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Abstract: In this paper, by using scalar multiple integral cost functionals and the notion of con-
vexity associated with a multiple integral functional driven by an uncertain multi-time controlled
second-order Lagrangian, we develop a new mathematical framework on multi-dimensional scalar
variational control problems with mixed constraints implying second-order partial differential equa-
tions (PDEs) and inequations (PDIs). Concretely, we introduce and investigate an auxiliary (modified)
variational control problem, which is much easier to study, and provide some equivalence results by
using the notion of a normal weak robust optimal solution.
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1. Introduction

As we all know, the partial differential equations (PDEs) and inequations (PDIs) are
very important in the study of many processes and phenomena in nature, science and
engineering. In this regard, over time, several researchers have taken a particular interest
in studying some optimization problems with ODE, PDE, or isoperimetric constraints. We
mention here, for instance, the works of Mititelu [1], Treanţă [2], Olteanu and Treanţă [3],
Mititelu and Treanţă [4], and Jayswal et al. [5]. Additionally, since the difficulty of the con-
sidered problems was increasing, several auxiliary (modified) optimization problems have
been introduced to study the initial problem more easily (see, quite recently, Treanţă [6–9]).
Moreover, the complexity of real-life processes and phenomena is very high and often in-
volves uncertainty in initial data. In consequence, many researchers turned their attention
to real problems involving higher-order PDEs, isoperimetric restrictions, uncertain data, or
a combination thereof. In this respect, the reader is directed to the following research works:
Liu and Yuan [10], Jeyakumar et al. [11], Wei et al. [12], Preeti et al. [13], Sun et al. [14],
Treanţă [15], Lu et al. [16]. For other different but connected ideas on this subject, the reader
is directed to [17–20].

In this paper, motivated and inspired by the above mentioned works, and based
on a given class of constrained robust optimization problems, named (P), we introduce
and investigate a new class of auxiliary (modified) control problems (which are much
easier to study). More precisely, by considering multiple integral cost functionals and
mixed (equality and inequality) constraints involving second-order partial derivatives
and data uncertainty, we formulate and prove some equivalence results between the two
considered classes of control problems. Compared to other research papers in this field,
the elements of total novelty included in the paper are represented by the presence of
second-order partial derivatives and also by the presence of uncertain data both in the
objective functional and in the restrictions. Moreover, the proofs associated with the main
results of the paper are presented in an innovative way. In addition, since the mathematical
framework developed here is suitable for various approaches and scientific views on
complex spatial and temporal behaviors, this paper could be seen as a fundamental work
for a large community of researchers in science and engineering.
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The paper is divided as follows. Section 2 introduces the preliminary tools that will
be used to describe the problem under study. Section 3 contains the main results of this
paper. The first main result, under convexity assumptions of the constraint functionals,
formulates the equivalence between the considered second-order PDE&PDI constrained
robust optimization problem (P) and the associated modified problem. The second main
result represents the converse of the first main result, assuming only the convexity hyothesis
of the objective functional. Section 4 contains the conclusions of the paper and further
developments.

2. Preliminary Tools

Throughout the paper, we consider the following notations and working hypotheses:

• Rp,Rq,Rr and Rn are Euclidean spaces of dimensions p, q, r and n, respectively;
• Θ ⊂ Rp is a compact domain, and the point t = (tα) ∈ Θ is a multi-parameter of

evolution or multi-time;

• S is the space of C4-class state functions a = (aτ) : Θ → Rq, and aα :=
∂a
∂tα

, aαβ :=

∂2a
∂tα∂tβ

denote the partial speed and partial acceleration, respectively;

• C is the space of C1-class control functions c = (cj) : Θ→ Rr;
• dt = dt1 . . . dtp is the volume element on Rp ⊃ Θ;
• T denotes the transpose of a vector;
• For two vectors x, y ∈ Rn, we use the following convention for inequalities and

equalities:

(i) x < y⇔ xi < yi, ∀i = 1, n;
(ii) x = y⇔ xi = yi, ∀i = 1, n;
(iii) x 5 y⇔ xi ≤ yi, ∀i = 1, n;
(iv) x ≤ y⇔ xi ≤ yi, ∀i = 1, n and xi < yi for some i.

