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Abstract: In this study, we consider a perishable inventory system that has an (s, Q) ordering policy,
along with a finite waiting hall. The single server, which provides an item to the customer after
completing the required service performance for that item, only begins serving after N customers
have arrived. Impatient demand is assumed in that the customers waiting to be served lose patience
and leave the system if the server’s idle time overextends or if the arriving customers find the system
to be full and will not enter the system. This article analyzes the impatient demands caused by the
N-policy server to an inventory system. In the steadystate, we obtain the joint probability distribution
of the level of inventory and the number of customers in the system. We analyze some measures of
system performance and get the total expected cost rate in the steadystate. We present a beneficial
cost function and confer the numerical illustration that describes the impact of impatient customers
caused by N-policy on the inventory system’s total expected cost rate.

Keywords: (s, Q)-policy; Markovian Arrival Process; N-policy; impatient customers

1. Introduction

Perishable inventory system research draws inspiration from Nahmias’ [1] seminal
piece on ordering policies for perishable inventory. Nahmias studied the ordering poli-
cies for fixed and random shelf lifetime perishable inventory. Earlier inventory systems
research usually assumed that the stock items are non-perishable. However, this is not
realistic, thus creating the need to study perishable inventory systems. For more details
on perishable inventory, we refer interested readers to Aijun Liu et al. [2], Darestani [3],
Ioannidis [4], Kalpakam and Arivarignan [5], Liu and Lian [6], Sung-Seok Ko [7], Weiss [8],
and Zhang et al. [9].

Generally, in the literature on inventory models, customers receive the stock demanded
instantaneously only when the stock is available; otherwise, waiting is the norm. In the
case of the inventory maintained at a service facility, customers usually wait for the item
demanded because some service is performed on it, for instance, a fast food outlet or
hospital dispensary. Further, due to the complexity and uniqueness of a customer’s order,
the service time may stretch and be variable, such as special medicinal preparation for
liver-impaired patients or gluten-free dietary requests. This then builds a queue in the
service system, often leading to impatient customers, with those customers sometimes
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reneging or balking from the service. Recognizing that queues can form during stock-
out situations, Berman et al. [10] examined an inventory model with a service facility
where both the demand and service rates are known and constant. They determined the
optimal order quantity for the minimal expected total cost. Since then, there has been
keen interest in the perishable queueing-inventory system and impatient customers (see,
for example, Amirthakodi and Sivakumar [11], Arivarignan et al. [12], Hamadi et al. [13],
Manuel et al. [14], and Lawrence et al. [15]).

For many inventory systems with service activities, the setup can require several
minutes, and these setup activities incur costs to the inventory system. One way to
reduce the setup cost is to employ an N-policy, i.e., if the system is empty, the server is
on vacation. When there are at least N customers in the system, the server begins service.
Yadin and Naor [16] suggested the N-policy concept. Heyman [17] first analyzed the
N-policy system with an M/G/1 queue. The N-policy has been extended by others, such
as Ke [18], Kella [19], and Wang and Ke [20], to a queueing network. Krishnamoorthy and
Anbazhagan [21] have considered a finite waiting hall perishable inventory system under
an N-policy. Similarly, Jeganathan et al. [22] considered a perishable inventory system with
a finite waiting hall and customer service under an N-policy, but they allowed the server to
take multiple vacations, assuming that the customers reach the service station in a Poisson
manner and inventory replenishment is instantaneous.

All previous references about N-policy in the inventory system focused on the setup
cost reduced in the system. Herein, we examine another fact that the cost of customers lost.
It is a significant component of the total expected cost rate.

Despite the fact that the N-policy successfully lessens the inventory system’s general
arrangement cost, it can nevertheless bring about waiting time vulnerability for the primary
N-1 customers. For instance, the first customer arrives at a vacant waiting hall, and
the service channel withholds the service until the other N-1 customers arrive into the
system. Assuming the customer appearance rate is moderate, there is a probability of
developing customer impatience. Our work is motivated by this perception. Specifically,
we investigated the effect of N-policy on the arriving customers to the inventory system
and focused on showing the possible results of increasingly impatient customers’ impact
on the total expected cost rate of the system.

