
mathematics

Article

Multivariate Classes of GB2 Distributions with Applications

José María Sarabia 1,*,† , Vanesa Jordá 2,†, Faustino Prieto 2,† and Montserrat Guillén 3,†

����������
�������

Citation: Sarabia, J.M.; Jordá, V.;

Prieto, F.; Guillén, M. Multivariate

Classes of GB2 Distributions with

Applications. Mathematics 2021, 9, 72.

https://doi.org/10.3390/

math9010072

Received: 1 December 2020

Accepted: 25 December 2020

Published: 31 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Quantitative Methods, CUNEF University, Leonardo Prieto Castro 2, 28040 Madrid, Spain
2 Department of Economics, University of Cantabria, Avda. de los Castros s/n, 39005 Santander, Spain;

vanesa.jorda@unican.es (V.J.); faustino.prieto@unican.es (F.P.)
3 Department of Econometrics, Riskcenter-IREA, University of Barcelona, Av. Diagonal, 690,

08034 Barcelona, Spain; mguillen@ub.edu
* Correspondence: josemaria.sarabia@cunef.edu
† These authors contributed equally to this work.

Abstract: The general beta of the second kind distribution (GB2) is a flexible distribution which
includes several relevant parametric families of distributions. This distribution has important
applications in earnings and income distributions, finance and insurance. In this paper, several
multivariate classes of the GB2 distribution are proposed. The different multivariate versions are
based on two simple univariate representations of the GB2 distribution. The first type of multivariate
distributions are constructed from a stochastic dependent representations defined in terms of gamma
random variables. Using this representation and beginning by two particular multivariate GB2
distributions, multivariate Singh–Maddala and Dagum income distributions are presented and
several properties are obtained. Then, a general multivariate GB2 distribution is introduced. The
second type of multivariate distributions are based on a generalization of the distribution of the order
statistics, which gives place to multivariate GB2 distribution with support above the diagonal. We
discuss the role of these families in modeling bivariate income distributions. Finally, an empirical
application is given, where we show that a multivariate GB2 distribution can be useful for modeling
compound precipitation and wind events in the whole range.

Keywords: generalized beta distribution of the second kind; multivariate reduction; bivariate income
distribution; compound climate events

1. Introduction

The use of parametric functional forms for the study of earnings and income distribu-
tions has been well documented in the literature (see [1,2]). Among the existing parametric
models, we emphasize the general beta of the second kind distribution (GB2). The GB2
is a flexible and wide distribution which includes many well-known models as special or
limiting cases. This family provides an excellent description of income distributions with a
few parameters. An economic origin of this distribution is available: Parker’s model of
optimizing firm behavior characterizes an earnings distribution of the GB2 type [3].

The GB2 distribution has been used in several fields of economics and business,
including modeling of income and wealth data (e.g., [4–8]), Lorenz ordering [9,10], unem-
ployment duration data [11], regression models with non-negative random variables [12],
actuarial losses [13] and option pricing [14].

The specification of models of multidimensional income variables is not a trivial
exercise. The most popular approach is to take logarithms of the variables and assume a
multivariate normal distribution. Kmietowicz [15] used a bivariate lognormal distribution
for modeling the distribution of household size and income. An important appealing of
the multivariate lognormal distribution is that both marginal and conditional distributions
are again lognormal. Unfortunately, this distribution presents some differences with the
normal case. For instance, the range of the correlation coefficients is limited, and is more
narrowed than the normal case (see [16]).
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If we think in the classical Pareto income distribution, the first paper introducing
multivariate distributions with Pareto marginals was by Mardia [17]. Several models with
Pareto and generalized Pareto marginals were proposed by Arnold ([18], Chapters 2 and
3). Other extensions were proposed by Chiragiev and Landsman [19] and Asimit et al. [20].
To analyze the impact of relative price changes on inequality in the marginal distribution
of various income components, Slottje [21,22] considered multivariate distributions with
second kind beta marginals.

On the other hand, multivariate parametric distributions based on conditional spec-
ification (see [23,24]) have been also proposed. Arnold [25] and Arnold et al. [26] char-
acterized classes of multivariate distributions with Pareto and generalized Pareto con-
ditionals. Bivariate income distributions with lognormal conditionals were studied by
Sarabia et al. [27].

In this paper, several multivariate versions of the GB2 distribution are proposed. The
different multivariate versions are based on simple univariate representations of the GB2
distribution. The first type of multivariate distributions is constructed using a stochastic
dependent representation defined in terms of classical gamma random variables. The
second type of multivariate versions is based on a generalization of the distribution of the
order statistics. A preliminary account of these distributions was provided by Sarabia [28].

The contents of this paper are as follows. In Section 2, we present basic results about
the univariate GB2 distribution, as well as two important univariate representations that are
used below. In Section 3, we present two multivariate versions of the GB2 distribution, and
we obtain several of their properties. Using these results, we obtain multivariate versions
of the Singh–Maddala and Dagum distributions. In Section 4, a general multivariate
GB2 distribution is introduced. Multivariate GB2 distribution with support above the
diagonal are introduced in Section 5. In Section 6, we include some applications of the
proposed models. First, we discuss the use of these families for modeling bivariate income
distributions. An empirical application is given, where we discuss estimation of bivariate
income data and we model compound precipitation and wind events in the whole range
in four selected locations by using the EWEMBI dataset, from 2007 to 2016, at daily
temporal resolution.

2. The GB2 Distribution

The GB2 distribution is defined in terms of the probability density function (pdf),

fZ(z; a, p, q, σ) =
a(z/σ)ap−1

σB(p, q)[1 + (z/σ)a]p+q , z > 0, (1)

where a, p, q, σ > 0, B(s, t) = Γ(s)Γ(t)/Γ(s + t) is the beta function and Γ(·) the gamma
function. a, p, q are shape parameters and σ is a scale parameter. A random variable with
pdf (1) is represented by Z ∼ GB2(a, p, q, σ). The GB2 distributions contains important
parametric distribution as special or limiting cases. The classical Singh–Maddala distribu-
tion is obtained when p = 1 [29] and is represented by SM(a, q, σ); the three-parameter
Dagum distribution [30] corresponds to the choice q = 1 and is represented by D(a, p, σ);
and the second kind beta distribution is obtained by setting a = 1, and is represented by
B2(p, q, σ). Fisk distribution is obtained for p = q = 1 and classical Pareto II distribu-
tion [18] for a = p = 1. The generalized gamma distribution [4] appears as limiting case
setting σ = q1/aσ̃, and q→ ∞. Consequently, classical gamma and Weibull distributions
are also limiting cases of the GB2 distribution.

