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Abstract: This paper proposed a definition of the fractional line integral, generalising the concept of
the fractional definite integral. The proposal replicated the properties of the classic definite integral,
namely the fundamental theorem of integral calculus. It was based on the concept of the fractional
anti-derivative used to generalise the Barrow formula. To define the fractional line integral, the
Grünwald–Letnikov and Liouville directional derivatives were introduced and their properties
described. The integral was defined for a piecewise linear path first and, from it, for any regular
curve.
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1. Introduction

It is no use to refer to the great evolution that made fractional calculus invade many
scientific and technical areas [1–4]. Advances in various aspects of fractional calculus led
to a question: Why are there no fractional counterparts of some classic results? In fact,
and notwithstanding the progress, there are several singular situations. One of them was,
until recently, the non-existence of the definition of the “fractional definite integral”. This
gap was filled by Ortigueira and Machado [5]. Here, we tried to fill in another gap, by
introducing a definition of the fractional line integral. This generalization was motivated
by the results presented in [6], where classic theorems of vectorial calculus were introduced,
but for integrations over rectangular lines. With the integral introduced here, the Green
theorem, for example, can be generalised. Here, we took advantage of the results stated
in [5] to propose a fractional line integral. We used directional derivatives. However, and
according to the considerations made in [5], not all the directional derivatives are suitable
for our purposes. We opted for the directional derivatives resulting from the generalization
of the Grünwald–Letnikov (GL) and Liouville (L) directional derivatives. These were
introduced and their main properties listed. It is important to refer to the presentation of
the Liouville directional regularised derivative.

The classic definite Riemann integral served as guide to define the fractional definite
integral, since we required them to share the same properties. The fractional definite
integral was expressed in terms of the anti-derivative generalising the Barrow formula.

To introduce the fractional line integral (FLI), we started by defining it on a segment of
an oriented straight-line. This procedure was enlarged to a piecewise linear path formed by
a sequence of connected straight-line segments. By using a standard procedure consisting
of approximating a curve by a sequence of piecewise linear paths, we introduced the
integration over any simple rectifiable line. Its main properties are presented.

The paper is outlined as follows. In Section 2, we introduce the required background.
In Section 3, we describe the GL and L directional derivatives that are the basis for defining
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the fractional line integral. The corresponding properties are also presented. In Section 4,
we introduce the fractional line integral and its main properties. Finally, we draw some
conclusions.

2. Background
2.1. Functional Framework

The theory we develop below is expected to be useful in generalising the classic
vectorial theorems suitable for dealing with fractionalisations of important equations of
physics, as is the case of the Maxwell equations [6,7]. Therefore, we needed a framework
involving functions f (t), t ∈ R, which are of exponential order, to have the bilateral Laplace
transform (BLT), or absolutely or square integrable, to have the Fourier transform (FT). To
ensure that the left derivatives we used exist, we assumed also that they:

1. are almost everywhere continuous;
2. have bounded variation;
3. verify:

| f (x)| < A
1

|x|γ+1 , γ, A ∈ R+, for x < x0 ∈ R. (1)

In particular, we can have f (x) ≡ 0, x < x0 (this is called a right-hand function).

Remark 1. If a given function has bounded support, we extend it to R, with a null extrapolation.
This maintains the maximum generality of our framework.

2.2. Suitable Fractional Derivatives

When performing the introduction of the fractional definite integral [5], a discussion
about the problem of the definition of the fractional derivative (FD) suitable for such an
objective was performed. It was shown that among the many definitions, we should
require one-sided derivatives defined on R in order to keep several classic relations valid.
The Grünwald–Letnikov (GL) [4,8,9] and (regularised) Liouville (rL) derivatives [4,10]
were adopted. The forward Grünwald–Letnikov and Liouville derivatives are given
respectively by:

Dα f (x) = lim
h→0+

∞
∑

n=0
(−1)n (−α)n

n! f (x− nh)

hα
, (2)

where (a)n = ∏n−1
k=0 (a + k), ((a)0 = 1) represents the Pochhammer symbol for the raising

factorial, and:

Dα
L f (x) =

1
Γ(−α)

∫ ∞

0

[
f (x− τ)− u(α)

N

∑
n=0

(−1)n f (n)(x)
n!