In real life, you can see some rides in theme and amusement parks, theaters in malls,
as well as adventure activities like skydiving, scuba diving, rafting, and parasailing starting
to sell tickets to customers after some customers come to their systems. In these systems,
the first customers have to wait for other arrivals. They become easily impatient, so they
go for other systems.

We examine a perishable inventory system with a finite waiting capacity, and the
customers arrive as a Markovian Arrival Process. We assume that the server provides
service only when there are N customers in the system; otherwise, the server remains idle.
If the customers arrive and find the system to be full, they will not enter the system. At the
same time, the customer who is waiting for service and finds the server to be idle becomes
impatient and may exit the system.

The remainder of this paper is structured as follows. Section 2 presents the notation
used in the paper and the corresponding model development. In Section 3, the steady-
state analysis of the model is presented. In Section 4, we derive the measures of system
performance under steady-state analysis. In Section 5, the total expected system cost rate
is obtained. A cost analysis is provided in Section 6. Section 7 presents the numerical
illustration. Section 8 concludes the paper.

2. Model

The following notation will be used in this paper:

0 : Zero matrix.
I : Identity matrix.
Ix : Identity matrix of order x.
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[P]ij : Entry at (i, j)th position of a matrix P.
Fi(x×y)

: Size of matrix Fi is x row and y column.

e : Unit column vector of appropriate dimension.
I(t) : Inventory level at time t.
T(t) : Server status at time t.
C(t) : Number of customers waiting and being served at time t.
J(t) : Phase of the arrival process at time t.

T(t) =
{

0, if server is idle
1, if server is busy.

Consider that a perishable inventory system contains a limited waiting hall size
H(< ∞) (including the service receiver) with at most S items as inventory and a single
server. When the customer demand reaches a predetermined level N (0 < N < H), the
server begins service. The customers request for one item each. The customer only receives
the requested item after certain service activities are performed on that item. Service time
is a negative exponential distribution with parameter µ(> 0). For replenishment, an order
quantity Q(= S− s > s + 1) is placed when the inventory level drops to the reorder level
s and the items are received only after a random time, which has a negative exponential
distribution with parameter β(> 0). The customers who are waiting for service may exit
the system while the server is idle, these impatient(reneging) customers are assumed to
leave the system after a random time, which is distributed as a negative exponential with
parameter α(> 0). If the waiting hall is full, then all new arriving customers are considered
to be lost. The lifetime of each item has a negative exponential distribution with parameter
γ(> 0). We assume that the item does not perish when it is in service.

The MAP is a rich class of point processes that include many well-known processes
such as the Poisson process. As is notable, the Poisson measure is the least complex and
most manageable one, which is utilized widely in stochastic modeling.The possibility of the
MAP is to fundamentally sum up the Poisson process and still save the manageability for
modeling purposes. Hence, the MAP is a convenient tool for modeling both renewal and
non-renewal arrivals. While MAP is defined for both discrete and continuous times, here
we use only the continuous time case. For the description of the arrival process, we use the
MAP’s description as given in Lucantoni et al. [23]. Consider a continuous-time Markov
chain on the state space 1, 2,. . ., x. When the chain is in state i, 1 ≤ i ≤ x, it remains for an
exponential time with parameter vi. When the sojourn time ends, the chain may transition
in two ways. First, if the transition is with a customer arrival, then the chain enters state j
with probability cij, 1 ≤ j ≤ x. Second, if the transition is without a customer arrival, then
the chain enters state j with probability dij, 1 ≤ j ≤ x, i 6= j. Note that the chain can remain
in the same state (i.e., from state i to state i) when an arrival occurs. Consider the matrices
Ff , f = 0, 1 of size x as [F0]ii = −vi and [F0]ij = vidij,i 6= j, [F1]ij = vicij, 1 ≤ i, j ≤ x. Clearly,
F = F0 + F1 is an infinitesimal generator of a continuous-time Markov chain. We assume
that F is irreducible and F0e 6= 0.

Let ϕ be the stationary probability vector of a continuous-time Markov chain with
generator F. Then, ϕ is the unique probability vector satisfying ϕF = 0, ϕe = 1.

Suppose ω is the primary probability vector of the hidden Markov chain dependent
on the MAP. Then we can obtain the time epochs by picking an appropriate ω, such as
an independent arrival point, the end of the interval of at least k arrivals, and where the
system is in a particular state such as the beginning or end of a busy period.