The second-order PDE&PDI constrained controlled scalar optimization problem with
uncertainty in the objective and constraint functionals is formulated as follows:

(P) min
(a(·),c(·))

∫
Θ

f (t, a(t), aσ(t), aαβ(t), c(t), w)dt

subject to
g(t, a(t), aσ(t), aαβ(t), c(t), u) 5 0, t ∈ Θ

h(t, a(t), aσ(t), aαβ(t), c(t), v) = 0, t ∈ Θ

a(t0) = a0, a(t1) = a1, aσ(t0) = aσ0, aσ(t1) = aσ1,

or
a(t)|∂Θ = given, aσ(t)|∂Θ = given,

where f : J2
(

Θ,Rq
)
× C ×W → R, g = (g1, . . . , gm) = (gl) : J2

(
Θ,Rq

)
× C × Ul →

Rm, l = 1, m, h = (h1, . . . , hn) = (hζ) : J2
(

Θ,Rq
)
× C × Vζ → Rn, ζ = 1, n, are C3-class

functionals, w, u = (ul) and v = (vζ) are the uncertain parameters for some convex

compact subsets W ⊂ R, U = (Ul) ⊂ Rm and V = (Vζ) ⊂ Rn, respectively, and J2
(

Θ,Rq
)

denotes the second-order jet bundle associated to Θ and Rq.
The associated robust counterpart of the aforementioned scalar optimization problem

(P) is defined as:

(RP) min
(a(·),c(·))

∫
Θ

max
w∈W

f (t, a(t), aσ(t), aαβ(t), c(t), w)dt
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subject to
g(t, a(t), aσ(t), aαβ(t), c(t), u) 5 0, t ∈ Θ, ∀u ∈ U

h(t, a(t), aσ(t), aαβ(t), c(t), v) = 0, t ∈ Θ, ∀v ∈ V

a(t0) = a0, a(t1) = a1, aσ(t0) = aσ0, aσ(t1) = aσ1,

or
a(t)|∂Θ = given, aσ(t)|∂Θ = given.

Furthermore, denoted by

D = {(a, c) ∈ S × C : g(t, a(t), aσ(t), aαβ(t), c(t), u) 5 0,

h(t, a(t), aσ(t), aαβ(t), c(t), v) = 0, a(t0) = a0, a(t1) = a1,

aσ(t0) = aσ0, aσ(t1) = aσ1, t ∈ Θ, u ∈ U, v ∈ V}

the set of all feasible solutions in (RP) and we say that it is the robust feasible solution set to
the problem (P).

From now on, to simplify our presentation, we introduce the following notation:
π = (t, a(t), aσ(t), aαβ(t), c(t)).

The first-order partial derivatives associated with f are defined as

fa =
( ∂ f

∂a1 , · · · ,
∂ f
∂aq

)
, fc =

( ∂ f
∂c1 , · · · ,

∂ f
∂cr

)
.

Similarly, we have ga and gc using matrices with m rows and ha and hc using matrices
with n rows.

In the following, we introduce the notion of a weak robust optimal solution for
the considered class of constrained optimization problems. This concept will be used
to formulate the associated robust necessary optimality conditions and the main results
included in the present paper.

Definition 1. A robust feasible solution (ā, c̄) ∈ D is said to be a weak robust optimal solution
to the multi-dimensional scalar optimization problem (P) if there does not exist another point
(a, c) ∈ D such that ∫

Θ
max
w∈W

f (π, w)dt <
∫

Θ
max
w∈W

f (π̄, w)dt.

To formulate the concept of convexity and the robust optimality conditions associated
with the aforementioned controlled optimization problem, we shall use the Saunders’s
multi-index notation (see Saunders [21], Treanţă [22]).