τn

]
τ−α−1dτ, (3)

where N is the integer part of α, so that α− 1 < N ≤ α, N ∈ Z+
0 , and u(α) is the Heaviside

unit step to ensure that the summation only exists for positive α. The conditions stated in
the previous subsection, namely (1), are sufficient for the existence of the above derivatives.
Despite our work being based in the derivatives GL and rL, we included one version of the
directional derivative for the usual Liouville derivative (L) [9,11]:

RLDα
+ f (x) :=

1
Γ(m− α)

dm

dxm

∫ x

−∞
(x− ξ)m−α−1 f (ξ)dξ, (4)

and the Liouville–Caputo derivative (LC) [1]:

LCDα
+ f (x) :=

1
Γ(m− α)

∫ x

−∞
(x− ξ)m−α−1 dm

dξm f (ξ)dξ, (5)

where m− 1 < α ≤ m, m ∈ Z+. These two derivatives could be alternatives to GL or rL.
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Remark 2. The concept of “forward” is tied here to the causality in the sense of “going from past
to future.” This implies not only an order, but also a direction on the real line.

The study of the equivalence of the two derivatives was performed in [10]. It is not
difficult to show that they are really equivalent for functions with the BLT or FT. We only
have to compute the derivatives of the exponential est, s ∈ C, t ∈ R [8]. This makes it
easier to justify some of the relevant characteristics they enjoy, namely the index law [8,10].
This property means that for a given FD of order α > 0, there is an FD, of negative order,
that we call the “anti-derivative” that is left and right inverse of the FD:

DαD−α f (x) = D−αDα f (x) = f (x). (6)

It can be shown [4] that the GL, rL, LC, and FD of the non-null constant function are
identically null. The L derivative of such a function does not exist, since the integral is
divergent. It must be stressed here that, for negative order (anti-derivative), the rL, L, and
LC are equal:

Dα
L f (x) =

1
Γ(−α)

∫ ∞

0
f (x− τ)τ−α−1dτ = − 1

Γ(−α + 1)

∫ ∞

0
f (x− τ)dτ−α, α < 0. (7)

Remark 3. Everything what was performed here can be replicated for the backward derivatives.
We have not done so, since this is not very interesting.

2.3. Order-One Definite Integral

Consider a closed interval [a, b] ⊂ R where f (x) is continuous. There are several
ways of introducing the definite integral [12,13]. Probably the simplest is through the
Riemann sum.

Definition 1. Divide the interval [a, b] into N small intervals with lengths ∆i, i = 1, 2, . . . , N.
Let ξi ∈ ∆i (i = 1, 2, . . . , N). We call the definite integral of f (x) over [a, b] the limit:

S = lim
max(∆i)→0

N

∑
i=1

f (ξi)∆i (8)

The sum S is represented by
∫ b

a f (ξ)dξ [12].

Using the time scale approach, we can define a nabla derivative and its inverse [4].
This is given by:

f (−1)(x) = lim
sup(∆i)→0

∞

∑
i=0

∆i f (x− hi)

where hi = ∑i−1
k=0 ∆k (h0 = 0). With this anti-derivative, we can rewrite (8) as:

∫ b

a
f (x)dx = f (−1)(b)− f (−1)(a). (9)

For simplicity and because the function is continuous, we adopted a procedure, frequently
used in practice, that consisted of using equal length intervals, ∆i = b−a

N = h, i =
1, 2, . . . , N, and ξi the first or last point in each one, so that we can set, for example,
ξi = a + (i− 1)h = b− ih, i = 1, 2, . . . , N. We have, then:

∫ b

a
f (x)dx = lim

h→0
h

N−1

∑
i=0

f (a + ih) = lim
h→0

h
N

∑
i=1

f (b− ih). (10)
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2.4. Fractional Definite Integral

A generalisation of the concept of the definite integral must conform with its properties.
The first approach to obtain a fractional definite integral was performed in [5]. Here, we
present a slightly different definition.

Definition 2. We defined the α-order fractional integral (FI) of f (x) ( f (−∞) = 0) over the
interval (−∞, a) by:

Iα f (−∞, a) =
1

Γ(α)

∫ ∞

0
f (a− τ)τα−1dτ =

1
Γ(α + 1)

∫ ∞

0
f (a− τ)dτα = f (−α)(a). (11)

For simplification, we used the notation:

Iα f (−∞, a) =
∫ a

−∞
f (x)dxα.