Setting ω = ϕ, we obtain the stationary distribution of the MAP. The constant
λ = ϕF1e is the fundamental rate, which provides the mean of the customer arrivals
in unit time.

For more details on the MAP, we refer the interested reader to Latouche and Ra-
maswami [24], Lee and Jeon [25], and Chakravarthy and Dudin [26].
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3. Analysis

Let L(t),T(t),C(t) and J(t), respectively, denote the inventory level, server status, number
of customer waiting and being served and phase of the arrival process at time t. From the
assumptions made on the input and output processes, it can be shown that the quadruple
{(I(t), T(t), C(t), J(t)), t ≥ 0} is a Markov process whose state space is

E = E1 ∪ E2 ∪ E3 ∪ E4, with
E1 = {(i, 0, 0, r) : 1 ≤ i ≤ S; 1 ≤ r ≤ x}
E2 = {(i, k, m, r) : 1 ≤ i ≤ S; k = 0, 1; 1 ≤ m ≤ N − 1; 1 ≤ r ≤ x}
E3 = {(i, k, m, r) : 1 ≤ i ≤ S; k = 1; N ≤ m ≤ H; 1 ≤ r ≤ x}
E4 = {(0, 0, m, r) : 0 ≤ m ≤ H; 1 ≤ r ≤ x}

We order the elements of Elexicographically. Then the infinitesimal generator P of the
Markov process {(I(t), T(t), C(t), J(t)), t ≥ 0} has the following block partitioned form:

[P]ij =


Yi, j = i− 1, i = 1, 2, . . . S
Xi, j = i, i = 0, 1, . . . S
Z, j = i + Q, i = 1, 2, . . . s

Z′ j = i + Q, i = 0
0, otherwise .

where
0 1

Z′ = 0
(

F2((H+1)x×Nx)
0((H+1)x×Hx)

)
Submatrix F2 is

0 1 · · · N − 1

F2 =

0
1
...

N − 1
N
...

H



βIx 0 · · · 0
0 βIx · · · 0
...

...
...

...
0 0 · · · βIx
0 0 · · · 0
...

...
...

...
0 0 · · · 0


0 1

Z =
0
1

(
F3(Nx×Nx)

0(Nx×Hx)
0(Hx×Nx) F4(Hx×Hx)

)
Submatrices F3 and F4 are

0 1 · · · N − 1

F3 =

0
1
...

N − 1


βIx 0 · · · 0
0 βIx · · · 0
...

...
...

...
0 0 · · · βIx


0 1 · · · H

F4 =

0
1
...

H


βIx 0 · · · 0
0 βIx · · · 0
...

...
...

...
0 0 · · · βIx


For i = 0

0
Xi = 0

(
F5((H+1)x×(H+1)x)

)
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Submatrix F5 is

0 1 2 · · · N − 2 N − 1 N · · · H − 2 H − 1 H

F5 =

0
1
...

N − 1
N
...

H − 1
H



F0 − βIx F1 0 · · · 0 0 0 · · · 0 0 0
αIx F0 − (α + β)Ix F1 · · · 0 0 0 · · · 0 0 0

...
...

...
...

...
...

...
...

...
...

...
0 0 0 · · · αIx F0 − (α + β)Ix F1 · · · 0 0 0
0 0 0 · · · 0 αIx F0 − αIx · · · 0 0 0
...

...
...

...
...

...
...

...
...

...
...

0 0 0
... 0 0 0

... αIx F0 − αIx F1

0 0 0
... 0 0 0

... 0 αIx F0 − αIx


For i = 1,2, . . . s

0 1

Xi =
0
1

(
F6(Nx×Nx)

0(Nx×Hx)
0(Hx×Nx) F7(Hx×Hx)

)
Submatrices F6 and F7 are

0 1 2 · · · N − 2 N − 1

F6 =

0
1
...

N − 2
N − 1


F0 − (iγ + β)Ix F1 0 · · · 0 0

αIx F0 − (α + iγ + β)Ix F1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · F0 − (α + iγ + β)Ix F1
0 0 0 · · · αIx F− (α + iγ + β)Ix


1 2 · · · H − 1 H

F7 =

1
2
...

H − 1
H


F0 − (iγ + µ + β)Ix F1 · · · 0 0

0 F0 − (iγ + µ + β)Ix · · · 0 0
...

...
...