Definition 2. A multiple integral functional (driven by an uncertain multi-time controlled second-
order Lagrangian)

F(a, c, w̄) =
∫

Θ
f (t, a(t), aσ(t), aαβ(t), c(t), w̄)dt =

∫
Θ

f (π, w̄)dt

is said to be convex at (ā, c̄) ∈ S × C if the following inequality

F(a, c, w̄)− F(ā, c̄, w̄) ≥
∫

Θ
fa(π̄, w̄)[a(t)− ā(t)]dt

+
∫

Θ
faσ (π̄, w̄)[aσ(t)− āσ(t)]dt

+
1

n(α, β)

∫
Θ

faαβ
(π̄, w̄)[aαβ(t)− āαβ(t)]dt
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+
∫

Θ
fc(π̄, w̄)[c(t)− c̄(t)]dt

holds for all (a, c) ∈ S × C.

In the following, according to Treanţă [22], we present the robust necessary optimality
conditions for the scalar optimization problem (P).

Theorem 1. Let (ā, c̄) ∈ D be a weak robust optimal solution to the problem (P) and
maxw∈W f (π, w) = f (π, w̄). Then, then there exist the scalar µ̄ ∈ R, the piecewise smooth
functions ν̄ = (ν̄l(t)) ∈ Rm

+, γ̄ = (γ̄ζ(t)) ∈ Rn , and the uncertainty parameters ū ∈ U and
v̄ ∈ V, such that the following conditions

µ̄ fa(π̄, w̄) + ν̄T ga(π̄, ū) + γ̄Tha(π̄, v̄) (1)

−Dσ

[
µ̄ faσ (π̄, w̄) + ν̄T gaσ (π̄, ū) + γ̄Thaσ (π̄, v̄)

]
+

1
n(α, β)

D2
αβ

[
µ̄ faαβ

(π̄, w̄) + ν̄T gaαβ
(π̄, ū) + γ̄Thaαβ

(π̄, v̄)
]
= 0,

µ̄ fc(π̄, w̄) + ν̄T gc(π̄, ū) + γ̄Thc(π̄, v̄) = 0, (2)

ν̄T g(π̄, ū) = 0, ν̄ = 0, (3)

µ̄ ≥ 0 (4)

hold for all t ∈ Θ, except at discontinuities.

Remark 1. The conditions (1)–(4) are known as robust necessary optimality conditions for the
multi-dimensional scalar optimization problem (P).

Definition 3. A robust feasible solution (ā, c̄) is said to be a normal weak robust optimal solution
to the problem (P) if µ̄ > 0 in Theorem 1. Without loss of generality, we can consider µ̄ = 1.

3. The Associated Modified Optimization Problem

In this section, we use the modified objective function method to reduce the complexity
associated with the considered multi-dimensional scalar optimization problem (P). In this
regard, let (ā, c̄) be an arbitrary given robust feasible solution to the multi-dimensional
scalar optimization problem (P). The modified multi-dimensional scalar optimization
problem associated with the original variational control problem (P) is defined as:

(P)(ā,c̄) min
(a(·),c(·))

∫
Θ

{
fa(π̄, w)(a(t)− ā(t)) + faσ (π̄, w)(aσ(t)− āσ(t))

+
1

n(α, β)
faαβ

(π̄, w)(aαβ(t)− āαβ(t)) + fc(π̄, w)(c(t)− c̄(t))
}

dt

subject to
g(π, u) 5 0, t ∈ Θ

h(π, v) = 0, t ∈ Θ

a(t0) = a0, a(t1) = a1, aσ(t0) = aσ0, aσ(t1) = aσ1,

or
a(t)|∂Θ = given, aσ(t)|∂Θ = given,

where the functionals f , g and h are given as in the original variational control problem (P).
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The associated robust counterpart of the multi-dimensional scalar optimization prob-
lem (P)(ā,c̄) is defined as:

(RP)(ā,c̄) min
(a(·),c(·))

∫
Θ

max
w∈W

{
fa(π̄, w)(a(t)− ā(t)) + faσ (π̄, w)(aσ(t)− āσ(t))

+
1

n(α, β)
faαβ

(π̄, w)(aαβ(t)− āαβ(t)) + fc(π̄, w)(c(t)− c̄(t))
}

dt

subject to
g(π, u) 5 0, t ∈ Θ, ∀u ∈ U

h(π, v) = 0, t ∈ Θ, ∀v ∈ V

a(t0) = a0, a(t1) = a1, aσ(t0) = aσ0, aσ(t1) = aσ1,

or
a(t)|∂Θ = given, aσ(t)|∂Θ = given.