Theorem 1. If b > a, then:

Iα f (a, b) =
∫ b

a
f (x)dxα = f (−α)(b)− f (−α)(a). (12)

In fact, this relation must be valid, in order to keep the formula valid:

∫ b

a
f (x)dx =

∫ c

a
f (x)dx +

∫ b

c
f (x)dx, ,

with a < c < b. The relation (12) is none other than the fractional Barrow formula. The
definition of the fractional definite integral (12) is consistent with the fractional fundamental
theorem of integral calculus (integer order):

Theorem 2.
IαDαg(a, x) = D−αDαg(x)− D−αDαg(a) = g(x)− g(a), (13)

and
Dα[Iαg(a, x)] = g(x). (14)

These results come immediately from the properties of the rL (or GL) derivative. In
particular, the derivative of a constant is zero.

3. The Grünwald–Letnikov and Liouville Directional Derivatives

The usefulness, advantages, and properties of the GL and rL derivatives, introduced
above, were studied in [5,10]. Here, we present their directional formulations.

Definition 3. Consider a function f (x), x ∈ Rn, and let v ∈ Rn be a unitary vector defining the
direction of the derivative computation and the half-straight line:{

ξ : ξ = (x− khv), h ∈ R+, x ∈ Rn k ∈ N0
}

. (15)

Consider a continuous function, f (x), such that | f (x − kv)| decreases at least as 1
k|α|+1 , when

k→ ∞ [4]. We defined the GL directional derivative as:

Dα
v f (x) = lim

h→0
h−α

∞

∑
k=0

(−α)k
k!

f (x− khv), (16)

where again, (a)k represents the Pochhammer symbol for the rising factorial.
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The relation of the GL and Liouville derivatives studied in [10] led us to introduce an
analogous definition for the directional case, considering the general regularised case, not
presented elsewhere.

Definition 4. We defined the Liouville directional integral (anti-derivative) by:

Dα
v f (x) =

1
Γ(−α)

∫ ∞

0
v−α−1 f (x− vv) dv, (17)

where α < 0.

As is well known, when α > 0, the above integral is singular [9]. However, it can be
regularised through the procedure followed in [10] to obtain:

Dα
v f (x) =

1
Γ(−α)

∫ ∞

0

(
f (x− vv)−

N

∑
m=0

1
m!

dm f (x− vv)
dvm

∣∣∣∣
v=0

vm

)
v−α−1 dv, (18)

where N = bαc is the greatest integer less than or equal to α.

Definition 5. We defined the Liouville directional derivative (L) by:

RLDα
v f (x) =

1
Γ(m− α)

Dm
v

∫ ∞

0
vm−α−1 f (x− vv) dv, (19)

where Dm
v means to apply m-times the usual directional derivative in the direction v, m− 1 < α ≤ m

and m ∈ Z+.

Definition 6. We defined the Liouville–Caputo derivative (LC) by:

LCDα
v f (x) =

(−1)m

Γ(m− α)

∫ ∞

0
vm−α−1 dm

dvm f (x− vv) dv, (20)

where m− 1 < α ≤ m and m ∈ Z+.

To test the coherence of the definitions, take the exponential f (x) = es·x, x ∈ Rn,
where (s · x) is the inner product of the constant s ∈ Cn and x. Inserting f (x) into relations
(16) to (20), we got [9]

Dα
ves·x = (s · v)αes·x, Re(s) > 0. (21)

To obtain this result, we had to use the general integral representation for the Gamma
function defined on C \Z−0 [14]:

Γ(α) =
∫ ∞

0

[
e−τ − u(−α)

N

∑
n=0

(−1)n

n!
τn

]
τα−1 dτ,

where N is the greatest integer less than −α if α < 0 and u(·) is the Heaviside function.
The expression Re(s) > 0 means that each component sj, j = 1, 2, . . . , n of s has

positive real parts. It is a sufficient condition for the convergence of the series in (16) or
of the integrals in (17) to (20). Relation (21) is in agreement with similar results in [9] and
means that:

1. The exponential is the eigenfunction of the introduced derivatives;
2. The BLT, F(s) of the derivatives of f (x), is given by:

L[Dα
v f (x)] = (s · v)αF(s), Re(s) > 0. (22)

where F(s) = L[ f (x)]. With s = iω, we obtained the same result for the Fourier
transform.
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The main properties of the above derivatives are easily deduced from (17) to (20); see,
for example [8].

