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Abstract: We consider the model of Antonacci, Costantini, D’Ippoliti, Papi (arXiv:2010.05462 [q-
fin.MF], 2020), which describes the joint evolution of inflation, the central bank interest rate, and the
short-term interest rate. In the case when the diffusion coefficient does not depend on the central
bank interest rate, we derive a semi-closed valuation formula for contingent derivatives, in particular
for Zero Coupon Bonds (ZCBs). By using ZCB yields as observations, we implement the Kalman
filter and obtain a dynamical estimate of the short-term interest rate. In turn, by this estimate, at each
time step, we calibrate the model parameters under the risk-neutral measure and the coefficient of
the risk premium. We compare the market values of German interest rate yields for several maturities
with the corresponding values predicted by our model, from 2007 to 2015. The numerical results
validate both our model and our numerical procedure.

Keywords: inflation; short-term interest rate; Kalman filter; calibration

MSC: 91G30; 62M20; 91G60; 60J60

JEL Classification: C02; G12; C63; G17; E47

1. Introduction

The short-term interest rate is an essential component of all bond and derivative prices,
but it is not directly observable. Therefore, a sound and reliable method for estimating it
and possibly predicting it, at least on a short time horizon, is valuable. Ever since the 1980s,
many models have been proposed to describe the short-term interest rate dynamics (see
the seminal work [1]). Only more recently, however, there have been attempts to consider
models that incorporate macroeconomic factors. In fact, there is empirical and theoretical
evidence that bond prices, inflation, interest rates, monetary policy, and output growth are
related. See Akram and Li [2] for a recent discussion of the role of interest rates.

In their seminal work of 2003, Jarrow and Yildirim [3] proposed an approach based
on foreign currency and interest rate derivatives’ valuation. Singor et al. [4] formulated a
Heston-type inflation model in combination with a Hull–White model for interest rates,
with non-zero correlations. More recently, D’Amico, Kim, and Wei [5,6], Ho, Huang, and
Yildirim [7], and Waldenberger [8] considered affine models with hidden stochastic factors.
Discrete time models have also been proposed: Hughston and Macrina [9] proposed a
discrete time model based on utility functions; Haubric et al. [10] developed a discrete time
model of nominal and real bond yield curves based on several stochastic drivers. Duran
and Gülsen in [11] used inflation compensation derived from a nominal and a real yield
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curve to measure inflation expectation in the market. Grishchenko et al. [12] proposed a
two-state variable model for bond prices in continuous time. The state variables described
the interest rate and inflation index using a Gaussian process. In particular, they obtained
a closed-form solution for both the nominal and inflation indexed derivatives. In [13],
Hinnerich extended the HJM model by proposing a multidimensional Brownian motion
and a marked point process for modeling forward rates and inflation. The study provided a
closed-form solution for options on inflation-indexed bonds. Belgrade et al. in [14] assumed
that the forward inflation index follows a Brownian motion. Brody et al. [15] proposed
a multi-factor version of the Jarrow–Yildirim model, deriving a closed-form solution for
zero-coupon inflation swaps, and they applied said model to inflation derivatives. Stewart
(see [16]) extended the HJM framework to price inflation-indexed derivatives; he addressed
how nominal derivatives can be expressed in terms of zero-coupon bonds. Dodgson and
Kainth [17] proposed to price inflation-linked derivatives using the correlated Hull–White
model. In this approach, the short rate and the inflation rate are Ornstein–Uhlenbeck,
mean-reverting diffusive processes. In [18], Eksi and Filipović dealt with the problem of
the pricing and hedging of inflation-indexed bonds. They described the nominal short rate,
the real short rate, and the logarithm of the price index with an affine Gaussian process,
and they fit the model to the U.S. bond market data. Vig and Vidovics-Dancs [19] set up a
mean-reverting stochastic model for the short interest rate and the instantaneous inflation
rate. They estimated the value of the zero-coupon inflation-indexed bond by a Monte
Carlo simulation. Moreover, the authors derived an analytical solution for the problem.
In [20], Chuang et al. provided a study of U.S. Treasury Inflation-Protected Securities
(TIPSs), based on building a Heath–Jarrow–Morton forward-rate economy with inflation
and interest-rate jumps.

In a recent paper [21], we proposed a model for the joint evolution of the inflation
rate, the central bank official interest rate, and the short-term interest rate: to the best of
our knowledge, this is the first model that takes into account the interaction between the
above two macroeconomic factors and the short rate. In our model, under the risk-neutral
probability measure, the inflation rate was modeled as a piecewise constant process that
jumps at fixed times ti; the new value at ti was given by a Gaussian random variable with
the expectation depending on the previous value of the inflation rate and on the current
value of the central bank interest rate. The Central Bank (CB) official interest rate evolves
as a pure jump process with a jump intensity and distribution that depend both on its
current value and on the current value of inflation. Finally, the short-term interest rate
follows a CIR-type model with reversion towards an affine function of the CB interest rate
and a diffusion coefficient depending on the spread between itself and the CB interest rate.
For this model, in [21], using the results of [22], we derived the valuation equation for a
general European-type contingent claim, potentially depending on all three factors. One
of the novelties of our model is that it takes into account the fact that inflation data are
typically available monthly, while bonds are quoted continuously.

While inflation and the CB interest rate are directly observable market factors, the short-
term interest rate is not. Different from all the above-cited papers, most of which focused
on computing the gap between nominal and inflation-indexed prices, in this work, our
goal was to dynamically estimate the evolution of the short-term interest rate, from a panel
of bond yields. To this end, we employed filtering techniques. These also allowed us to
dynamically calibrate the model parameters. The estimated values can then be used to
price securities. As an example, we used our estimates to compute the ZCB 20-year yield
(not included in the estimation panel) over an eight-year period of time and compared it
with the market data.