The shape parameters control the tail behavior of the model. In particular, the GB2
density is regularly varying at infinity with index −aq− 1 and regularly varying at the
origin with index −ap− 1. The rth moment of the GB2 is,

E(Zr) =
σrB

(
p + r

a , q− r
a
)

B(p, q)
, (2)
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and exists when −ap < r < aq. The GB2 distribution is close under power transformations,
if Z ∼ GB2(a, p, q, σ) and s > 0 then Zs ∼ GB2

( a
s , p, q, σs), and similar property holds for

s < 0. Additional statistical properties of the GB2 can be found in [31]. Several results of
the GB2 related with stochastic ordering appear in [32]. A recent review about the GB2
distribution and its application in income distributions can be found in [33].

2.1. Representations of the GB2 Distribution

The different multivariate classes are based on two univariate representations of the
GB2 distribution.

Let X ∼ Ga(p) and Y ∼ Ga(q) be independent gamma random variables with shape
parameters p and q and let a > 0. The GB2 distribution can be represented as,

Z = σ

(
X
Y

)1/a
∼ GB2(a, p, q, σ). (3)

Previous stochastic representations permits to simulate samples of the GB2 distribu-
tion from independent gamma random variables.

The next representation is based on a generalization of the distribution of the order
statistics. Let F be a cumulative distribution function (cdf) with pdf f . The class of
generalized beta distribution was given by Jones [34]:

gF(x; p, q) =
Γ(p + q)
Γ(p)Γ(q)

f (x)F(x)p−1[1− F(x)]q−1, (4)

where p, q > 0. If p = r and q = n − r + 1, with n and r integers, (4) corresponds
the distribution of the r−th order statistics. A density of the form (4) is represented by
XF ∼ GB(p, q; F). Now, if we assume that F in (4) is a log-logistic distribution with cdf
F(x; a) = (x/σ)a

1+(x/σ)a if x > 0, then

XF ∼ GB2(a, p, q, σ),

which corresponds to the GB2 distribution.

2.2. Previous Work about Multivariate GB2 Distributions

Prior scholarship on multivariate distributions have proposed a few multivariate GB2
distributions. Rada-Mora and Nagar [35] considered multivariate GB2 distributions with
the shape parameter and the scale parameter constant across the marginals.

Yang et al. [36] introduced one class of multivariate GB2 distributions. Although
their model is one of the classes proposed in this paper, it was obtained using a different
methodology. On the other hand, these authors did not study the other three general
classes considered here, nor the different particular cases and their applications. This class
was also proposed by Sarabia et al. [37] in the bivariate case. Cockriel and McDonald [38]
obtained two classes of multivariate generalized beta families, and the GB2 class coincides
with the Yang et al. [36] proposal.

3. Multivariate Distributions with GB2 Marginals

In this section, we construct two classes of multivariate GB2 distributions, where one
of the shape parameters, p or q, is common in all the marginal distributions. Both classes are
connected via a monotone transformation of its marginal distributions. As a consequence
of these results, we con construct several multivariate versions of the Singh–Maddala and
Dagum distributions.

These classes of multivariate distributions are constructed using “multivariate reduc-
tion” or “variables in common” techniques (see [39]). The idea of this methodology is to
construct pairs of dependent random variables from three or more random variables. In
many situations, these initial random variables are independent, but occasionally they may
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be dependent. In our case, the functions connecting these random variables are given by
(3), where all the pairs of random variable share the same numerator or denominator. This
methodology has been used recently for constructing multivariate dependent beta [40],
Student t [41,42], Marshall–Olkin [43] and F [44] distributions (see [45]).

3.1. Multivariate GB2 Income Distributions with p Fixed

Let X0, Y1, . . . , Ym be mutually independent gamma random variables with distri-
butions X0 ∼ Ga(p0) and Yi ∼ Ga(qi), i = 1, 2, . . . , m. The first multivariate version is
defined by,

(Z1, Z2, . . . , Zm)
> =

(
σ1

(
X0

Y1

)1/a1

, σ2

(
X0

Y2

)1/a2

, . . . , σm

(
X0

Ym

)1/am
)>

, (5)

where ai, σi > 0, i = 1, 2, . . . , m. Note that the common random variable X0 introduces
the dependence in the model. The joint cdf and pdf can be obtained in a closed form by
conditioning on the common random variable X0, without using Jacobians. The joint cdf is
given by,

Pr(Zi ≤ zi; 1 ≤ i ≤ m) =

= Pr

(
σi

(
X0

Yi

)1/ai

≤ zi; 1 ≤ i ≤ m

)

=
∫ ∞

0
Pr

(
σi

(
X0

Yi

)1/ai

≤ zi; 1 ≤ i ≤ m

∣∣∣∣∣X0 = x0

)
dFX0(x0)

=
∫ ∞

0

m

∏
i=1

GYi

(
x0

(
zi
σi

)−ai
)

dFX0(x0),

where GYi (·) represents the survival function of the gamma distribution. Taking partial
derivatives with respect zi, we obtain the joint pdf,

∂m Pr(Zi ≤ zi; 1 ≤ i ≤ m)

∂z1 · · · ∂zm
= fZ1,...,Zm(z1, . . . , zm) =

=
∫ ∞

0

m

∏
i=1

aix0

σi

(
zi
σi

)−ai−1
fYi

(
x0

(
zi
σi

)−ai
)

dFX0(x0).

Finally, substituting by the expressions of the pdf of the gamma random variable and
integrating, we obtain,

fZ(z1, . . . , zm) =

Γ
(

p0 +
m
∑

i=1
qi

)
Γ(p0)

m
∏
i=1

Γ(qi)
·

m
∏
i=1

(ai/σi)(zi/σi)
−aiqi−1

[
1 +

m
∑

i=1
(zi/σi)

−ai

]p0+q1+···+qm
, (6)

if zi > 0, i = 1, 2, . . . , m. A multivariate distribution with joint density (6) is represented as
Z ∼ MGB2(1)(a, p0, q, σ).