...
...

0 0 · · · F0 − (iγ + µ + β)Ix F1
0 0 · · · 0 F− (iγ + µ + β)Ix


For i = s + 1, . . . S

0 1

Xi =
0
1

(
F8(Nx×Nx)

0(Nx×Hx)
0(Hx×Nx) F9(Hx×Hx)

)

Submatrices F8 and F9 are
0 1 2 · · · N − 2 N − 1

F8 =

0
1
...

N − 2
N − 1


F0 − (iγ)Ix F1 0 · · · 0 0

αIx F0 − (α + iγ)Ix F1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · F0 − (α + iγ)Ix F1
0 0 0 · · · αIx F− (α + iγ)Ix


1 2 · · · H − 1 H

F9 =

1
2
...

H − 1
H


F0 − (iγ + µ)Ix F1 · · · 0 0

0 F0 − (iγ + µ)Ix · · · 0 0
...

...
...

...
...

0 0 · · · F0 − (iγ + µ)Ix F1
0 0 · · · 0 F− (iγ + µ)Ix


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For i = 1
0

Yi =
0
1

(
F10(Nx×(H+1)x)

F11(Hx×(H+1)x)

)
Submatrices F10 and F11 are

0 1 · · · N − 1 N · · · H

F10 =

0
1
...

N − 1


iγIx 0 · · · 0 0 · · · 0

0 iγIx · · · 0 0 · · · 0
...

...
...

...
...

...
...

0 0 · · · iγIx 0 · · · 0


0 1 2 · · · H − 1 H

F11 =

0
1
...

H − 1
H


µIx iγIx 0 · · · 0 0
0 µIx iγIx · · · 0 0
...

...
...

...
...

...
0 0 0 · · · iγIx 0
0 0 0 · · · µIx iγIx


For i = 2, . . . S

0 1

Yi =
0
1

(
F12(Nx×Nx)

0(Nx×Hx)
F13(Hx×Nx) F14(Hx×Hx)

)
Submatrices F12, F13, and F14 are

0 1 · · · N − 1

F12 =

0
1
...

N − 1


iγIx 0 · · · 0

0 iγIx · · · 0
...

...
...

...
0 0 · · · iγIx


0 1 · · · H

F13 =

1
2
...

H


µIx 0 · · · 0
0 0 · · · 0
...

...
...

...
0 0 · · · 0


1 2 · · · H− 1 H

F14 =

1
2
...

H


iγIx 0 · · · 0 0
µIx iγIx · · · 0 0

...
...

...
...

...
0 0 · · · µIx iγIx


It is noted that matrix Z′ is of the order ((H + 1)x) × (Nx + Hx), matrix Z is of the order

(Nx + Hx) × (Nx + Hx), matrices Xi,i = 1,2,. . .S are of order (Nx + Hx) × (Nx + Hx), matrix
X0 is of the order ((H + 1)x) × ((H + 1)x), matrices Yi,i = 2,3,. . .S are of order (Nx + Hx) ×
(Nx + Hx), and matrix Y1 is of the order (Nx + Hx) × ((H + 1)x), respectively.

4. Study of Steady-State Vector

The process {I(t), T(t), C(t), J(t); t ≥ 0} is a continuous-time Markov chain (CTMC)
having the state space E. Hence, the steady-state vector

Ξ(i, k, m, r) = lim
t→∞

Pr[I(t) = i, T(t) = k, C(t) = m, J(t) = r/I(0), T(0), C(0), J(0)]
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exists, and is independent of the initial state.

Let Ξ = (Ξ(0), Ξ(1), . . . , Ξ(S)),
where Ξ(i) = (Ξ(i, 0), Ξ(i, 1)), i = 0, 1, . . . S
with Ξ(i, k) = (Ξ(i, k, 0), Ξ(i, k, 1), . . . Ξ(i, k, H)), k = 0, 1
with Ξ(i, k, m) = (Ξ(i, k, m, 1), Ξ(i, k, m, 2), . . . Ξ(i, k, m, x)), m = 0, 1, . . . H

Then, the steady state vector Ξ satisfies ΞP = 0, Ξe = 1.