More precisely, we considered the model in [21] in the case when the short-term
interest rate evolution depends on the CB interest rate only through the drift coefficient
(Section 2). Analogous to what is usually done for the CIR model, we supposed that
the risk premium was linear. Then, our model maintained the same structure under the
historical probability measure as under the risk-neutral one (see Section 2.2). We obtained
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a semi-closed formula for the solution of the valuation equation (see Section 3). Assuming
the CB interest rate and inflation are perfectly observable, our valuation formula, applied
to a Zero Coupon Bond (ZCB,) yielded an equation linking the ZCB yield to the short-term
interest rate. Supposing further that the ZCB yields are observable with some error, we
viewed the short-term interest rate and the ZCB yield vector as a pair state/observation.
We discretized the equations in time and approximated them in such a way that we could
use the Kalman filter (Section 4). In the past, the Kalman filter has been widely applied to
term-structure models: for instance, Babbs and Nowman in [23] used it for a generalized
Vasicek model; moreover, Chatterjee [24], Chen and Scott [25], and Long Vo [26] used it for
the CIR model; Christoffersen and others [27] used instead the unscented Kalman filter
and a particle filter to try to capture nonlinearities in affine models.

Of course, the observation equation can also be used to make a one-step-ahead
prediction of the value of the ZCB yield from the filter estimated value of the short-term
interest rate. At each time, we used the value of the ZCB yield predicted in this way and the
observed value to make a quasi-maximum likelihood estimation of the model parameters.
Note that we estimated both parameters under the risk-neutral measure and the coefficient
of the risk premium.

We implemented our filter on market data for inflation, the European CB interest rate,
and German bonds with several maturities, for the period from March 2007 to December
2015 (details on the numerical procedure are contained in Appendix A). Then, we compared
the market yield values to the corresponding values predicted by our model (Section 5).
The model-implied values followed the market values quite closely, even though interest
rates underwent major changes during the considered period. Moreover, we used the val-
ues of the short-term interest rate and of the model parameters obtained by our procedure
from the maturities up to 10 years, to predict the 20-year yield over the same period of
time: Our model performed quite well in this out-of-sample forecast as well (see Figure 7

Our model was not a “black box” one, but attempted to capture the interactions among
inflation, the CB interest rate, and the short-term interest rate employing relatively few
parameters. Table 2 reports the values of the parameters calibrated using the information
from the first 100 months. In particular, the value of the coefficient that in our model links
the short-term interest rate to the CB interest rate confirmed that the interaction between
these two factors cannot be neglected.

Our study raised a few questions: Are there other macroeconomic factors that should
be taken into account in the dynamics of the short-term interest rate? How are other finan-
cial market factors, such as, for instance, volatility, influenced by macroeconomic factors?

The rest of this paper is organized as follows. In Section 2, we present our model, both
under the risk-neutral probability measure and under the historical probability measure.
In Section 3, we derive valuation formulas in our model. In Section 4, we develop our
filtering/quasi-maximum likelihood estimation procedure. In Section 5, we present our nu-
merical results. In Section 6, we draw conclusions and discuss some future research. Finally,
in Appendix A, some further details on the numerical implementation are provided.

2. The Model
2.1. The Model under a Risk-Neutral Probability Measure

We supposed that, under a risk-neutral probability measure, the triple (Π, R, Rsh) of
the inflation rate, the CB interest rate, and the short-term interest rate follows the model
described in this section.

With the usual convention that one year is an interval of length one, let T := {ti}i≥0,...,M
be the sequence of times at which the values of the inflation rate process {Π(ti)}ti∈T are
observed, where t0 = 0, t1 = 1

12 , and for i ≥ 2, ti = it1.
The evolution is then given by:
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
Π(0) = Π0,
Π(t) = Π(ti), ti ≤ t < ti+1,
Π(ti+1) = β

(
Π(ti), R(t−i+1)

)
+ ηi+1, t = ti+1,

(1)

where β is an affine function defined by:

β(π, r) := β0π + kΠ(π∗ − π) + β 1r = (β0 − kΠ)π + kΠπ∗ + β r, (2)

with β0, β1 ∈ R and kΠ, π∗ ∈ R+ constant parameters such that 0 < β0− kΠ < 1. The fluc-
tuations {ηi}i=1,...,M are i.i.d. random variables distributed according to the N(0, v2) law.

As for the CB interest rate, R, it is the solution of the following stochastic equation:

R(t) = R0 +
∫ t

0
J
(

Π(s−), R(s−), UN(s−)+1

)
dN(s), (3)

where N = N(t) is a Poisson process with intensity λ, {Un}n≥0 are i.i.d. [0, 1]-uniform
random variables, independent of N, and:

J(π, r, u) := −mδ 1(0,1](q(π, r,−mδ))1[0,q(π,r,−mδ)](u)
+∑m

k=−m+1 kδ 1(0,1](q(π, r, kδ)) 1
(∑k−1

h=−m q(π,r,hδ),∑k
h=−m q(π,r,hδ)]

(u) , (4)

for any u ∈ [0, 1], where q(π, r, kδ) is the probability of a size kδ jump (q(π, r, kδ) ≥ 0,
∑m

k=−m q(π, r, kδ) = 1 for each (π, r)). We assumed that:

q(·, ·, kδ) are continuous on R× [r, r] (5)

q(π, ·, kδ) has a finite left derivative at r− kδ
q(π, ·,−kδ) has a finite right derivative at r + kδ

(6)

and that:
q(π, r, kδ) = 0, for r + kδ /∈ (r, r), (7)

so that R(t) stays in (r, r) for all times. Of course, we could suppose, without loss of
generality, r ≤ 0 and r > 0.

Finally, the evolution of the short-term interest rate, Rsh, is a mean-reverting Ito process
with coefficients depending on the CB interest rate, R, and hence indirectly on the inflation
rate Π as well. More precisely, we supposed that Rsh satisfies the following equation:{

dRsh(t) = ksh(b(R(t))− Rsh(t))
)
dt + σ0

√
|Rsh(t)|dW(t),

Rsh(0) = Rsh
0 ,

(8)

where ksh ∈ R+ is a constant parameter and {Wt}t∈[0,T] is a standard Wiener process.
The function b(r) is defined by:

b(r) := b0 + b1r, (9)

where b0, b1 ∈ R are constant parameters and inf(r,r) b(r) > 0. In analogy to the CIR model,
we assumed that:

ksh inf
(r,r)

b(r) >
1
2

σ2
0 . (10)

The stochastic factors {ηi}i=1,...,M, {Un}n≥0, N, and W and the initial values Π0, R0,
and Rsh

0 were all defined on the same probability space (Ω,F,P) (where P is a risk-neutral
probability measure) and were independent.