One important property of the joint pdf (6) is all the marginal and conditional distri-
butions are available in a closed form. By construction, the marginal distributions of the
model (5) are GB2: Zi ∼ GB2(ai, p0, qi, σi), i = 1, 2, . . . , m. In general, the joint pdf of any
subset of (5) is again of the form (6). The conditional distributions are given by,

Zi|{Zj, j 6= i} ∼ GB2

ai, p0 + ∑
j 6=i

qj, qi, σi

(
1 + ∑

j 6=i
(zj/σj)

−aj

)−1/ai
, (7)
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i = 1, 2, . . . , m. The conditional expectation of Zi given {Zj, j 6= i} are given by,

E
(
Zi|{Zj, j 6= i}

)
= σi

(
1 + ∑

j 6=i
(zj/σj)

−aj

)−1/ai

·
B
(

p0 + ∑j 6=i qj + 1/ai, qi − 1/ai

)
B
(

p0 + ∑j 6=i qj, qi

) , (8)

if aiqi > 1, i = 1, . . . , m, which are not linear in Zj, j 6= i.
The cross moments can be obtained in a direct way. If ri, i = 1, 2, . . . , m are integers

and using definition (5), we have,

m

∏
i=1

Zri
i = XA

0

m

∏
i=1

σ
ri
i Y−ri/ai

i ,

where A = ∑m
i=1 ri/ai. Taking expectations and using (2), we get,

E

(
m

∏
i=1

Zri
i

)
=

Γ(p0 + A)

Γ(p0)
·

m

∏
i=1

σ
ri
i

Γ(qi − ri/ai)

Γ(qi)
,

where qi > ri/ai, i = 1, 2, . . . , m.
Now, some dependence conditions are obtained. In a first term, the random variables

{Z1, . . . , Zm} are increasing functions of independent random variables and in consequence
they are associated random variables, according to the definition by Esary et al. [46].
Consequently, we have cov(Zi, Zj) ≥ 0, if i 6= j. Additionally, the local dependence
function is given by,

γ(z1, z2) =
∂2 log f (z1, z2)

∂z1∂z2
=

a1a2(p0 + q1 + q2)(z1/σ1)
−a1−1(z2/σ2))

−a2−1

σ1σ2

[
1 + (z1/σ1))

−a1 + (z2/σ2))
−a2
]2 ≥ 0,

which shows again a positive correlation between variables.
Several relevant models can be obtained from (6). If we set q1 = · · · = qm = 1,

we obtain a multivariate Dagum distribution with marginals D(ai, p0, σi), i = 1, . . . , m.
If a1 = · · · = am = 1, we have a class of multivariate distributions with second kind beta
marginals, that is B2(p0, qi, σi). If p0 = q1 = · · · = qm = 1, a multivariate class with Fisk
marginals is obtained, F (ai, σi). If p0 = 1 and a1 = · · · = am = 1, we have a class with
Pareto II marginals, PII(qi, σi), i = 1, . . . , m. Now, we can obtain a multivariate distribution
with arbitrary Singh–Maddala marginals. If we set p0 = 1 in (6), we get,

fZ(z1, . . . , zm) =

Γ
(

1 +
m
∑

i=1
qi

)
m
∏
i=1

Γ(qi)
·

m
∏
i=1

(ai/σi)(zi/σi)
−aiqi−1

[
1 +

m
∑

i=1
(zi/σi)

−ai

]1+q1+···+qm
, (9)

with z, . . . , zm ≥ 0. The multivariate joint pdf (9) have Singh–Maddala marginals with
different scale and shapes parameters, than is Zi ∼ SM(ai, qi, σi), i = 1, 2, . . . , m. If we
specialize expression (7) for p0 = 1, we obtain the conditional distributions of the model (9).
Note that these conditional distributions are not of the Singh–Maddala type, because the
second shape parameter cannot be equal to one. The conditional expectations are obtained
directly from (8).
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3.2. Multivariate GB2 Distributions with q Fixed

In this section, we consider a second version of a multivariate GB2 distribution,
where now the q shape parameter is fixed. We define the multivariate m-dimensional
random variable,

(Z1, Z2, . . . , Zm)
> =

(
σ1

(
X1

Y0

)1/a1

, σ2

(
X2

Y0

)1/a2

, . . . , σm

(
Xm

Y0

)1/am
)>

, (10)

where Xi ∼ Ga(pi), i = 1, 2, . . . , m and Y0 ∼ Ga(q0). The common random variable Y0
introduces the dependence in the multivariate random variable. Using similar arguments
to those used in the previous section, the joint cdf is given by,

Pr(Zi ≤ zi; 1 ≤ i ≤ m) =
∫ ∞

0

m

∏
i=1

FXi

(
x0

(
zi
ai

)ai
)

dFX0(x0).

Taking partial derivatives with respect to z1, . . . , zm in the previous expression and
substituting by the expressions of the pdf of the gamma random variables and integrating,
we obtain,

fZ(z1, . . . , zm) =

Γ
(

q0 +
m
∑

i=1
pi

)
Γ(q0)

m
∏
i=1

Γ(pi)
·

m
∏
i=1

(ai/σi)(zi/σi)
ai pi−1

[
1 +

m
∑

i=1
(zi/σi)

ai

]q0+p1+···+pm
, (11)

if zi > 0, i = 1, 2, . . . , m. We represent the joint density (11) as Z ∼ MGB2(2)(a, p, q0, σ). By
construction, the marginal distributions are Zi ∼ GB2(ai, pi, q0, σi), i = 1, 2, . . . , m, and the
conditional distributions are given by,

Zi|{Zj, j 6= i} ∼ GB2

ai, pi, q0 + ∑
j 6=i

pj, σi

{
1 + ∑

j 6=i
(zj/σj)

aj

}1/ai
, (12)

with i = 1, 2, . . . , m. Using (2) for r = 1, we can have a close expression for E(Zi|{Zj, j 6= i}).
The cross moments of the random variable (Z1, . . . , Zm)> are:

E

(
m

∏
i=1

Zri
i

)
=

Γ(q0 − A)

Γ(q0)
·

m

∏
i=1

σ
ri
i

Γ(pi + ri/ai)

Γ(pi)
,

where A = ∑m
i=1 ri/ai, ri > 0, i = 1, 2, . . . , m and q0 > A.