Remark 2. Let us remark that the robust feasible solution set to the problem (P)(ā,c̄) is the same as
in the problem (P), and, in consequence, it is also denoted by D.

Definition 4. A point (â, ĉ) ∈ D is said to be a weak robust optimal solution to the modified multi-
dimensional scalar optimization problem (P)(ā,c̄) if there does not exist another point (a, c) ∈ D
such that ∫

Θ
max
w∈W

[
fa(π̄, w)(a− ā) + faσ (π̄, w)(aσ − āσ)

+
1

n(α, β)
faαβ

(π̄, w)(aαβ − āαβ) + fc(π̄, w)(c− c̄)
]
dt

<
∫

Θ
max
w∈W

[
fa(π̄, w)(â− ā) + faσ (π̄, w)(âσ − āσ)

+
1

n(α, β)
faαβ

(π̄, w)(âαβ − āαβ) + fc(π̄, w)(ĉ− c̄)
]
dt.

In the following, we establish some equivalence results between the problems (P) and
(P)(ā,c̄), under some appropriate convexity assumptions.

Theorem 2. Let (ā, c̄) be a normal weak robust optimal solution to the scalar optimization problem

(P). Furthermore, assume that
∫

Θ
ν̄T g(π, ū)dt,

∫
Θ

γ̄Th(π, v̄)dt are convex at (ā, c̄). Then, (ā, c̄)

is also a weak robust optimal solution to the modified multi-dimensional scalar optimization problem
(P)(ā,c̄).

Proof. By hypothesis, the relations (1)–(4), with µ̄ = 1, are fulfilled for all t ∈ Θ, except at
discontinuities. Hence, the conditions (1) and (2) yield∫

Θ
(ã− ā){ fa(π̄, w̄) + ν̄T ga(π̄, ū) + γ̄Tha(π̄, v̄) (5)

−Dσ

[
faσ (π̄, w̄) + ν̄T gaσ (π̄, ū) + γ̄Thaσ (π̄, v̄)

]
+

1
n(α, β)

D2
αβ

[
faαβ

(π̄, w̄) + ν̄T gaαβ
(π̄, ū) + γ̄Thaαβ

(π̄, v̄)
]
}dt

+
∫

Θ
(c̃− c̄){ fc(π̄, w̄) + ν̄T gc(π̄, ū) + γ̄Thc(π̄, v̄)}dt

=
∫

Θ

[
(ã− ā){ fa(π̄, w̄) + ν̄T ga(π̄, ū) + γ̄Tha(π̄, v̄)}
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+(ãσ − āσ){ faσ (π̄, w̄) + ν̄T gaσ (π̄, ū) + γ̄Thaσ (π̄, v̄)}

+
1

n(α, β)
(ãαβ − āαβ){ faαβ

(π̄, w̄) + ν̄T gaαβ
(π̄, ū) + γ̄Thaαβ

(π̄, v̄)}
]
dt

+
∫

Θ
(c̃− c̄){ fc(π̄, w̄) + ν̄T gc(π̄, ū) + γ̄Thc(π̄, v̄)}dt = 0,

where we used the formula of integration by parts, the divergence formula and the bound-
ary conditions formulated in the considered problem.

Now, let us proceed by contradiction and consider (ā, c̄) is not a weak robust optimal
solution to the modified multi-dimensional scalar optimization problem (P)(ā,c̄). Then,
there exists (ã, c̃) ∈ D such that∫

Θ
max
w∈W

[
fa(π̄, w)(ã− ā) + faσ (π̄, w)(ãσ − āσ)

+
1

n(α, β)
faαβ

(π̄, w)(ãαβ − āαβ) + fc(π̄, w)(c̃− c̄)
]
dt

<
∫

Θ
max
w∈W

[
fa(π̄, w)(ā− ā) + faσ (π̄, w)(āσ − āσ)

+
1

n(α, β)
faαβ

(π̄, w)(āαβ − āαβ) + fc(π̄, w)(c̄− c̄)
]
dt.