Our model was well posed, in the sense that there existed one and only one stochastic
process

(
Π, R, Rsh

)
verifying (1), (3) and (8), as stated precisely in the following theorem,

which was proven in [21] for a more general model that included the above one.
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Theorem 1 ([21], Theorem 2.1). For every triple of R× (r, r)× (0,+∞)-valued r.v.’s (Π0, R0,
Rsh

0

)
, there exists one and only one (up to indistinguishability) stochastic process (Π, R, Rsh)

defined on (Ω,F,P), such that (1), (3) and (8) are P-a.s. verified. It holds:

Rsh(t) > 0 ∀t ≥ 0, P− a.s..

2.2. The Model under the Historical Probability Measure

In this section, we discuss the structure of our model under the historical probabil-
ity measure.

As in the previous section, P denotes a risk-neutral probability measure on the filtered
space (Ω,F, {Ft}). We denote by εu0(·) the Dirac measure on u0.

First of all, we rewrote Equations (1) and (3) with the formalism of random measures
(see, e.g., [28], Chapter II, Section 1b).

(1) can be rewritten as:

Π(t) = Π0 +
∫ t+

0+

∫
R

u µΠ(du, ds),

µΠ(ds, du) : = ε∆Π(s)(du) dI(s), (11)

I(s) : =
∞

∑
i=1

1[0,s](ti).

Analogously, (3) can be rewritten as:

R(t) = R0 +
∫ t+

0+

∫
(−mδ,mδ)

u µ(du, ds),

µ(ds, du) : = ε∆R(s)(du) dN(s), (12)

Theorem 2. (i) The compensators of µΠ and µ are, respectively,

νΠ(ds, du) := G(β(Π(s−), R(s−))−Π(s−), u) du ds

G(β(π, r)− π, u) := 1√
2π

e−
(

u−β(π,r)+π

)2

2v2 ,
(13)

ν(ds, du) := Λ(s, du) λ ds,
m
∑

k=−m
q(Π(s−), R(s−), kδ) εkδ(du) (14)

(ii) (Girsanov’s theorem) Let Ft := σ
(
Π(s), R(s), Rsh(s), s ≤ t

)
, and let P denote a probability

measure on (Ω,F, {Ft}) locally equivalent to P (i.e., P
∣∣
Ft

is equivalent to P
∣∣
Ft

for every
t ≥ 0). Then, there exists a predictable process γ = γ(t), Γ : Ω × R+ × [0, 1] → R+,
P×B([0, 1])-measurable, Γπ : Ω×R+ ×R→ R+, P×B(R)-measurable (where P is the
predictable σ-algebra and B denotes the Borel σ-algebra), such that, under P:

(a) W(t)−
∫ t

0 γ(s)ds is a Brownian motion;
(b) the compensator of µΠ is: νΠ(ds, du) := ΓΠ(s, u) νΠ(ds, du);
(c) the compensator of µ is: ν(ds, du) := Γ(s, u) ν(ds, du);

where νΠ and ν are defined by (13) and (14);
(iii) In particular, under P, the process Rsh satisfies the equation:{

dRsh(t) =
[
ksh(b(R(t))− Rsh(t))

)
+ σ0

√
Rsh(t)γ(t)

]
dt + σ0

√
Rsh(t)dW(t),

Rsh(0) = Rsh
0 ,

(15)

where W is an {Ft}-Brownian motion under P.
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Proof. (i) It is enough to show that, for every ξ : [0, ∞) × Ω × R → R, P × B(R)-
measurable and bounded, with νΠ and ν defined by (13) and (14),

MΠ(t) :=
∫ t+

0+

∫
R

ξ(s, u)
(
µΠ(ds, du)− νΠ(ds, du)

)
,

M(t) :=
∫ t+

0+

∫
(−mδ,mδ)

ξ(s, u)
(
µ(ds, du)− ν(ds, du)

)
,

are {Ft}-martingales. We have:

E
[
MΠ(t)−MΠ(s)

∣∣Fs
]

= E
[ ∫ t+

s+

(
ξ(l, ∆Π(l)) −

∫
R

ξ(l, u) G(Π(l−), R(l−), u) du
)

dI(l)
∣∣∣∣Fs

]
= E

[
∑

s<ti≤t

(
ξ(ti, ∆Π(ti)) −

∫
R

ξ(ti, u) G(Π(t−i ), R(t−i ), u) du
)∣∣∣∣Fs

]
= ∑

s<ti≤t
E
[
E
[(

ξ
(
ti, ∆Π(ti)

)
−
∫
R

ξ(ti, u) G(Π(t−i ), R(t−i ), u) du
)∣∣∣∣Ft−i

]∣∣∣∣Fs

]
= 0

where the last equality follows from the fact that, by (1), the law of ∆Π(ti) conditional to
Ft−i

is G(Π(t−i ), R(t−i ), u) du.
Analogously:

E
[
M(t)−M(s)

∣∣Fs
]

= E
[ ∫ t+

s+
ξ(l, ∆R(l)) dN(l) − λ

∫ t

s

∫
(−mδ,mδ)

ξ(l, u)Λ(l, du) dl
∣∣∣∣Fs

]
= E

[ ∫ t+

s+

(
ξ(l, ∆R(l))−

∫
(−mδ,mδ)

ξ(l, u)Λ(l, du)
)

dN(l)

+
∫ t+

s+

∫
(−mδ,mδ)

