Four Distances for Circular Intuitionistic Fuzzy Sets
Abstract
:1. Introduction
- 1.
- for all , and equality holds if and only if (iff) .
- 2.
- for all (symmetry).
- 3.
- for all (the triangle inequality).
- 1.
- Euclidean metric:
- 2.
- Manhattan (Hamming) metric:
2. Definitions of the First Four Distances over C-IFSs
3. Numerical Example
4. Result and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Atanassov, K. Intuitionistic fuzzy sets. In VII ITKR’s Session; Deposed in Central Sci.—Techn. Library of Bulg. Acad. of Sci., 1697/84; Sofia, Bulgaria, June 1983. (In Bulgarian) [Google Scholar]
- Atanassov, K. On Intuitionistic Fuzzy Sets Theory; Springer: Berlin, Germany, 2012. [Google Scholar]
- Zadeh, L. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Atanassov, K. Circular intuitionistic fuzzy sets. J. Intell. Fuzzy Syst. 2020, 39, 5981–5986. [Google Scholar] [CrossRef]
- Adams, C.; Franzosa, R. Introduction to Topology—Pure and Applied; Pearson Prentice Hall: Hoboken, NJ, USA, 2008. [Google Scholar]
- Kuratowski, K. Topology; Academic Press: New York, NY, USA; London, UK, 1966; Volume 1. [Google Scholar]
- Marinov, E.; Szmidt, E.; Kacprzyk, J.; Tcvetkov, R. A modified weighted Hausdorff distance between intuitionistic fuzzy sets. In Proceedings of the 2012 6th IEEE International Conference Intelligent Systems, Sofia, Bulgaria, 6–8 September 2012; pp. 138–141. [Google Scholar]
- Atanassov, K. Norms and metrics over intuitionistic fuzzy sets. BUSEFAL 1993, 55, 11–20. [Google Scholar]
- Atanassov, K. Intuitionistic Fuzzy Sets: Theory and Applications; Springer: Heidelberg, Germany, 1999. [Google Scholar]
- Szmidt, E.; Kacprzyk, J. Distances between intuitionistic fuzzy sets. Fuzzy Sets Syst. 2000, 114, 505–518. [Google Scholar] [CrossRef]
- Abdullah, L.; Ismail, W.K.W. Hamming Distance in Intuitionistic Fuzzy Sets and Interval Valued Intuitionistic Fuzzy Sets: A Comparative Analysis. Adv. Comput. Math. Its Appl. 2012, 1, 7–11. [Google Scholar]
- Atanassov, K. A new approach to the distances between intuitionistic fuzzy sets. In Information Processing and Management of Uncertainty in Knowledge-Based Systems; Hullermeier, E., Kruse, R., Hoffmann, F., Eds.; Springer: Heidelberg, Germany, 2010; pp. 581–590. [Google Scholar]
- Atanassov, K.; Vassilev, P.; Tsvetkov, R. Intuitionistic Fuzzy Sets, Measures and Integrals; Academic Publishing House “Prof. M. Drinov”: Sofia, Bulgaria, 2013. [Google Scholar]
- Gong, Z.; Xu, X.; Yang, Y.; Zhou, Y.; Zhang, H. The spherical distance for intuitionistic fuzzy sets and its application in decision analysis. Technol. Econ. Dev. Econ. 2016, 22, 393–415. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Yang, Z.; Sun, X.; Xu, G. Chordal distance and non-Archimedean chordal distance between Atanassov’s intuitionistic fuzzy set. J. Intell. Fuzzy Syst. 2017, 33, 3889–3894. [Google Scholar] [CrossRef]
- Hatzimichailidis, A.G.; Papakostas, G.A.; Kaburlasos, V.G. A Novel Distance Measure of Intuitionistic Fuzzy Sets and Its Application to Pattern Recognition Problems. Int. J. Intell. Syst. 2012, 27, 396–409. [Google Scholar] [CrossRef]