Since maxw∈W f (π, w) = f (π, w̄), we obtain∫
Θ

[
fa(π̄, w̄)(ã− ā) + faσ (π̄, w̄)(ãσ − āσ)

+
1

n(α, β)
faαβ

(π̄, w̄)(ãαβ − āαβ) + fc(π̄, w̄)(c̃− c̄)
]
dt

<
∫

Θ

[
fa(π̄, w̄)(ā− ā) + faσ (π̄, w̄)(āσ − āσ)

+
1

n(α, β)
faαβ

(π̄, w̄)(āαβ − āαβ) + fc(π̄, w̄)(c̄− c̄)
]
dt,

equivalent with ∫
Θ

[
fa(π̄, w̄)(ã− ā) + faσ (π̄, w̄)(ãσ − āσ) (6)

+
1

n(α, β)
faαβ

(π̄, w̄)(ãαβ − āαβ) + fc(π̄, w̄)(c̃− c̄)
]
dt < 0.

The robust feasibility of (ã, c̃) in the problem (P) and the robust necessary efficiency
condition (3) yield ∫

Θ
ν̄T g(π̃, ū)dt−

∫
Θ

ν̄T g(π̄, ū)dt ≤ 0. (7)

By hypothesis, since
∫

Θ
ν̄T g(π, ū)dt is convex at (ā, c̄), we obtain

∫
Θ

{
ν̄T g(π̃, ū)− ν̄T g(π̄, ū)

}
dt ≥

∫
Θ
(ã− ā)ν̄T ga(π̄, ū)dt

+
∫

Θ
(ãσ − āσ)ν̄

T gaσ (π̄, ū)dt

+
1

n(α, β)

∫
Θ
(ãαβ − āαβ)ν̄

T gaαβ
(π̄, ū)dt +

∫
Θ
(c̃− c̄)ν̄T gc(π̄, ū)dt.
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The above inequality together with relation (7) yield∫
Θ
(ã− ā)ν̄T ga(π̄, ū)dt +

∫
Θ
(ãσ − āσ)ν̄

T gaσ (π̄, ū)dt (8)

+
1

n(α, β)

∫
Θ
(ãαβ − āαβ)ν̄

T gaαβ
(π̄, ū)dt +

∫
Θ
(c̃− c̄)ν̄T gc(π̄, ū)dt ≤ 0.

Furthermore, from the assumption,
∫

Θ
γ̄Th(π, v̄)dt is convex at (ā, c̄) and the robust

feasibility of (ã, c̃) and (ā, c̄) in the multi-dimensional scalar optimization problem (P),
we obtain ∫

Θ
(ã− ā)γ̄Tha(π̄, v̄)dt +

∫
Θ
(ãσ − āσ)γ̄

Thaσ (π̄, v̄)dt (9)

+
1

n(α, β)

∫
Θ
(ãαβ − āαβ)γ̄

Thaαβ
(π̄, v̄)dt +

∫
Θ
(c̃− c̄)γ̄Thc(π̄, v̄)dt ≤ 0.

On combining the inequalities (6), (8) and (9), we obtain∫
Θ

[
(ã− ā){ fa(π̄, w̄) + ν̄T ga(π̄, ū) + γ̄Tha(π̄, v̄)}

+(ãσ − āσ){ faσ (π̄, w̄) + ν̄T gaσ (π̄, ū) + γ̄Thaσ (π̄, v̄)}

+
1

n(α, β)
(ãαβ − āαβ){ faαβ

(π̄, w̄) + ν̄T gaαβ
(π̄, ū) + γ̄Thaαβ

(π̄, v̄)}
]
dt

+
∫

Θ
(c̃− c̄){ fc(π̄, w̄) + ν̄T gc(π̄, ū) + γ̄Thc(π̄, v̄)}dt < 0,

which contradicts the relation (5). Consequently, (ā, c̄) is a weak robust optimal solution to
the problem (P)(ā,c̄), and this completes the proof.

The next result represents the reciprocal of the above theorem.

Theorem 3. Let (ā, c̄) be a weak robust optimal solution to the modified scalar optimization problem

(P)(ā,c̄). Furthermore, assume that maxw∈W f (π, w) = f (π, w̄) and the functional
∫

Θ
f (π, w̄)dt

is convex at (ā, c̄). Then, (ā, c̄) is a weak robust optimal solution to the multi-dimensional scalar
optimization problem (P).