ξ(l, u)Λ(l, du) (dN(l)− λdl)
∣∣∣∣Fs

]
= E

[ ∫ t+

s+

(
ξ(l, ∆R(l))−

∫
(−mδ,mδ)

ξ(l, u)Λ(l, du)
)

dN(l)
∣∣∣∣Fs

]
,

where the last equality follows from the fact that the second integral in the last but one line
vanishes because N(t)− λt is a martingale and the integrand is predictable. Our chain of
equalities can be continued as:

= E
[ ∫ t+

s+
E
[

ξ(l, ∆R(l))−
∫
(−mδ,mδ)

ξ(l, u)Λ(l, du)
∣∣∣∣Fl−

]
dN(l)

∣∣∣∣Fs

]
and the inside expectations vanish because, by (3), Λ(τi, du) is the law of ∆R(l) conditional
on Fl− ;

(ii) The assertion is a direct consequence of Theorem 3.24, Chapter III, of [28];
(iii) Setting:

W(t) := W(t)−
∫ t

0
γ(s) ds,

Rsh verifies (15).

In analogy to the CIR model, in the sequel, we assumed the following.
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Assumption 1. For any risk-neutral probability measure, the risk premium is linear in Rsh, that
is, for the historical probability measure, the process γ (i.e., the market price of risk) is of the form:

γ(t) :=
ϑ

σ0

√
Rsh(t). (16)

With Assumption 1, under the historical probability measure P, (15) can be rewrit-
ten as: {

dRsh(t) =
[
ksh(b(R(t))− Rsh(t))

)
+ ϑRsh(t)

]
dt + σ0

√
Rsh(t)dW(t),

Rsh(0) = Rsh
0 .

(17)

3. A Semi-Closed Valuation Formula

In [21], using the results of [22], for a more general model that includes the one
described in Section 2, we derived the price of a European-type contingent claim with
maturity:

tM ≤ T < tM+1, (18)

payoff
V(T)p Φ(Π(T), R(T), Rsh(T)), p ≥ 0, (19)

where V is the inflation index, i.e.,

V(t) := exp
( ∫ t

0
Π(l)dl

)
. (20)

Theorem 3 ([21], Proposition 3.4 and Theorem 3.5). The price at time s of the contingent claim
with payoff (19) is:

V(s)p ϕ(s, Π(s), R(s), Rsh(s)),

where:

ϕ(s, π, r, z)) :=

{
ep(T−s)π ϕM(s− tM, π, r, z), tM ≤ s ≤ T,
ep(ti+1−s)π ϕi(s− ti, π, r, z), ti ≤ s < ti+1, i = 0, . . . , M− 1,

and ϕi is the solution of the equation:

∂ϕi

∂s (s, r, z) + ksh(b(r)− z) ∂ϕi

∂z (s, r, z) + 1
2 σ2

0 z ∂2 ϕi

∂z2 (s, r, z)
+λ ∑m

k=−m
[
ϕi(s, r + kδ, z)− ϕi(s, r, z)

]
q(π, r, kδ)− zϕi(s, r, z) = 0,

(21)

with terminal condition:

ϕM(T − tM, π, r, z) = Φ(π, r, z), for ϕM,

ϕM−1(t1, π, r, z) = B
(

ep(T−tM)·ϕM(0, ·, r, z)
)
(π, r), for ϕM−1, (22)

ϕi(t1, π, r, z) = B
(
ept1·ϕi+1(0, ·, r, z)

)
(π, r), for ϕi, i = 0, . . . , M− 2.

B f (π, r) := E[ f (β(π, r) + η)], η a N(0, v2) random variable.. (23)
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Remark 1. Allowing payoffs of the form (19), in particular, we can price a contingent claim with

payoff Φ under the discount factor exp
(
−
∫ T

s
(

Rsh(l)−Π(l)
)
dl
)

. In fact, in this case, the price

of the derivative at time s is:

EP
[

exp
(
−
∫ T

s

(
Rsh(l)−Π(l)

)
dl
)

Φ(Π(T), R(T), Rsh(T))
∣∣∣∣Fs

]
=

1
V(s)

EP
[

exp
(
−
∫ T

s
Rsh(l)dl

)
V(T)Φ(Π(T), R(T), Rsh(T))

∣∣∣∣Fs

]
. (24)

= ϕ(s, Π(s), R(s), Rsh(s)).

Note that the value of function ϕ does not depend on the current value of V, but the function
itself changes with the value of the parameter p, in this case p = 1.

In the following proposition, we showed that, for payoffs of a suitable form, the solu-
tion of the valuation Equation (21) admits a semi-closed expression.

Proposition 1. Suppose Φ is of the form:

Φ(π, r, z) = Φ0(π, r)eα0z.

Then, the price of the contingent claim with payoff (19) at time s is:

V(s)p ϕ(s, Π(s), R(s), Rsh(s)),

where:
ϕ(s, π, r, z) = ϕ0(s, π, r)eα(s)z, (25)

with:
α(s) = −2 (1+α0ρ−)−(1−α0ρ+)e−(ρ+−ρ−)(T−s)

(2ρ+−α0σ2
0 )−(2ρ−−α0σ2

0 )e−(ρ+−ρ−)(T−s) ,

ρ+ =
ksh+
√

(ksh)2+2σ2
0

2 , ρ− =
ksh−
√

(ksh)2+2σ2
0

2 ,
(26)

and:

ϕ0(s, π, r) =

{
ep(T−s)π ϕM

0 (s− tM, π, r), tM ≤ s ≤ T,
ep(ti+1−s)π ϕi

0(s− ti, π, r), ti ≤ s < ti+1, i = 0, . . . , M− 1.
(27)

the ϕi
0’s being solutions of the equation:

∂ϕi
0

∂s (s, r) +
(

kshb(r)α(ti + s)
)

ϕi
0(s, r)

+λ ∑m
k=−m

[
ϕi

0(s, r + kδ)− ϕi
0(s, r)

]
q(π, r, kδ) = 0,

(28)

with terminal conditions:

ϕM
0 (T − tM, π, r) = Φ0(π, r),

ϕM−1
0 (t1, π, r) = B

(
ep(T−tM)·ϕM

0 (0, ·, r)
)
(π, r), (29)

ϕi
0(t1, π, r) = B

(
ept1·ϕi+1

0 (0, ·, r)
)
(π, r), for i = 0, . . . , M− 2.