1. Linearity vectorial functions: Let f(x) = f1(x)e1 + f2(x)e2 + f3(x)e3. Then:

Dα
v[ f (x) + g(x)] = Dα

v f (x) + Dα
vg(x). (23)

2. Commutativity and additivity of the orders
If α, β ∈ R

Dα
v

[
Dβ

v f (x)
]
= Dβ

v [Dα
v f (x)] = Dα+β

v f (x). (24)

3. Neutral and inverse elements:
In the previous property, we can set α + β = 0; therefore, the inverse derivative exists
and can be obtained by using the same formula.

Dα
v
[
D−α

v f (x)
]
= D0

v f (x) = f (x). (25)

4. Rotation:
Suppose that an invertible matrix A exists such that we can perform the variable
change Ax for x and v is not the zero vector. Then:

Dα
v f (Ax) =

1
Γ(−α)

∫ ∞

0
u−α−1 f (A[x− uv]) du

=
1

Γ(−α)

∫ ∞

0
u−α−1 f (Ax− uAv) du.

(26)

As the matrix A is invertible and v is a non-null vector, then ‖Av‖ 6= 0. As
uAv = u‖Av‖ Av

‖Av‖ , we introduced ξ = ‖Av‖u and w = Av
‖Av‖ to obtain:

Dα
v f (Ax) =

‖Av‖α

Γ(−α)

∫ ∞

0
w−α−1 f (Ax− ξw))dξ, (27)

which leads to:
Dα

v f (Ax) = ‖Av‖α Dα
w f (x′)

∣∣
x′=Ax, (28)

generalising also a classic result.

4. On the Fractional Line Integrals

The introduction of the notion of the fractional definite integral was performed in [5]
and reformulated above in Section 2.4. Here, we reproduced such a definition, but with a
vectorial representation.

Let f (x), x ∈ Rn, such that its directional derivatives of any order exist. We assumed
the canonical base ej, j = 1, 2, . . . , n. Let us denote their anti-derivatives along the x1 axis

by f (−α)
e1 (x).

Definition 7. Let α > 0. We defined the α-order fractional integral of f (x) over the interval
(−∞, a) on the xe1 axis through:

Iα
e1

fx(−∞, a) =
∫ a

−∞
f (xe1)dxα = f (−α)

e1 (a), (29)

and:

Iα
e1

fx(a, b) =
∫ b

a
f (xe1)dxα = f (−α)

e1 (b)− f (−α)
e1 (a), (30)

where (a, b) = (ae1, be1).
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Using the expression of the Liouville anti-derivative, we can write:

Iα
e1

fx(a, b) =
1

Γ(α)

∫ ∞

0
[ f (be1 − xe1)− f (ae1 − xe1)]dxα. (31)

From the standard (integer order) Barrow formula
∫ b

a f ′(x)dx = f (b)− f (a), we derived
the expression:

Iα
e1

fx(a, b) =
1

Γ(α)

∫ ∞

0

∫ b

a
D1

e1
f (ye1 − xe1)dydxα. (32)

Using (24), we obtained:

Iα
e1

fx(a, b) =
∫ b

a
f (−α+1)
e1 (xe1)dx. (33)

If the integration path, instead of one base axis, is any straight line, defined by a vector v,
we need to generalize the above procedure. Consider a scalar field f : D ⊂ Rn → R and
two points a, b ∈ D, defining the vector v = b−a

‖b−a‖ . The most natural way to define the
fractional line integral over a straight-line segment from a to b is:

Iα
v fx(a, b) =

∫ b

a
f (xv)dxα = f (−α)

v (b)− f (−α)
v (a). (34)

This definition can be generalized to the case when the integration path γ is a sequence of
N connected straight-line segments γk, k = 0, 1, 2, . . . , N − 1 with initial and final points
ak, ak+1 = bk, respectively (a0 = a, aN = b), by:

