield. Thus, the buying firm should choose Supplier 2
as a long-term partner due to Q̂pk1 < Q̂pk2. In this way, buying firms can more effectively ensure the
quality levels of their products and increase global competitiveness.

6. Conclusions and Research Limitations

Faced with swift market changes and globalized competition, firms must respond quickly to
the varying demands of customers to maintain their own competitive advantages. Supply chain
management allows firms to integrate both upstream and downstream. Supplier selection is a vital
aspect of a firm’s development and actual gains. In view of this, this study developed a supplier
selection model based on process quality from the perspective of a circular economy. We first employed
the SSQI Qpk, which can directly reflect process quality levels, to evaluate the process quality of
suppliers. In practice, process mean µ and standard deviation σ are generally unknown population
parameters. This means that Qpk must be estimated based on collected sample data. Using the
point estimate Q̂pk to determine the process quality of suppliers may lead to miscalculation. Thus,
to enhance the reliability of evaluation, we derived the 100(1− α)% CI of Qpk for application to a
supplier selection model.

The fact that fuzziness and stochastic uncertainty are unavoidable features for collected data has
led some researchers to assess process quality by taking into consideration data imprecision. For this
reason, this study proposed a TFN of Q̂pk and further developed a fuzzy testing model of selecting a
supplier with the intent of reducing the risk of miscalculation and making reliable selection decisions
for the evaluation of process quality level. To illustrate the applicability of the proposed approach,
we demonstrated its implementation through a case study involving a gear component product. In
the general hypothesis testing, the results showed that there was no significant difference between
the process quality levels of Supplier 1 and Supplier 2. However, it is worth noting that Q̂pk2 was
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1.015 higher than Q̂pk1. This meant the difference between the process yield of the two was 0.008247
(i.e., 8247.05 defects per million opportunities). In view of this, we were bewildered by the inference
results of the general hypothesis testing.

To this end, we further investigated the TFN of Q̂pk1 and Q̂pk2 and performed the proposed fuzzy
hypothesis testing for H0 : Qpk1 = Qpk2. These results showed that there was sufficient evidence
showing that a difference existed between the process quality levels of Supplier 1 and Supplier 2.
More specifically, Supplier 2 would be better than Supplier 1 from a strategic perspective for the firm.
Thus, the fuzzy model proposed in this study can more reliably assist firms in choosing the optimal
supplier for long-term collaborations, thereby leading to a reduction in the amount of scrap and rework
and helping firms move toward sustainability and production. In conclusion, the proposed model
can help firms make reliable decisions in a fuzzy environment, ensuring that their products meet the
needs of the end customer and leading firms toward sustainable development. The limitations in this
study, however, is that in order to effectively assess process quality provided by suppliers and select
the optimal supplier by the proposed fuzzy model, the collected sample data must come from a stable
process and follow a normal distribution.
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