- Ke, D.; Song, Y.; Quan, W. New distance measure for Atanassov’s intuitionistic fuzzy sets and its application in decision making. Symmetry 2018, 10, 429. [Google Scholar] [CrossRef] [Green Version]
- Luo, D.; Xiao, J. Distance and Similarity between Intuitionistic Fuzzy Sets. In Proceedings of the 2013 IEEE International Conference on Mechanical and Automation Engineering (MAEE), Jiujang, China, 21–23 July 2013; pp. 157–160. [Google Scholar]
- Luo, M.; Zhao, R. A distance measure between intuitionistic fuzzy sets and its application in medical diagnosis. Artif. Intell. Med. 2018, 89, 34–39. [Google Scholar] [CrossRef]
- Luo, X.; Li, W. Novel Distance Measure Between Intuitionistic Fuzzy Sets. Xitong Fangzhen Xuebao/J. Syst. Simul. 2017, 29, 2360–2372. [Google Scholar]
- Ngan, R.T.; Son, L.H.; Cuong, B.C.; Ali, M. H-max distance measure of intuitionistic fuzzy sets in decision making. Appl. Soft Comput. J. 2018, 69, 393–425. [Google Scholar] [CrossRef]
- Papakostas, G.A.; Hatzimichailidis, A.G.; Kaburlasos, V.G. Distance and similarity measures between intuitionistic fuzzy sets: A comparative analysis from a pattern recognition point of view. Pattern Recognit. Lett. 2013, 34, 609–1622. [Google Scholar] [CrossRef]
- Peng, D.-H.; Gao, C.-Y.; Gao, Z.-F. Generalized hesitant fuzzy synergetic weighted distance measures and their application to multiple criteria decision-making. Appl. Math. Model. 2013, 37, 5837–5850. [Google Scholar] [CrossRef]
- Szmidt, E. Distances and Similarities in Intuitionistic Fuzzy Sets; Studies in Fuzziness and Soft Computing; Springer: Berlin/Heidelberg, Germany, 2014; Volume 307. [Google Scholar]
- Szmidt, E.; Kacprzyk, J. A concept of similarity for intuitionistic fuzzy sets and its use in group decision making. In Proceedings of the 2004 IEEE International Conference on Fuzzy Systems, Budapest, Hungary, 25–29 July 2004; Volume 2, pp. 1129–1134. [Google Scholar]
- Szmidt, E.; Kacprzyk, J. Similarity of intuitionistic fuzzy sets and the Jaccard coefficient. In Proceedings of the Tenth International Conference IPMU’2004, Perugia, Italy, 4–9 July 2004; Volume 2, pp. 1405–1412. [Google Scholar]
- Szmidt, E.; Kacprzyk, J. New measures of entropy for intuitionistic fuzzy sets. Notes Intuit. Fuzzy Sets 2005, 11, 12–20. [Google Scholar]
- Szmidt, E.; Kacprzyk, J. Distances between intuitionistic fuzzy sets and their applications in reasoning. In Computational Intelligence for Modelling and Prediction; Halgamude, S., Wang, L., Eds.; Springer: Berlin, Germany, 2005; pp. 101–116. [Google Scholar]
- Szmidt, E.; Kacprzyk, J. A new concept of a similarity measure for intuitionistic fuzzy sets and its use in group decision making. Lect. Notes Artif. Intell. 2005, 3558, 272–282. [Google Scholar]
- Szmidt, E.; Kacprzyk, J. Similarity measures for intuitionistic fuzzy sets. In Issues in the Representation and Processing of Uncertain Imprecise Information: Fuzzy Sets, Ntuitionistic Fuzzy Sets, Generalized Nets, and Related Topics; Atanassov, K., Kacprzyk, J., Krawczak, M., Szmidt, E., Eds.; Akademicka Oficyna Wydawnictwo EXIT: Warsaw, Poland, 2005; pp. 355–372. [Google Scholar]