Proof. We looked for a solution of the valuation Equation (21) of the form ϕi(s, π, r, z) =
ϕi

0(s, π, r)eαi(s)z. By substituting in (21), we found that a function of the above form is a
solution if the αi’s satisfy the Riccati equations on [0, t1] ([0, T − tM] for i = M):

α′i(s)− kshαi(s) +
1
2

σ2
0 αi(s)2 − 1 = 0, αi(t1) = αi+1(0), i = 0, . . . , M− 1,
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αM(T − tM) = α0, and the ϕi
0’s satisfy (28). Therefore, we can take:

αi(s) = α(ti + s),

where α is the solution of the Riccati equation on [0, T]:

α′(s)− kshα(s) +
1
2

σ2
0 α(s)2 − 1 = 0, α(T) = α0, (30)

and hence, is given by (26).

Remark 2. From (25), we observed that the contingent claim price factors into two components:
one depending only on inflation and the CB interest rate and the other one depending only on the
short-term interest rate. In particular, the ZCB yield is linear in Rsh, and this allowed employing
the Kalman filter in the next section.

4. Short-Term Interest Rate Estimation by Filtering

In our model, one can obtain a dynamical estimate of the short-term interest rate
Rsh(t) by filtering, using ZCB yields as observations.

As inflation is observed monthly, we considered ti =
i

12 , i ∈ Z+, the time unit being
one year. Let Yj(ti) be the market value of the yield of a ZCB with time to maturity Tj,
j = 1, . . . , J, and Y(ti) be the vector of components Yj(ti). By Proposition 1 (with p = 0),
the theoretical value of the ZCBs’ yields is given by:

− 1
Tj

log
(

ϕ
ti
j (ti, Π(ti), R(ti), Rsh(ti))

)
= − 1

Tj
log
(

ϕ
ti
0,j(t, Π(ti), R(ti))e

α
ti
j (ti)Rsh(ti))

)
= − 1

Tj
log
(

ϕ
ti
0,j(ti, Π(ti), R(ti))e

α0
j (0)Rsh(ti))

)
= − 1

Tj
log
(

ϕ
ti
0,j(t, Π(ti), R(ti))

)
− 1

Tj
α0

j (0)Rsh(ti)),

(31)

where the superscript ti reminds that the maturity of the bond is ti + Tj. Note that the
model is not time homogeneous, that is ϕt

0,j(t, π, r, z) 6= ϕ0
0,j(0, π, r, z), due to the infla-

tion component. However, αt
j(t) = α0

j (0) because Equation (30) is time-homogeneous.
Denoting by h0 the J-dimensional vector of components:

(h0)j := − 1
Tj

α0
j (0), (32)

and by ψ(ti) the vector of components:

ψj(ti) := − 1
Tj

log
(

ϕ
ti
0,j(ti, Π(ti), R(ti))

)
, (33)

the theoretical value of the yield vector at time ti is:

Rsh(ti) h0 + ψ(ti).

We supposed that the inflation value, Π, and the CB interest rate, R, are perfectly
observable, while the ZCB yields are observed with some error, that is:

Y(ti) = Rsh(ti) h0 + ψ(ti) + ζi. (34)

Rsh(ti) is not observable, and its dynamics, under the historical probability measure,
is given by the time-discretized version of (17):

Rsh(ti) =
(
1− k

sh
(ti − ti−1)

)
Rsh(ti−1) + ksh(ti − ti−1) b(R(ti−1)) + σ0

√
Rsh(ti−1)Wi, (35)
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where:
k

sh
:= ksh − ϑ

ϑRsh(ti−1) is the risk premium, and {Wi} are independent, Gaussian random vari-
ables, independent of Rsh(0), with zero mean and variance (ti − ti−1). The observation
errors {ζi} are independent, J-dimensional, Gaussian random variables with the covari-
ance matrix a diagonal matrix Q, and the sequence {ζi} is independent of {Wi} and Rsh(0),
and hence of {Rsh(ti}).

At each time ti, the estimate, R̂sh(ti), of Rsh(ti) is obtained by a suitable filter of
Equations (34) and (35) (Section 4.1).

In addition, we recalibrated the parameters of the model at each time ti by a quasi-
maximum likelihood estimation based on the errors {Y(th)− Ŷ(th), h ≤ i}, where Ŷ(th) is
a prediction of Y(th) obtained from R̂sh(th−1) and R(th) (Section 4.2).

In Section 5, we validate our estimates {R̂sh(ti)}, by comparing the values {Ŷ(ti)}
predicted by the model with the observed market values {Y(ti)}.

4.1. The Filter

Consider Equations (34) and (35). In the filtering terminology, (35) is the state equation
and (34) is the observation equation. From Equation (35), σ0

√
Rsh(ti−1)Wi, conditional on

FY
ti−1
∨ σ(Rsh(ti−1)), follows a Gaussian law with zero mean and variance:

σ2
0 Rsh(ti−1)(ti − ti−1)

because Wi is independent of Rsh(ti−1). We replaced {σ0
√

Rsh(ti−1)Wi} by a sequence
of random variables {ξi}, with ξi, which follows, conditional on FY

ti−1
∨ σ(Rsh(ti−1)),

a Gaussian law with zero mean and variance:

σ2
0E
[
Rsh(ti−1)

∣∣FY
ti−1

]
(ti − ti−1). (36)

Then, our state and observation equations at time ti are:

Rsh(ti) =
(
1− k

sh
(ti − ti−1)

)
Rsh(ti−1) + ksh(ti − ti−1) b(R(ti−1)) + ξi

Y(ti) = Rsh(ti) h0 + ψ(ti) + ζi
(37)

We can then compute:
R̂sh(ti) := E

[
Rsh(ti)

∣∣FY
ti

]
(38)

by the Kalman filter:

R̂sh(t0) := E
[
Rsh(t0)

]
, P0 := Var

[
Rsh(t0)

]
;

given R̂sh(ti−1) and Pi−1,

P−i :=
(
1− k

sh
(ti − ti−1)

)2Pi−1 + σ2
0 (ti − ti−1)R̂sh(ti−1)

Gi := P−i hT
0
(

P−i h0hT
0 + Q

)−1 (39)

R̂sh(ti)
− :=

(
1− k

sh
(ti − ti−1)

)
R̂sh(ti−1) + ksh(ti − ti−1) b(R(ti−1))

R̂sh(ti) := R̂sh(ti)
− + Gi

[
Y(ti)− R̂sh(ti)

−h0 − ψ(ti)
]

Pi :=
(
1− Gih0

)
P−i .