Again, the random variables {Z1, . . . , Zm} are increasing functions of independent
random variables and in consequence they are associated random variables [46], then
cov(Zi, Zj) ≥ 0, if i 6= j.

Now, we discuss the distribution of the sum of the components. If {Z1, . . . , Zm}
represent income components, then the distribution of the total income is given by,

m

∑
i=1

Zi =
m

∑
i=1

σi

(
Xi
Y0

)1/ai

. (13)

In general, the exact distribution of (13) cannot be written in closed form; however,
it can be obtained easily by simulation. A closed expression is available when ai = 1 and
σi = σ, for i = 1, 2, . . . , m. In this case Zi ∼ B2(pi, q0, σ), i = 1, 2, . . . , m and

m

∑
i=1

Zi ∼ B2(p1 + · · ·+ pm, q0, σ).
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The previous model was considered by Slottje [22] and Guillén et al. [47].
The importance of distribution (11) is that we can obtain multivariate distribution

with different marginals. If we write p1 = · · · = pm = 1, we obtain a class of multivariate
distributions with Singh–Maddala marginals SM(ai, q0, σ1) with a common shape param-
eter. If a1 = · · · = am = 1, we have a class of distributions with marginals B2(pi, q0, σi).
If p1 = · · · = pm = 1 and q0 = 1, a class of multivariate Fisk F (ai, σi), i = 1, 2, . . . , m is
obtained. For the case ai = pi = 1, i = 1, . . . , m, we have a multivariate distribution with
Pareto II marginals P(q0, σi), i = 1, 2, . . . , m. If we set q0 = 1 in (11), we have:

fZ(z1, . . . , zm) =

Γ
(

1 +
m
∑

i=1
pi

)
m
∏
i=1

Γ(pi)
·

m
∏
i=1

(ai/σi)(zi/σi))
ai pi−1

[
1 +

m
∑

i=1
(zi/σi))

ai

]1+p1+···+pm
, (14)

if zi > 0, i = 1, 2, . . . , m. Then, in model (14), the marginal distributions Zi ∼ D(ai, pi, σi),
i = 1, 2, . . . , m are Dagum with different shape and scale parameters. The conditional
distributions of (14) are (12) with q0 = 1. These conditional distributions are not of the
Dagum type, because the third shape parameter cannot be equal to one.

3.3. More Multivariate Distributions

In this section, we obtain some additional multivariate distribution from previous
models. First, models (6) and (11) are connected using a monotone transformation.
If Z(1) ∼ MGB2(1)(a, p0, q, σ) and we define the m-dimensional random vector Z̃ with
components Z̃i = 1/Z(1)

i , i = 1, 2, . . . , m, we have

Z̃ ∼ MGB2(2)(a, q, p0, σ−1),

where the components of σ−1 are σ−1
i , i = 1, 2, . . . , m. This result is a consequence of the

relation of the Singh–Maddala and the Dagum distribution described by Kleiber [48].
If we define T = (T1, . . . , Tm)>, where Ti = log Zi, with i = 1, 2, . . . , m and using (6),

we obtain the joint density,

fT(t1, . . . , tm) =

Γ
(

p0 +
m
∑

i=1
qi

)
Γ(p0)

m
∏
i=1

Γ(qi)
·

m
∏
i=1

(ai/σi)(eti /σi)
−aiqi−1eti[

1 +
m
∑

i=1
(eti /σi)−ai

]p0+q1+···+qm
,

with support on Rm. A new version can be obtained using model (11). This multivariate
distribution has generalized logistic distributions as marginals.

4. A General Multivariate GB2 Distribution

In this section, we construct a multivariate GB2 distribution, where all the marginal
distributions are GB2 with all the shape and scale parameters are different.

4.1. The Model

Previous distributions (5) and (10) do not have arbitrary GB2 marginals. A general
multivariate GB2 distribution is defined by the stochastic representation:

(Z1, Z2, . . . , Zm)
> =

(
σ1

(
X1

Y1

)1/a1

, σ2

(
X2

Y1 + Y2

)1/a2

, . . . , σm

(
Xm

Y1 + Ym

)1/am
)>

, (15)

where Xi ∼ Ga(pi), i = 1, 2, . . . , m and Yi ∼ Ga(qi), i = 1, 2, . . . , m and independent
random variables. Note that Y1 +Yi ∼ Ga(q1 + qi), i = 2, . . . , m by the addition property of
the gamma distribution. The multivariate distribution retains the independent numerators
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but relaxes the denominators in order to having gamma random variables with different
shape parameters. Consequently, the ith marginal distribution has the GB2 distribution
with different shape and scale parameters,

Z1 ∼ GB2(a1, p1, q1, σ1),

Zi ∼ GB2(ai, pi, q1 + qi, σi), i = 2, 3, . . . , m.

The joint cdf is given by,

Pr(Zi ≤ zi; 1 ≤ i ≤ m) =

= Pr
(

X1

Y1
≤
(

z1

σ1

)a1

,
Xi

Y1 + Yi
≤
(

zi
σi

)ai

; 2 ≤ i ≤ m
)

=
∫ ∞

0
Pr
(

X1

Y1
≤
(

z1

σ1

)a1

,
Xi

Y1 + Yi
≤
(

zi
σi

)ai

; 2 ≤ i ≤
∣∣∣∣Y1 = y1

)
dFY1(y1),

which can be written as,

Pr(Zi ≤ zi; 1 ≤ i ≤ m) =
∫ ∞

0
FX1

(
y1

(
z1

σ1

)a1
) m

∏
i=2

F Xi
y1+Yi

((
zi
σi

)ai
)

dFY1(y1) (16)

The bivariate case is studied in the next section.

4.2. The Bivariate Case

In the bivariate case, a tractable expression for the joint pdf in terms of hypergeometric
functions is obtained. We next need the previous result.

Theorem 1. Let X ∼ Ga(a) and Y ∼ Ga(b) be independent gamma random variables and φ > 0.
Then, the probability density function of the random variable,

Z =
X

φ + Y
, (17)

is given by,

fZ(z) = Ka,b,φ
za−1 exp(−φz/2)
(1 + z)(a+b+1)/2

·Wλ,µ(φ(1 + z)), z > 0 (18)

where

Ka,b,φ =
φ(a+b−1)/2 exp(φ/2)

Γ(a)
,

λ = (a− b + 1)/2, µ = (a + b)/2 and Wu,v(·) is the Whittaker function.