- Szmidt, E.; Kacprzyk, J. Distances between intuitionistic fuzzy sets: Straightforward approaches may not work. In Proceedings of the 3rd International IEEE Conference “Intelligent Systems” (IS’06), London, UK, 4–6 September 2006; pp. 716–721. [Google Scholar]
- Szmidt, E.; Kacprzyk, J. Analysis of similarity measures for Atanassov’s intuitionistic fuzzy sets. In Proceedings of the IFSA/EUSFLAT 2009, Lisboa, Portugal, 20–24 July 2009; pp. 1416–1421. [Google Scholar]
- Szmidt, E.; Kacprzyk, J. Some remarks on the Hausdorff distance between Atanassov’s intuitionistic fuzzy sets. In Proceedings of the EUROFUSE Worksop’09, Preference Modelling and Decision Analysis, Pamplona, Spain, 16–18 September 2009; Public University of Navarra: Pamplona, Spain, 2009; pp. 311–316. [Google Scholar]
- Xu, C. Improvement of the distance between intuitionistic fuzzy sets and its applications. J. Intell. Fuzzy Syst. 2017, 33, 1563–1575. [Google Scholar] [CrossRef]
- Xue, W.; Xian, S.; Dong, Y. A Novel Intuitionistic Fuzzy Induced Ordered Weighted Euclidean Distance Operator and Its Application for Group Decision Making. Int. J. Intell. Syst. 2017, 32, 739–753. [Google Scholar] [CrossRef]
- Yang, Y.; Chiclana, F. Consistency of 2D and 3D distances of intuitionistic fuzzy sets. Expert Syst. Appl. 2012, 39, 8665–8670. [Google Scholar] [CrossRef]
- Zeng, S. Some intuitionistic fuzzy weighted distance measures and their application to group decision making. Group Decis. Negot. 2013, 22, 281–298. [Google Scholar] [CrossRef]
- Zhang, H. Entropy for intuitionistic fuzzy sets based on distance and intuitionistic index. Int. J. Uncertain., Fuzziness Knowlege-Based Syst. 2013, 21, 139–155. [Google Scholar] [CrossRef]
- Zhang, Q.; Huang, Y.; Xing, H.; Liu, F. Distance measure, information entropy and inclusion measure of intuitionistic fuzzy sets and their relations. Int. J. Adv. Comput. Technol. 2012, 4, 480–487. [Google Scholar]
- Atanassov, K. Elliptic Intuitionistic Fuzzy Sets; Comptes Rendus de l’Academie Bulgare des Sciences; Academic Publishing House “Prof. M. Drinov”: Sofia, Bulgaria, 2021; Volume 74, (to appear). [Google Scholar]
0 | 0.321 | 0.070 | 0.609 | 0.241 | 0.049 | 0.710 |
1 | 0.099 | 0.102 | 0.799 | 0.075 | 0.071 | 0.854 |
2 | 0.200 | 0.699 | 0.101 | 0.150 | 0.489 | 0.361 |
D | ||||
---|---|---|---|---|
0.049 | 0.062 | 0.083 | 0.089 |
0 | 0.2411 | 0.2523 | 0.5069 |
1 | 0.0746 | 0.3413 | 0.584 |
2 | 0.1501 | 0.7293 | 0.120 |
D | ||||
---|---|---|---|---|
0.058 | 0.072 | 0.086 | 0.088 | |
0.049 | 0.062 | 0.083 | 0.089 | |
0.067 | 0.092 | 0.126 | 0.127 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atanassov, K.; Marinov, E. Four Distances for Circular Intuitionistic Fuzzy Sets. Mathematics 2021, 9, 1121. https://doi.org/10.3390/math9101121
Atanassov K, Marinov E. Four Distances for Circular Intuitionistic Fuzzy Sets. Mathematics. 2021; 9(10):1121. https://doi.org/10.3390/math9101121
Chicago/Turabian StyleAtanassov, Krassimir, and Evgeniy Marinov. 2021. "Four Distances for Circular Intuitionistic Fuzzy Sets" Mathematics 9, no. 10: 1121. https://doi.org/10.3390/math9101121
APA StyleAtanassov, K., & Marinov, E. (2021). Four Distances for Circular Intuitionistic Fuzzy Sets. Mathematics, 9(10), 1121. https://doi.org/10.3390/math9101121