Remark 3. It follows from (36) that ξi is independent of Rsh(ti−1) conditional on FY
ti−1

. Usually,
in the Kalman filter, the random variables {ξi} are supposed to be independent, so that ξi is
independent of Rsh(ti−1), but the proof of the Kalman filter carries over to the case when ξi is
independent of Rsh(ti−1) only conditional on FY

ti−1
.
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4.2. Parameter Calibration

From R̂sh(ti)
−, defined as in (40), we can estimate the value of Y(ti) by:

Ŷ(ti) := R̂sh(ti)
− h0 + ψ(ti), (40)

and hence obtain the observation error:

Ê(ti) := Y(ti)− Ŷ(ti). (41)

Conditionally on FY
ti−1

, the mean of Ê(ti) is zero, and its variance is given by:

F(ti) := P−i h0hT
0 + Q, for i ≥ 2, (42)

F(t1) :=
{(

1− k
sh

t1
)2Var[Rsh(0)] + σ2

0 t1E[Rsh(0)]
}

h0hT
0 + Q

Approximating the law of Ê(ti), conditioned on FY
ti−1

, by a Gaussian law, for i ≥ 2

independent of
{

Ê(th)
}

h≤i−1, the log-likelihood for the parameters of our model, at time
ti, is:

L(ti) := − i J
2

log(2π)− 1
2

i

∑
h=1

log(|F(th)|)−
1
2

i

∑
h=1

(
Ê(th)

T F(th)
−1Ê(th)

)
. (43)

Among the parameters of our model, we fixed:

π∗ = ln(1.02), v = σΠ,

where σΠ is the historical standard deviation of the monthly increments of inflation,

r = 0.05%, r = 4.5%, m = 1, δ = 0.25%,

and the probabilities q as:

q(π, r, δ) =

[(
1

0.3σΠ

(
π − (π∗ + 0.2σΠ)

))
+

∧ 1
][(

1
3δ

(
(r− δ)− r

))
+

∧ 1
]

,

q(π, r,−δ) =

[(
1

0.3σΠ

(
(π∗ − 0.2σΠ)− π

))
+

∧ 1
][(

1
3δ

(
r− (r + δ)

))
+

∧ 1
]

,

q(π, r, 0) = 1− q(π, r, δ)− q(π, r,−δ),

and we maximized L(ti) with respect to the other parameters:

ks+h, k
sh

, b0, b1, σ0, λ, β0, β1, kΠ.

Note that in this way, we estimated both parameters under the risk-neutral measure

and the risk premium ϑ = ksh − k
sh

.

5. Numerical Results

We validated the model on market data from German bonds provided by the Bloomberg
platform. The dataset covered ZCB and coupon-bearing bond prices for the period of time
from 30 March 2007 to 31 December 2015 (106 months), with maturities of 6 months, 1, 3, 5,
7, and 10 years. Since the ZCB prices are not available daily and are not available for all
maturities, in order to obtain the ZCB yield curve, as usual, we considered daily market
prices of zero and coupon-bearing bonds, and we applied the bootstrapping technique. We
also applied an interpolation to determine the ZCB yields for an arbitrary maturity T.

For the inflation index Π, we used the Harmonized Index of Consumer Prices (HICP).
The HICP index and the CB rate were obtained by Eurostat. We recall that the variance



Mathematics 2021, 9, 1152 12 of 20

parameter of the inflation rate is fixed as the historical standard deviation v = σΠ = 0.2770.
Since the HICP index is available monthly, in order to have an organic set of comparable
data, for each month in the sample period, we considered the day where the HICP index
was observed, and for each maturity, we extracted the corresponding ZCB yield.

Figure 1 shows the filter-estimated value of the interest rate Rsh; instead, Figures 2–6
show the comparison between the observed yield rate Y (blue line) and the model-implied
yield rate Ŷ defined by (40) (red line) for the 6-month, 1-year, 3-year, 5-year, and 10-
year maturities.

Figure 1. The filter estimated value of the short−term interest rate Rsh.

Figure 2. Comparison between the market yield rate (blue line) and the model−implied yield rate
(red line) for the 6-month maturity.
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Figure 3. Comparison between the market yield rate (blue line) and the model−implied yield rate
(red line) for the 1−year maturity.

Figure 4. Comparison between the market yield rate (blue line) and the model−implied yield rate
(red line) for the 3−year maturity.

Figure 5. Comparison between the market yield rate (blue line) and the model−implied yield rate
(red line) for the 5−year maturity.
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Figure 6. Comparison between the market yield rate (blue line) and the model−implied yield rate
(red line) for the 10−year maturity.

We used our model, with the parameters progressively calibrated as described in
Section 4, to make an out-of-sample forecast. Figure 7 shows the predicted values for the
20-year maturity ZCB, computed using the short-term interest rate and the parameter
values estimated by the maturities up to 10 years.

Figure 7. Comparison between the market yield rate (blue line) and the model−implied yield rate
(red line) for the 20−year maturity.

Table 1 reports, for each considered maturity, the root mean-squared error from March
2007 (t0) to October 2015 (tM):

RMSEj :=

√√√√ M

∑
i=1

[Yj(ti)− Ŷj(ti)]2

M
.