Iα
γ f =

N−1

∑
k=0

∫ ak+1

ak

f (xvk)dxα =
N−1

∑
k=0

[
f (−α)
vk (ak+1)− f (−α)

vk (ak)
]
, (35)

where vk =
ak+1−ak
‖ak+1−ak‖

. In Figure 1, we illustrate the way the directional derivative compu-
tations were performed. The previous definition can be more general. For this, consider
that γ is a rectifiable curve. We constructed a sequence of straight-line segments γ̄ approxi-
mating the curve γ, such that the initial and final points coincided (see Figure 2). For each
segment, set bk = ak+1 = ak + hkvk, where hk > 0 is the length of the kth segment. If we
consider several possible approximants, γ̄n, n = 1, 2, . . . for the curve and let hmax be the
maximum length in each approximant, then we obtained the expression for the fractional
line integral:

Iα
γ f =

∫
γ

f (xv)dxα = lim
hmax→0

N−1

∑
k=0

[
f (−α)
vk (ak + hkvk)− f (−α)

vk (ak)
]

= lim
hmax→0

N−1

∑
k=0

[
f (−α)
vk (bk)− f (−α)

vk (bk − hkvk)
]
.

(36)

If we suppose that f (−α)(x) is differentiable in the curve γ, then:[
f (−α)
vk (bk)− f (−α)

vk (bk − hkvk)
]
= f (−α+1)

vk (bk)hk + η(hk),

with lim
hmax→0

η(hk) = 0. From the above, we were led to the following definition.
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Figure 1. Broken line integration path.

Definition 8. Let γ be an rectifiable curve by straight-line segments with initial and final points
ak, bk = ak+1 = ak + hkvk, respectively, where hk > 0 is the length of the kth segment and
vk =

ak+1−ak
‖ak+1−ak‖

. Suppose that f (−α)(x) is differentiable in a domain D ⊂ Rn with γ ⊂ D. We
defined the fractional line integral on the curve γ by:

Iα
γ f = lim

N→∞

N−1

∑
k=0

f (−α+1)
vk (ak)hk. (37)

When the limit exists, it is denoted by
∫

γ f (xv)dxα.

Suppose that the curve γ in Definition 8 can be parametrized by a curve C1, r : [a, b]←
Rn. It is clear that the shorter the straight-line segments are, the better the approximation
of the curve γ is; see Figure 2. In such a situation, in (37), we have that:

• hi ≈ hj;
• vk is approximately tangent to γ.

It follows that the limit in (37) becomes in the usual line integral:

lim
N→∞

N−1

∑
k=0

f (−α+1)
vk (ak)hk =

∫
γ

f (−α+1)
v (x)ds, (38)

where v is a unitary tangent vector at each point x of the curve γ. Because the curve γ can
be parametrized by r(u) and by the properties of the usual line integral, we obtained that
v = r′(u)/‖r′(u)‖ and:∫

γ
f (−α+1)
v (x)ds =

∫ b

a
f (−α+1)
v (r(u))

∥∥r′(u)
∥∥du. (39)

Suppose that the parametrization r(u) of γ can be written in terms of two distinct parame-
ters u and τ and that u0 ≤ u ≤ u1 and τ0 ≤ τ ≤ τ1. Hence:∫ u1

u0

f (−α+1)
v (r(u))

∥∥r′(u)
∥∥du =

∫ τ1

τ0

f (−α+1)
v (r(τ))

∥∥r′(τ)
∥∥dτ. (40)

It follows that the fractional line integral (39) does not depend of the parametric represen-
tation of γ.

Remark 4. In (39), the fractional directional derivative, f (−α+1)
v (r(u)), was taken in order to r,

not to u.
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Figure 2. Rectifiable integration path.