Proof of Theorem 1. The cdf of the random variable Z defined in (17) can be written as,

FZ(z) =
∫ ∞

0
FX(z(φ + y))dFY(y),

and then the pdf is,

fZ(z) =
dFZ(z)

dz
=
∫ ∞

0
(φ + y) fX(z(φ + y))dFY(y).

Because X ∼ G(a) and Y ∼ G(b) and after some computations, we obtain,

fZ(z) =
φa

Γ(a)Γ(b)
za−1 exp(−φz)

(1 + z)b

∫ ∞

0
tb−1e−t

(
1 +

t
φ(1 + z)

)a
dt.
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The integral which appears in previous expression can be computed using (A1) with
b− 1 = µ− λ− 1/2 and a = µ + λ− 1/2, which give place to λ = (a− b + 1)/2 and
µ = (a + b)/2.

The next theorem provides a closed expression for the pdf (15) is the case m = 2.

Theorem 2. The joint probability density function of {Z1, Z2} defined in (15) has the following
expression,

fZ1,Z2(z1, z2) = K12
(z1/σ1)

a1 p1−1(z2/σ2)
a2 p2−1

(1 + (z1/σ1)a1 + (z2/σ2)a2)p1+p2+q1+q2
×

× F
(

P, q2; Q;
(z1/σ1)

a1

1 + (z1/σ1)a1 + (z2/σ2)a2

)
, (19)

on z1, z2 ≥ 0, where P = p1 + p2 + q1 + q2, Q = p1 + q1 + q2 and

K12 =
(a1/σ1)(a1/σ2)

B(p1, q1)B(p1 + q1 + q2, p2)
,

B(·, ·) is the beta function and F(·, ·; ·; ·) is the Gauss hypergeometric function.

Proof of Theorem 2. We define z̃i = zi/σi, i = 1, 2. For m = 2, the general expression (16)
becomes

FZ1,Z2(z1, z2) =
∫ ∞

0
FX1

(
y1z̃a1

1
)

F X2
y1+Y2

(
y1z̃a2

2
)
dFY1(y1).

The joint pdf is given by,

fZ1,Z2(z1, z2) =
a1a2

σ1σ2
z̃a1−1

1 z̃a2−1
2

∫ ∞

0
y1 fX1

(
y1z̃a1

1
)

f X2
y1+Y2

(
y1z̃a2

2
)
dFY1(y1).

Now, taking into consideration that Xi ∼ Ga(pi), i = 1, 2 and Yi ∼ Ga(qi), i = 1, 2 and
using Formula (18), the previous expression becomes

C12
z̃a1 p1−1

1 z̃a2 p2−1
2

(1 + z̃a2
2 )(p2+q2+1)/2

∫ ∞

0
yα

1e−y1sWλ,µ
(
y1(1 + z̃a2

2 )
)
dy1, (20)

where

α = p1 + q1 − 1 + (p2 + q2 − 1)/2,

s = 1/2 + z̃a1
1 + z̃a2

2 /2,

λ = (p2 − q2 − 1)/2,

µ = (p2 + q2)/2

C12 =
a1a2

σ1σ2Γ(p1)Γ(p2)Γ(q1)
.

Now, (20) can be computed using Formula (A2) in Appendix A, where q = 1 + z̃a2
2 . Then,

2s− q = 2z̃a1
1 ,

2s + q = 2
(
1 + z̃a1

1 + z̃a2
2
)
,

α + µ +
3
2

= p1 + p2 + q1 + q2,

µ− λ +
1
2

= q2,

α− λ + 2 = p1 + q1 + q2,

α− µ +
3
2

= p1 + q1.
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Finally, after some computations, we obtain expression (19).

To obtain the cross moments of (15) in the bivariate case, we next need the previous result.

Lemma 1. Let X and Y be independent Gamma random variable with shape parameters a and b,
respectively. Then, if r and s are real numbers,

E[Xr(X + Y)s] =
Γ(a + r)Γ(a + b + r + s)

Γ(a)Γ(a + b + r)
, (21)

where a + r > 0, a + b + r > 0 and a + b + r + s > 0.

Proof of Lemma 1. Define U = X and V = X + Y and using Jacobians:

fU,V(u, v) = fX,Y(u, v− u) =
ua−1(v− u)b−1 exp(−v)

Γ(a)Γ(b)
, 0 < u < v < ∞,

and

E(UrVs) =
∫ ∞

0

(∫ v

0

ur+a−1vs(v− u)b−1 exp(−v)
Γ(a)Γ(b)

du

)
dv

=
∫ ∞

0

vs exp(−v)
Γ(a)Γ(b)

va+b+r−1B(a + r, b)dv,

where B(·, ·) represents the beta function. After some direct computations we obtain (21).

Then, we have the next result.

Theorem 3. Let r1 and r2 be non-negative numbers with q1 > r1/a1 and q1 + q2 > r1/a1. Then,

E(Zr1
1 Zr3

2 ) = σr1
1 σr2

2

Γ
(

p1 +
r1
a1

)
Γ
(

p2 +
r2
a2

)
Γ
(

q1 − r1
a1

)
Γ
(

q1 + q2 − r1
a1
− r2

a2

)
Γ(p1)Γ(p2)Γ(q1)Γ

(
q1 + q2 − r1

a2

) . (22)

Proof of Theorem 3. Using the definitions of Z1 and Z2 and taking into account that X1,
X2, Y1 and Y2 are mutually independent, we have

E(Zr1
1 Zr2

2 ) = σr1
1 σr2

2 E(Xr1/a1
1 )E(Xr2/a2

2 )E[Y−r1/a1
1 (Y1 + Y2)

−r2/a2 ].

Finally, using (2) and (21), we obtain (22).