Proof. Contrary to the result, we assume that (ā, c̄) is not a weak robust optimal solution
to multi-dimensional scalar optimization problem (P). Then, there exists another point
(ã, c̃) ∈ D such that ∫

Θ
max
w∈W

f (π̃, w)dt <
∫

Θ
max
w∈W

f (π̄, w)dt.

Since maxw∈W f (π, w) = f (π, w̄), we obtain∫
Θ

f (π̃, w̄)dt <
∫

Θ
f (π̄, w̄)dt. (10)

By assumption, since
∫

Θ
f (π, w̄)dt is a convex functional at (ā, c̄), we have

∫
Θ

{
f (π̃, w̄)− f (π̄, w̄)

}
dt =

∫
Θ

fa(π̄, w̄)(ã− ā)dt +
∫

Θ
faσ (π̄, w̄)(ãσ − āσ)dt

+
1

n(α, β)

∫
Θ

faαβ
(π̄, w̄)(ãαβ − āαβ)dt +

∫
Θ

fc(π̄, w̄)(c̃− c̄)dt,
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which along with the inequality (10), yield∫
Θ

fa(π̄, w̄)(ã− ā)dt +
∫

Θ
faσ (π̄, w̄)(ãσ − āσ)dt

+
1

n(α, β)

∫
Θ

faαβ
(π̄, w̄)(ãαβ − āαβ)dt +

∫
Θ

fc(π̄, w̄)(c̃− c̄)dt < 0,

equivalently with ∫
Θ

fa(π̄, w̄)(ã− ā)dt +
∫

Θ
faσ (π̄, w̄)(ãσ − āσ)dt

+
1

n(α, β)

∫
Θ

faαβ
(π̄, w̄)(ãαβ − āαβ)dt +

∫
Θ

fc(π̄, w̄)(c̃− c̄)dt

<
∫

Θ
fa(π̄, w̄)(ā− ā)dt +

∫
Θ

faσ (π̄, w̄)(āσ − āσ)dt

+
1

n(α, β)

∫
Θ

faαβ
(π̄, w̄)(āαβ − āαβ)dt +

∫
Θ

fc(π̄, w̄)(c̄− c̄)dt.

The above inequality can be rewritten as∫
Θ

max
w∈W

[
fa(π̄, w)(ã− ā) + faσ (π̄, w)(ãσ − āσ)

+
1

n(α, β)
faαβ

(π̄, w)(ãαβ − āαβ) + fc(π̄, w)(c̃− c̄)
]
dt

<
∫

Θ
max
w∈W

[
fa(π̄, w)(ā− ā) + faσ (π̄, w)(āσ − āσ)

+
1

n(α, β)
faαβ

(π̄, w)(āαβ − āαβ) + fc(π̄, w)(c̄− c̄)
]
dt,

which contradicts our assumption that (ā, c̄) is a weak robust optimal solution to the
modified multi-dimensional scalar optimization problem (P)(ā,c̄). Hence, the proof is
completed.

Remark 3. As can be easily seen, to derive the equivalence between the original problem (P) and its
associated modified problem (P)(ā,c̄), we imposed the convexity assumption only on the constraint
functionals; whereas, to establish the converse of Theorem 2, it is sufficient to consider only the
convexity hypothesis of the objective functional.

4. Conclusions

In this paper, for a given class of constrained robust optimization problems, named (P),
we have introduced and investigated an auxiliary (modified) robust optimization problem.
More specifically, by considering multiple integral cost functionals and mixed constraints
involving second-order partial derivatives and data uncertainty, we have formulated and
proved some equivalence results for the considered control problems. For this aim, we
used the concept of convexity associated with multiple integral functionals and the notion
of a normal weak robust optimal solution.

Some developments of the results presented in this paper, which will be investi-
gated in future papers, are provided by the study of the saddle-point optimality criteria
and the associated (Wolfe, Mond-Weir, mixed) duality theory for the considered class of
control problems.
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1. Mititelu, Ş. Optimality and duality for invex multi-dimensional control problems with mixed constraints. J. Adv. Math. Stud.

2009, 2, 25–34.
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