Example 1. In the case when γ is a circumference of radius R centred at the origin,
r(u) = (R cos u, R sin u), 0 ≤ u ≤ 2π, (39) acquires the form:

Iα
γ f = R

∫ 2π

0
f (−α+1)
v (R cos u, R sin u)du, (41)

with v = (− sin u, cos u). By the definition of the directional derivative, we obtained that:

Iα
γ f =

R
Γ(α− 1)

∫ 2π

0

∫ ∞

0
vα f (R cos u + v sin u, R sin u− v cos u)dvdu

=
R

Γ(α− 1)

∫ ∞

0
vα
∫ 2π

0
f (R cos u + v sin u, R sin u− v cos u)dudv

(42)

If we define ζ(u) = (R cos u + v sin u, R sin u− v cos u), 0 ≤ u ≤ 2π, then:

||ζ ′(u)|| = ||(−R sin u + v cos u, R cos u + v sin u)||

=
√
(−R sin u + v cos u)2 + (R cos u + v sin u)2

=
√

R2 + v2

(43)

Therefore,

Iα
γ f =

R
Γ(α− 1)

∫ ∞

0

vα

√
R2 + v2

[∫ 2π

0
f (ζ(u))||ζ ′(u)||du

]
dv. (44)

Remark 5. The integral between brackets in (44) is known as the integral of the line relative to the arc
length [13]. If f represents the mass of a thin wire ζ(u) per unit length, then

∫ 2π
0 f (ζ(u))||ζ ′(u)||du

is the total mass Mv of the wire. Therefore:

Iα
γ f =

R
Γ(α− 1)

∫ ∞

0

vα Mv√
R2 + v2

dv. (45)

The line integral (37) has some interesting properties that are easily deduced:

1. Linearity:
Iα
γ(c f + dg) = cIα

γ f + dIα
γg, (46)

with c and d constants;
2. Additivity:

Let γ1 and γ2 be two disjoint lines. If γ = γ1
⋃

γ2, then Iα
γ f = Iα

γ1
f + Iα

γ2
f ;

3. Orientation:
Let γ be the curve r(u), a ≤ u ≤ b. The change in the orientation was obtained in the
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fractional derivative computation by reversing the tangent vector and the integration
limits. Hence:

Iα
−γ f =

∫ a

b
f (−α+1)
−v (r(u))

∥∥r′(u)
∥∥du. (47)

While in the α = 1 case, Iα
−γ f = −Iα

γ f , this may not happen in the fractional case,
since the direct and reverse fractional anti-derivatives may not be equal.

Next, we present an illustrative example.

Example 2. Assume a two-dimensional problem where f (x) = ‖x‖−2, x ∈ R2 and r(u) is a
circle with radius ρ and centred at the origin. Suppose that α ∈ R. In this case,

f (r(u)) = ρ−2,

r(u) = ρ cos(u)e1 + ρ sin(u)e2, 0 ≤ u ≤ 2π,

and: ∥∥r′(u)
∥∥ = ρ.

Observing v = (− sin u, cos u) and:

f (r(u)− vv) = f (ρ cos u + v sin u, ρ sin u− v cos u) = (ρ2 + v2)−1,

we derived that:

f (−α+1)
v (r(u)) =

1
Γ(α− 1)

∫ ∞

0
vα−2(ρ2 + v2)−1dv

=
1

ρ2Γ(α− 1)

∫ ∞

0
vα−2

(
1 +

v2

ρ2

)−1

dv.
(48)

Performing the variable change w = v2

ρ2 , we obtained that:

f (−α+1)
v (r(u)) =

ρα−3

2Γ(α− 1)

∫ ∞

0
w

α−3
2 (1 + w)−1dw

=
ρα−3

2Γ(α− 1)
B
(

1
2

α− 1
2

,−1
2

α +
3
2

)
,

(49)

where B is the beta function and 1 < α < 3. Finally:

Iα
r f =

πρα−3

Γ(α− 1)
B
(

1
2

α− 1
2

,−1
2

α +
3
2

)
=

π2ρα−3

Γ(α− 1) sin
(

π
(

1
2 α− 1

2

)) ,
(50)

with 1 < α < 3.

5. Conclusions

This paper proposed a definition of the fractional line integral, generalising the concept
of the fractional definite integral. It was fully compatible and coherent with the classic line
integral. It was based on the concept of the fractional anti-derivative used to generalise the
Barrow formula. To define the fractional line integrals needed, the Grünwald–Letnikov
and Liouville directional derivatives were introduced and their properties described. The
integral was defined first for piecewise linear paths and afterwards for regular curves. It
was exemplified and its main properties listed. This integral was intended to be the first
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step toward the generalization of Green’s, Stokes’, and Ostrogradsky–Gauss’ theorems.
This means that a new step is needed: the fractional surface integral definition.
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