Lemma 1. For the Markov process, the steady-state vector Ξ whose rate matrix is P is defined by

Ξ(i) = Ξ(Q)∇i, i = 0, 1, . . . S

where

∇i =


(−1)Q−iYQX−1

Q−1YQ−1 . . .Yi+1X−1
i , i = 0, 1, . . . Q− 1;

I, i = Q;

(−1)2Q−i+1 S−i
∑

j=1


(
YQX−1

Q−1YQ−1 . . .Ys+1−jX−1
s−j

)
ZX−1

S−j(
YS−jX−1

S−j−1YS−j−1 . . .Yi+1X−1
i

) , i = Q + 1, . . . S;

and Ξ(Q) can be attained by workout the following two equations:

Ξ(Q)

(−1)Q ∑S−1
j=0


(
YQX−1

Q−1YQ−1 . . .Ys+1−jX−1
s−j

)
ZX−1

S−j

(
YS−jX−1

S−j−1YS−j−1 . . .YQ+2X−1
Q+1

) 
YQ+1 +XQ +

{
(−1)QYQX−1

Q−1YQ−1 . . .Y1X−1
0

}
Z′
 = 0

and

Ξ(Q)

(
Q−1

∑
i=0

{
(−1)Q−iYQX−1

Q−1YQ−1 . . .Yi+1X−1
i

}
+ I +

S

∑
i=Q+1

{(−1)2Q−i+1
S−i

∑
j=0
{
(
YQX−1

Q−1YQ−1 . . .Ys+1−jX−1
s−j

)
ZX−1

S−j

(
YS−jX−1

S−j−1YS−j−1 . . .Yi+1X−1
i

)
}})e = 1

Proof. The well-known equations are,

ΞP = 0 and Ξe = 1.

The equation ΞP = 0 can be written as

Ξ(i + 1)Yi+1 + Ξ(i)Xi = 0, i = 0, 1, . . . Q− 1
Ξ(i + 1)Yi+1 + Ξ(i)Xi + Ξ(i−Q)Z′ = 0, i = Q

Ξ(i + 1)Yi+1 + Ξ(i)Xi + Ξ(i−Q)Z = 0, i = Q + 1, Q + 2, . . . S− 1
Ξ(i)Xi + Ξ(i−Q)Z = 0, i = S

(1)

Except (1), the above equations can be solved recursively, yielding

Ξ(i) = Ξ(Q)∇i, i = 0, 1, . . . S.

where

∇i =


(−1)Q−iYQX−1

Q−1YQ−1 . . .Yi+1X−1
i , i = 0, 1, . . . Q− 1;

I, i = Q;

(−1)2Q−i+1 S−i
∑

j=0


(
YQX−1

Q−1YQ−1 . . .Ys+1−jX−1
s−j

)
ZX−1

S−j(
YS−jX−1

S−j−1YS−j−1 . . .Yi+1X−1
i

) , i = Q + 1, . . . S;
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Solving Equation (1) and normalizing the condition after putting the value of ∇i in that
equation, we obtain Ξ(Q), i.e.,

Ξ(Q)

(−1)Q ∑S−1
j=0


(
YQX−1

Q−1YQ−1 . . .Ys+1−jX−1
s−j

)
ZX−1

S−j

(
YS−jX−1

S−j−1YS−j−1 . . .YQ+2X−1
Q+1

) 
YQ+1 +XQ +

{
(−1)QYQX−1

Q−1YQ−1 . . .Y1X−1
0

}
Z′
 = 0

and

Ξ(Q)(
Q−1

∑
i=0

{
(−1)Q−iYQX−1

Q−1YQ−1 . . .Yi+1X−1
i

}
+ I +

S

∑
i=Q+1

{
(−1)2Q−i+1

S−i

∑
j=0

{(
YQX−1

Q−1YQ−1 . . .Ys+1−jX−1
s−j

)
ZX−1

S−j

(
YS−jX−1

S−j−1YS−j−1 . . .Yi+1X−1
i

)}
})e = 1

�

5. Derivation of System Performance Measures

We infer some performance measures of this system during a steady state. It is seen
that Ξ(i) is the steady-state probability vector for the inventory level being i with every
constituent mentioned: server status in the system, the number of customers, waiting and
being served, and the phase of the arrival process. Hence, Ξ(i)e provides the probability
that the inventory level in a steadystate is i. Similarly, Ξ(i, k, m)e is the probability that the
inventory level i, server status j, and customers waiting (including being served) k are in a
steadystate.