The conditional density of Z1 given Z2 = z2 can be written as,

fZ1|Z2
(z1|z2) = h12(z2)

z̃a1 p1−1
1(

1 + z̃
a1
1

1+z̃a2
2

)p1+p2+q1+q2
· F
(

P, q2; Q;
z̃a1

1
1 + z̃a1

1 + z̃a2
2

)
, (23)

where

h12(z2) =
K̃12

(1 + z̃a2
2 )p1

,

being

K̃12 =
a1

σ1
· B(p2, q1 + q2)

B(p1, q1)B(p1 + q1 + q2, p2)
,

and z̃i = zi/σi, i = 1, 2. The conditional moments take a simple expression given in the
next theorem.
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Theorem 4. The conditional moments of Z1 given Z2 = z2 are,

E(Zr
1|Z2 = z2) = R12 ·

{
1 +

(
z2

σ2

)a2
}r/a1

, (24)

where

R12 =
σr+1

1
a1
· K̃12 ·

Γ(µ)Γ(ν)
Γ(µ + ν)

· 3F2(ν, P, q2; P, Q; 1),

being µ = P− r/a1 − p1 and ν = r/a1 + p1.

Proof of Theorem 4.

E(Zr
1|Z2 = z2) = σr

1h12(z2)
∫ ∞

0

z̃r+a1 p1−1
1 F

(
P, q2; Q; z̃

a1
1

1+z̃
a1
1 +z̃a2

2

)
(

1 + z̃
a1
1

1+z̃a2
2

)p1+p2+q1+q2
dz1

=
σr+1

1
a1

h12(z2)(1 + z̃a2
2 )r/a1+p1

∫ 1

0
(1− u)µ−1uν−1

2F1(P, q2; Q; u)du,

being µ = P − r/a1 − p1 and ν = r/a1 + p1 and where we make the substitution
u = z̃a1

1 /(1 + z̃a1
1 + z̃a2

2 ). Now, using Formula (A3) in Appendix A, we obtain (24).

5. Multivariate GB2 Distribution with Support above the Diagonal

As a multivariate generalization of (4), Jones and Larsen [49] proposed a general
family with support above the diagonal. In our case, a multivariate GB2 distribution with
this property can be constructed. As a generalization of the joint distribution of a subset of
order statistics, we have

gF(z1, . . . , zm) =
Γ(p1 + · · ·+ pm+1)

∏m+1
j=1 Γ(pj)

{
m

∏
j=1

f (zj)

}
m+1

∏
j=1

{
F(zj)− F(zj−1)

}pj−1,

on −∞ = z0 < z1 < · · · < zm < zm+1 = ∞.
In the bivariate case, we have the class of joint pdf,

gZ1,Z2(z1, z2) =
Γ(p1 + p2 + p3)

Γ(p1)Γ(p3)Γ(p3)
· a2(z1/σ1)

ap1−1(z2/σ2)
a−1[(z2/σ2)

a − (z1/σ1)
a]p2−1

σ1σ2[1 + (z1/σ1)a]p1+p2 [1 + (z2/σ2)a]p2+p3
, (25)

with z1 < z2.

Marginal and Conditional Distributions

Both marginal distributions in (25) are GB2 distributed:

Z1 ∼ GB2(a, p1, p2 + p3, σ1),

and
Z2 ∼ GB2(a, p1 + p2, p3, σ2).

The conditional densities are given by,

gZ1|Z2
(z1|z2) =

Γ(p1 + p2)

Γ(p1)Γ(p2)

f (z1)

F(z2)

{
F(z1)

F(z2)

}p1−1{
1− F(z1)

F(z2)

}p2−1

, (26)

and

gZ2|Z1
(z2|z1) =

Γ(p2 + p3)

Γ(p2)Γ(p3)

f (z2)

1− F(z1)

{
F(z2)− F(z1)

1− F(z1)

}p2−1{1− F(z2)

1− F(z1)

}p3−1

, (27)
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where z1 < z2. Figure 1 shows the joint pdf and the contour plots for the bivariate GB2
distribution with support above the diagonal for some selected values of the parameters.

0
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0.0

0.5

1.0
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0

1

2

3

4

5

Figure 1. Joint pdf and contour plots of the Bivariate GB2 distributions with support above than diagonal, with σi = 1,
i = 1, 2 and pi = 2, i = 1, 2, 3.

6. Applications

In this section, we include some applications of the models previously considered.

6.1. Modeling Bivariate Income Distributions

The use of bivariate distributions is especially relevant when panel data is available.
The estimation of univariate income distributions renders inefficient estimates and unreli-
able standard errors because the dependence inherent in the sample is not modeled. The
extant scholarship on multivariate distributions proposes several candidates that would
provide an excellent representation of bivariate income distributions. Sarabia et al. [27]
proposed a bivariate model with lognormal conditional distributions that seem to provide
an accurate fit to income data from the European Community Household Panel. Vinh
et al. [50] used several specifications to estimate the bivariate distribution of income in
Australia, including the bivariate Singh–Maddala distribution proposed by Takahasi [51]
and alternative models based on the Gaussian, Clayton and Gumbel copulas.

Besides efficiency issues, the estimation of bivariate distributions can be a powerful
tool to analyze several economic aspects. In particular, the correlation between the in-
comes of two generations reflects the extent of intergenerational mobility across families.
Björklund and Jäntti [52] estimated intergenerational mobility in Sweden using a Bivariate
log-normal distribution. This parametric model was also used by Chetty et al. [53] to
estimate intergenerational mobility of several cohorts in the US from 1970 to 1993. The de-
pendence structure of the joint bivariate distribution of men and women earnings informs
about the level of assortative mating [54] and the gender gap [55], two concepts that have
a tremendous impact on the level of economic inequality among households. Bivariate
distributions have also been used to model the joint distribution of income and wealth.
Jäntti et al. [56] represented the marginal distribution of income using a Singh–Maddala
distribution and a mixture of an exponential distribution (for negative values), a point-mass
at zero and a Singh–Maddala distribution (for positive values) for the marginal distribution
of wealth. For the dependence structure, they opted for Plackett and Clayton copulas.

To illustrate the use of the multivariate GB2 distribution to income data, we used the
estimated parameters from Singh and Maddala [29], who estimated the income distribution
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in the US from 1960 to 1972 using data from the US Census Bureau. In Figure 2, we present
the joint pdf and the contour plots for the bivariate income Singh–Maddala distribution
or the years (1960, 1966) in the top panel and years (1966, 1972) in the bottom panel. Our
estimates suggest that there is a strong positive dependence between income distributions
in different years. The contour plots also suggest that such dependence is stronger at the
lower tail. The economic interpretation of lower tail dependence is that part of the U.S.
citizens experiences serious issues to get out of poverty. More importantly, the shape of
the bivariate distribution does not exhibit substantial changes over time, which reflects
that the poverty trap has traditionally been a prevalent issue in the US economy, which,
according to recent studies, has not been addressed yet [57].
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Figure 2. Joint pdf and contour plots of the bivariate income Singh–Maddala distribution for the years: (1960, 1966) (top);
and (1966, 1972) (bottom).