From Figures 2–7 and the error table, the Ŷ curve of the model-implied ZCB yields
appears to follow the Y curve of the market ZCB yields quite well. Even more significantly,
Figure 7 shows that the model had a good predictive power for other bonds not included
in the sample used for the calibration. The fit was even more meaningful as the ZCB yields
underwent major changes in the period from March 2007 to December 2015. All these
results confirmed that our model described the market evolution well.
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Table 1. The root mean-squared error for each considered maturity. The last error is for the out-of-
sample forecast of the 20-year yield.

Maturity RMSE

6 months 0.09673
1 years 0.14272
3 years 0.18721
5 years 0.21734

10 years 0.39351
20 years 0.51213

Our model was not a “black box” one, but attempted to capture the interactions among
inflation, the CB interest rate, and the short-term interest rate employing relatively few
parameters. Table 2 reports the values of the parameters calibrated using the information
for the first 100 months. In particular, the b1 value confirmed that the interaction between
the short-term interest rate and the CB interest rate cannot be neglected.

Table 2. The estimated parameters.

Parameter Estimated Value

k
sh 5.5035

ksh 0.6821
b0 4.3131
b1 0.8715
σ0 2.2352
λ 0.14971

kΠ 0.01262
β0 0.86262
β1 0.02143

We also conducted an ex post analysis of residuals. Precisely, for the dynamics of
the inflation rate, we calculated the residuals ηi+1 = Π(ti+1)− β(Π(ti), R(t−i+1)), where
Π(ti) and R(ti) are the observed values of the inflation index and the CB rate, and β was
computed using the parameter values of Table 2. We applied the Jarque–Bera normality
test: the normality null hypothesis could not be rejected, at a confidence level of 95%.
The value of the statistics was 2.5065, with a critical value of 5.4749 and a p-value of
0.2028. Figure 8 shows a comparison between the empirical distribution function of the
standardized residuals and the standard normal distribution function.

Figure 8. The standard normal distribution (red line) and the empirical distribution (blue line) of the
standardized residuals for inflation.
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Here, the L∞-norm of the difference was 0.0763.
Similarly, we analyzed the residuals ζi = Y(ti)− R̂sh(ti)h0 − ψ(ti), computed using

the parameter values of Table 2 and the value of R̂sh(ti) provided by the filter. Under
the Jarque–Bera test for both the five-year and ten-year bond yield, the null hypothesis of
normality could not be rejected, at a confidence level of 95%. The value of the statistics
was 0.5541 for the five-year bond and 0.7842 for the ten-year bond, with a p-value of 0.5.
Figures 9 and 10 show the Q− Q plot of the empirical distribution of residuals for both
maturities. The L∞-norm of the difference between the empirical distribution function
of the standardized residuals and the standard normal distribution function for both
maturities was 0.0478 for the five-year bond and 0.0653 for the ten-year bond.

Figure 9. Q-Q plot of the empirical distribution of the standardized residuals for the 5-year bond yield.

Figure 10. Q-Q plot of the empirical distribution of the standardized residuals for the 10-year
bond yield.

6. Conclusions

We considered the model that we proposed in a previous paper [21] to describe the
joint evolution of inflation, the central bank interest rate, and the short-term interest rate.
Our model involved only factors with a clear economic interpretation and employed far
fewer parameters than the other ones known from the literature. We showed that, in the
case when the diffusion coefficient did not depend on the CB interest rate, our model
yielded a semi-closed valuation formula for contingent derivatives, in particular for ZCBs.

By using ZCB yields as observations, we implemented the Kalman filter and obtained a
dynamical estimate of the short-term interest rate Rsh(t). By employing again our valuation
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formula, this estimate provided a one-step-ahead prediction of the ZCB yields. By using
this prediction, at each time step, we made a quasi-maximum likelihood estimation of
the model parameters under the risk-neutral measure and of the coefficient of the risk
premium. Considering the values of the parameters calibrated using the information from
the first 100 months, we saw that the b1 value confirmed that the interaction between the
short-term interest rate and the CB interest rate cannot be neglected.

We compared the market values of German ZCB yields for several maturities with
the corresponding values predicted by our model, from 2007 to 2015. The model-implied
values followed the market values quite closely, even though the ZCB yields underwent
major changes during the considered period. Even more significantly, our model and the
filtering/calibration procedure provided quite a good prediction for the 20-year ZCB yield,
which was not included in the sample used to estimate the values of the short-term interest
rate and of the parameters.

The main limitation of the estimation procedure we proposed was that it required
numerically computing some of the quantities involved in the valuation formula. One of
the directions of research that we intend to pursue in the near future is looking for faster
numerical methods, for instance by using the fast Fourier transform. We also intend to look
for special cases in which a closed valuation formula is available.

However, our procedure was already fast enough that it can be applied by practitioners
to estimate the short-term interest rate and compute its one-step-ahead prediction, as well
as to use them in pricing derivatives. Note that our model also allowed pricing inflation-
linked derivatives (see [21]).

Finally, other near-future research projects of ours are using our model to evaluate
more sophisticated fixed-income derivative instruments, for example credit risk derivatives,
and to embed parts of our model in a model where the CB interest rate is viewed as part
of a strategy of the monetary policy decision maker.
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Appendix A

In (40), in order to compute R̂sh(ti+1), we have to compute ψj(ti+1), j = 1, . . . , J,
by using (26), with α0 = 0, and by numerically solving the system (27)–(29) with p = 0
and Φ0 = 1. In this Appendix A, we describe the numerical procedure that we set up to do
this. In the sequel, we omitted the subscript j and wrote τ for ti+1. Taking into account that
{ti}i=1,...,M ⊆ {ti}n=1,...,N , if tl ≤ τ < tl+1, tL ≤ τ + T < tL+1, l ≤ L ≤ M, this amounts to
solving, for each π:

• for i = L,

∂ϕL
0

∂s
(s, π, r) +

(
kshb(r)α(ti + s)