The main contribution of our models to the area of income distribution dynamics is
that we can understand non-linear dependencies in bivariate comparisons. This is clearly
seen in Figure 2 and the corresponding contour plots. The sort of relationship between the
income of a family in 1960 and that in 1966 is much higher in low levels than it is in high
levels of income. This result cannot be obtained with a univariate analysis, where each year
is analyzed separately from the next. In the bivariate analysis, we have a duplicate of each
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family in two different years, and so we can assess the dispersion of family trajectories
regarding their income level.

6.2. Modeling Compound Precipitation and Wind Events

A key point, for estimating risks associated with climate events, is to build power-
ful statistical models for modeling compound events. In this section, we show that a
multivariate GB2 distribution with q fixed, defined by the expression (10) and with joint
probability density function (pdf) given by the expression (11), can be useful for modeling
simultaneous precipitation and wind events in the whole range.

The concurrence of precipitation and winds cause significant impacts in our lives.
Those impacts can be either negative or positive. For example, extreme precipitation and
strong winds happening at the same time can cause major infrastructural damage [58];
however, moderate levels of rain intensity and wind speed can reduce air pollution [59].
This makes it necessary to model not only the right tail of the bivariate distribution but
also the rest of it.

6.2.1. Data

For this study, we used the EartH2Observe (E2OBS), WFDEI and ERA-Interim data
Merged and Bias-corrected for ISIMIP (EWEMBI) data base [60,61], a global climate dataset
freely available on Potsdam Institute for Climate Impact Research website [62], that cover
the entire globe, at daily temporal resolution from 1979 to 2016, and 0.5◦ horizontal resolution.

We analyzed two climate variables: precipitation and near-surface wind speed, whose
short names in the dataset are pr and s f cWind, and that are expressed in kg·m−2·s−1

and m·s−1, respectively. For that, we used as lower thresholds: 0.1/86,400 kg·m−2·s−1

(0.1 mm·d−1) for precipitation and 0.01 m·s−1 for wind speed (see [63]).
For illustration purposes, we selected four well-known locations at different points

of the planet: Alhambra, Granada, Spain; Sagrada Familia, Barcelona, Spain; Statue of
Liberty, New York City, United States; and Taipei World Financial Center, Taipei, Taiwan.
Then, for each of those locations, we took their nearest point in our 0.5◦ horizontal grid (not
considering the points located on the sea, as was the case in Barcelona and Taipei). Finally,
we analyzed the bivariate truncated distribution of precipitation and near-surface wind
speed in each of those near locations in the last decade, from 1 January 2007 to 31 December
2016 at daily temporal resolution.

Table 1 provides a list of those selected locations and their coordinates, the coordinates
of the grid points chosen in our dataset from those locations, and the probability of com-
pound event (proportion of days with simultaneous positive values, over the thresholds,
of both variables, in the period considered, in a particular grid point). Figure 3 shows the
daily time series of both variables (pr and s f cWind) for the four grid points chosen.

Table 1. Selected locations, their coordinates, the coordinates of the grid points chosen in our dataset and their probability
of compound event (simultaneous precipitation and wind events, over the thresholds of 0.1 mm·d−1 and 0.01 m·s−1, in the
period 2007–2016).

Location Coordinates Grid Point Probability of
Coordinates Compound Event

Alhambra, Granada, Spain 37.17627◦ N 3.58810◦ W 37.25◦ N 3.75◦ W 0.2935
Sagrada Familia, Barcelona, Spain 41.40404◦ N 2.17443◦ E 41.75◦ N 1.75◦ E 0.3452

Statue of Liberty, New York City, USA 40.68944◦ N 74.04453◦ W 40.75◦ N 74.25◦ W 0.4610
Taipei World Financial Center, Taiwan 25.03428◦ N 121.56450◦ E 24.75◦ N 121.75◦ E 0.8555
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Figure 3. Daily time series of precipitation (pr) and near-surface wind speed (s f cWind) over four selected grid points
(see Table 1), using EWEMBI data, from 1 January 2007 to 31 December 2016.

6.2.2. Methods

We fitted a bivariate GB2 (with q fixed) model, described in Section 3.2, with unknown
parameter vector θ = (q0, p1, p2, a1, a2, σ1, σ2) and joint pdf given by the expression (11), to
each of the four bivariate truncated dataset (corresponding to the days with simultaneous
positive values of both variables, in the whole range, from 1 January 2007 to 31 December
2016, by maximum likelihood method.

The corresponding log-likelihood function, from the expression (11), can be expressed
as follows

log `(θ) =
N

∑
j=1

log f (z1j, z2j|θ)

= N{log[Γ(q0 + p1 + p2)]− log[Γ(q0)]− log[Γ(p1)]− log[Γ(p2)]}
+ N{log[a1] + log[a2]− log[σ1]− log[σ2]}

+ (a1 p1 − 1)
N

∑
j=1

log(z1j/σ1) + (a2 p2 − 1)
N

∑
j=1

log(z2j/σ2)

+ (q0 + p1 + p2)
N

∑
j=1

log[1 + (z1j/σ1)
a1 + (z2j/σ2)

a2 ]

where (z1j, z2j), j = 1, . . . , N is a sample of bivariate data, f (z1j, z2j|θ) is its joint pdf, N is
the sample size, and the maximum likelihood estimation of the parameter vector θ̂ is the
one that maximizes log `(θ).

Maximum likelihood estimates of the parameters θ were computed by using the R
software function optimx, with the limited memory quasi-Newton L-BFGS-B algorithm,
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considering the pr variable expressed in 10−4 kg·m−2·s−1 and the s f cWind variable ex-
pressed in m·s−1. We also calculated the value of the Akaike information criterion (AIC),
given by following expression [64]

AIC = −2 log `(θ̂) + 2K, (28)

where K is the number of parameters of the model and a lower AIC value indicates a
better fit, which could be used in future work as a goodness-of-fit measure to compare
with alternative bivariate models. As a final remark, it can be noted that the simulation
of multivariate GB2 distribution with q fixed (defined by expression 10) can be done in
the following way: first, we choose the shape and scale parameters σi, ai, pi, i = 1, 2, . . . , m
and q0; then, we simulate a sample of size m of independent Gamma random variables
X1, . . . , Xm and a single Gamma variable Y0 with shape parameter q0, independent of
previous sample; finally, we construct the vector Z1, . . . , Zm according to definition (10)-this
methodology can be extended easily to the rest of multivariate GB2 distributions defined
in the paper.