)
ϕL

0 (s, π, r)

+ λ
m

∑
h=−m

[
ϕL

0 (s, π, r + hδ)− ϕL
0 (s, π, r)

]
q(π, r, hδ)

= 0, s ∈ [0, τ + T − tL),
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with terminal condition:
ϕL

0 (τ + T − tL, π, r) = 1;

• for i = l + 1, . . . , L− 1,

∂ϕi
0

∂s
(s, r) +

(
kshb(r)α(ti + s)

)
ϕi

0(s, r)

+ λ
m

∑
h=−m

[
ϕi

0(s, r + hδ)− ϕi
0(s, r)

]
q(π, r, hδ)

= 0, s ∈ [0, t1)

with terminal condition:

ϕi
0(t1, π, r) =

∫
R

ϕi+1
0 (0, β(π, r) + u, r)N0,v2(u)du,

where N0,v2(u) denotes the Gaussian density of zero mean and variance v2;
• for i = l,

∂ϕl
0

∂s
(s, π, r) +

(
kshb(r)α(ti + s)

)
ϕl

0(s, π, r)

+ λ
m

∑
h=−m

[
ϕl

0(s, π, r + hδ)− ϕl
0(s, π, r)

]
q(π, r, hδ)

= 0, s ∈ [0, tl+1 − τ)

with terminal condition:

ϕl
0(tl+1 − τ, π, r) =

∫
R

ϕl+1
0 (0, β(π, r) + u, r)N0,v2(u)du.

Then:
ψ(τ) = − 1

T
log
(

ϕl
0(0, Π(τ), R(τ))

)
.

From now on, we considered only the equation for i = l + 1, . . . , L− 1: the computa-
tions for i = l and i = L are completely analogous. In addition, we omitted the subscript
0.

We considered values of r in the discrete, increasing set {rk}k=1,...,Nr , where rk+1− rk =

∆r := δ
nr

, nr ∈ N, and Nr :=
⌊

r−r
∆r

⌋
. Setting ϕi

k(t, π) := ϕi
0(t, π, k∆r), we obtained, for each

π, the following system of backward ordinary differential equations:

dϕi
k

ds
(s, π) +

(
kshb(rk)α(ti + s)

)
ϕi

k(s, π)

+ λ
m

∑
h=−m

[
ϕi

k+hnr
(s, π)− ϕi

k(s, π)
]
q(π, rk, hnr∆r)

= 0, s ∈ [0, t1).

By inverting the time direction and defining φi(s, π) as the vector of components
ϕi

k(t1 − s, π), the above system of ordinary differential equations can be rewritten as:

dφi

ds
= A(s, π)φi(s, π), s ∈ [0, t1), (A1)

where:
Akk(s, π) := −kshb(rk)α(ti + s) + λ

(
1− q(π, rk, 0)

)
,

Akj(s, π) := −λq(π, rk, hnr∆r), for |j− k| = hnr, h = 1, . . . , m, (A2)
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Akj(s, π) := 0, for |j− k| 6= hnr, ∀h = 1, . . . , m.

The initial datum is:

φi
k(0, π) =

∫
R

φi+1
k (t1, β(π, rk) + u)N0,v2(u) du. (A3)

It would be natural to approximate the integral in (A3) by a sum of the form:

D

∑
d=1

N0,v2(ud)φ
i+1
k (t1, β(π, rk) + ud)∆u, |ud| ≤ 3v, (A4)

where ∆u is the discretization step for the variable u. To this end, for each π and k, we would
need to compute the value of φi+1

k on the D points β(π, rk)+ u1, . . . , β(π, rk)+ uD, which in
turn would require computing the value of φi+2

k on the D2 points β
(

β(π, rk) + u1, rk
)
+ u1,

. . . , β
(

β(π, rk) + u1, rk
)
+ uD, . . . , β

(
β(π, rk) + uD, rk

)
+ u1, . . . , β

(
β(π, rk) + uD, rk

)
+ uD,

and so on, so that, for each pair (π, k), we would need to compute φL
k on a grid of DL−i

points and a different one for each (π, k).
In order to simplify the computation, we defined, for each π, independently of k,

a sequence of L− i grids {πi+1
1 , . . . , πi+1

Hi+1
}, . . . , {πL

1 , . . . , πL
HL
} constructed in the follow-

ing way:
the grid step is ∆π, constant, and the same for all the grids:

πi+1
1 = . . . = πL

1 = kππ∗ + β− 3v,

πi+1
Hi+1

= π + (kππ∗ + β + 3v),

πi+2
Hi+2

= π + 2(kππ∗ + β + 3v),

..........

πL
HL

= π + (L− i)(kππ∗ + β + 3v),

where we considered, for numerical purposes, only values π ≥ π , π ≤ 0, and β :=
(β0 − kΠ)π + min(β1r, β1r), β := (β0 − kΠ − 1)π + max(β1r, β1r). β0, β1, kΠ, and π∗ are
the parameters in (re f eq : beta), and (r, r) is the interval in which the variable r takes values
(r ≤ 0, r > 0). Taking into account that ud ∈ [−3v, 3v], for all r ∈ (r, r),

πi+1
1 = . . . = πL

1 = kππ∗ + β− 3v ≤ β(π, r) + ud ≤ π + kππ∗ + β + 3v = πi+1
Hi+1

≤ . . . ≤ πL
HL

,

so that for each rk, there is an index d∗ such that:

β(π, rk) + ud ∈ [πi+1
d∗ , πi+1

d∗+1].

Then, we can replace φi+1
k (t1, β(π, rk) + ud) by a linear interpolation between

φi+1
k (t1, πi+1

d∗ ) and φi+1
k (t1, πi+1

d∗+1). This procedure is repeated up to L. In this way, at step

j, we needed to compute φ
j
k only on the level j grid points. As the number of the grid

points increases linearly in j, the total number of points in all grids is of the order of
(L− i)(L− i + 1)/2. Finally, we solved the system—(A1) and (A2) by a standard routine.
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