6.2.3. Results

Table 2 shows the parameter estimates and the values of AIC statistic obtained from
the bivariate GB2 (with q fixed) model to the four truncated datasets by maximum likeli-
hood (standard errors in parenthesis). It can be noted that all the parameter estimates are
statistically significant at a 0.05 level of significance, assuming the asymptotic normality of
the maximum likelihood estimates.

Table 2. Parameter estimates and AIC statistics, from the bivariate GB2 model with q fixed (Equation (11)), to the four
bivariate truncated datasets by maximum likelihood, with standard errors in parenthesis (pr expressed in 10−4 kg·m−2·s−1

and s f cWind expressed in m·s−1).

Location q̂0 p̂1 p̂2 â1 â2 σ̂1 σ̂2 AIC

Granada 16.3187 3.0369 7.9799 0.4702 1.1355 12.1607 5.3893 −3992.44
(37.25◦ N 3.75◦ W) (2.8526) (1.0185) (2.4878) (0.0783) (0.1419) (4.0787) (1.2403)

Barcelona 16.6511 2.0810 11.7500 0.5627 0.9280 16.4814 3.9937 −5004.23
(41.75◦ N 1.75◦ E) (2.1999) (0.4537) (3.1215) (0.0626) (0.0878) (4.0430) (0.9927)

New York 13.8062 2.5009 6.7216 0.4862 1.3179 16.5038 5.6226 −7793.07
(40.75◦ N 74.25◦ W) (1.8616) (0.5979) (1.3626) (0.0587) (0.1096) (4.0350) (0.8037)

Taiwan 11.0710 2.1498 2.3624 0.6120 2.0889 11.1861 5.4784 −14,855.81
(24.75◦ N 121.75◦ E) (2.3232) (0.3306) (0.4214) (0.0542) (0.2086) (3.9155) (0.5138)

Finally, Figure 4 shows the contour plots and joint pdfs of the bivariate GB2 distri-
bution with q fixed, in which we can see the existing relation between precipitation and
near-surface wind speed, in the four locations analyzed. The different shapes they take can
be noted, all positively skewed, and with a mode very close to the threshold in the case of
pr variable and within 2–3 m·s−1 in the case of s f cWind variable.

Economic and practical results follow from the analysis of high-frequency rain and
wind data. Firstly, we may characterize the four locations in terms of the risk of large
rain or wind measurements. These characterizations are important to insurers. Insurance
companies cover weather events, but they try to diversify their exposure to risk. When
looking at the raw data in Figure 3, it is difficult to observe an explicit dependence between
the two series of rain and wind measurements, besides the relative level in every location.
The dependence between the two components does not arise naturally. After our analysis,
we conclude that, by obtaining a dependence structure through our models, we can identify
features that are relevant for insurers. Insurance companies seek to cover uncorrelated
risks. In our analysis, insurers would discard one risk rather than the location in order not
to accumulate too much exposure, due to the existence of dependence between the two
phenomena. In those cases, reinsurers or consortiums of insurers would cover the rest. We
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can also confirm that some locations such as Taiwan have stronger tail dependence than
others.
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Figure 4. Contour plots and joint pdf of the bivariate GB2 distribution with q fixed, corresponding to
the four grid points indicated in Table 1.
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7. Conclusions and Future Research

In this paper, we propose several multivariate classes of GB2 distributions. The first
class is based on stochastic dependent representations defined in terms of gamma random
variables. Then, a general class of multivariate GB2 distributions is introduced where all
the marginal distributions are GB2 with all the shape and scale parameters are different.
The second class is based on a generalization of the distribution of order statistics. This
construction results in a multivariate GB2 distribution with support above the diagonal.
We discuss two important applications of these distributions: the modeling of bivariate
income distributions and the modeling of compound precipitation and wind events over
the entire range.

Future research can be developed in several directions. By means of monotonic
transformations of the marginal distributions, models with support in Rn can be obtained,
which can be useful to model data of returns of dependent financial assets. On the other
hand, joint modeling of dependent risks can be another active field of research, together
with the computation of multivariate risk dependence measures (see [65–67]).
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Appendix A. Some Results about Whittaker’s and Hypergeometric Functions

The Whittaker function Wλ,µ(z) is a solution of the equation,

d2W
dz2 +

(
−1

4
+

λ

z
+
− 1

4 − µ2

z2

)
W = 0.

Details about the Whittaker function can be found in ([68], sections 9.22 and 9.23). The
Whittaker function admits the integral representation,

Wλ,µ(z) =
zλe−z/2

Γ(µ− λ + 2
2 )

∫ ∞

0
tµ−λ−1/2e−t

(
1 +

t
z

)µ+λ−1/2
dt, (A1)

where Re(µ − λ) > 1/2, |argz| < π. We have next the result about the integral of the
Whittaker function (see [68], formula 7.621.3),∫ ∞

0
e−sttαWλ,µ(qt)dt =

=
Γ(α + µ + 3

2 )Γ(α− µ + 3
2 )q

µ+ 1
2

Γ(α− λ− 2)

(
s +

q
2

)−α−µ− 3
2 ×

× F
(

α + µ +
3
2

, µ− λ +
1
2

; α− λ + 2;
2s− q
2s + q

)
, (A2)

with Re(α ± µ + 3
2 ) > 0, Re(s) > − q

2 , q > 0, and F(, ; ; ) is the Gauss hypergeometric
function (e.g., [68], section 9.1).
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On the other hand, we have∫ 1

0
(1− x)µ−1xν−1

pFq(a1, . . . , ap; b1, . . . , bq; ax)dx =

=
Γ(µ)Γ(ν)
Γ(µ + ν) p+1Fq+1(ν, a1, . . . , ap; µ + ν, b1, . . . , bq; a) (A3)

with Reµ > 0, Reν > 0, p ≤ q + 1, if p = q + 1, then |a| < 1 (see [68], section 7.5)
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