5.1. Mean Inventory Level

Let ML be the mean inventory level in a steadystate, which can be expressed as

ML = ∑S
i=1i

(
∑1

k=0∑N−1
m=1 Ξ(i, k, m)

)
e + ∑S

i=1i
(

∑H
m=NΞ(i, 1, m)

)
e + ∑S

i=1i(Ξ(i, 0, 0))e.

5.2. Mean Reorder Rate

Let MRO be the mean reorder rate in a steady state. If a demand service is completed
or any of the (s + 1) items fails, then the inventory level drops to s from level (s + 1), a stock
reorder is triggered. This then leads to

MRO = µ
H
∑

m=1
Ξ(s + 1, 1, m)e + (s + 1)γ

1
∑

k=0

N−1
∑

m=1
Ξ(s + 1, k, m)e

+(s + 1)γ ∑H
m=N Ξ(s + 1, 1, m)e + (s + 1)γΞ(s + 1, 0, 0)e.

5.3. Mean Perishable Rate

Let MP be the mean perishable rate in a steadystate, which is given by

MP = ∑S
i=1∑1

k=0∑N−1
m=1 iγΞ(i, k, m)e + ∑S

i=1∑H
m=N iγΞ(i, 1, m)e + ∑S

i=1iγΞ(i, 0, 0)e.

5.4. Mean Balking Rate

Let MB be the mean balking rate in a steadystate, which can be stated as

MB =
1
λ

∑S
i=1Ξ(i, 1, H)F1e +

1
λ

Ξ(0, 0, H)F1e.

5.5. Mean Reneging Rate

Let MR be the mean reneging rate in a steadystate, which is given by

MR = ∑S
i=0∑N−1

m=1 mαΞ(i, 0, m)e + ∑H
m=1mαΞ(0, 0, m)e.
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5.6. Mean Waiting Time

Let MW be the mean waiting time of the customers in the waiting hall in a steady state.
Then, by Little’s formula,

MW = L
λa

where L = ∑N−1
m=1 m

(
∑S

i=1 ∑1
k=0 Ξ(i, k, m)

)
e + ∑H

m=N m
(

∑S
i=1 Ξ(i, 1, m)

)
e + ∑H

m=1 mΞ(0, 0, m)e

and the effective arrival rate (Ross [27]) λa is given by

λa =
1
λ

∑S
i=1∑1

k=0∑N−1
m=1 Ξ(i, k, m)F1e +

1
λ

∑S
i=1∑H−1

m=NΞ(i, 1, m)F1e +
1
λ

∑S
i=1Ξ(i, 0, 0)F1e +

1
λ

∑H=1
m=0 Ξ(0, 0, m)F1e.

6. Cost Analysis

In order to calculate the total expected cost per unit time, we consider the following
cost components.

CC: Unit inventory carrying cost per unit time
CS: Setup cost per order
CB: Balking cost per customer per unit time
CP: Perishable cost per item per unit time
CR: Reneging cost per customer per unit time

Using the system performance measures from Section 5, the long-run expected system
cost rate is given by

TC(S, s, H) = CC ML + CS MRO + CB MB + CP MP + CR MR + CW MW

where ML, MRO, MP, MR, and MW are given in Section 5.

7. Numerical Illustration

This section presents some numerical experimentations that feature the convexity of
the total expected system cost rate. In particular, we show the calculability of the outcomes
inferred in our work and uncover the presence of local optima when the total cost function
is a bivariate function. It is difficult to show convexity as the computations of Ξ′s are
recursive. The arrival process is Erlang, and as an MAP, its parameters are given by (F0,
F1), with

F0 =

 −1 1 0
0 −1 1
0 0 −1

 and F1 =

 0 0 0
0 0 0
1 0 0


In Tables 1–3, each row has a value in bold, and each column has a value that is

underlined to represent the minima of the row and column, respectively. The value that is
bold and underlined is then the least cost rate of the inventory system. Therefore, we have
a (local) optimum for the related cost function of the table.

Table 1. Total expected cost rate interms of S and s.

S/s 8 9 10 11 12 13 14

30 3.2593 2.5439 2.1758 2.0335 2.0755 2.3231 2.8720

31 2.0682 1.5162 1.2608 1.1835 1.2480 1.4639 1.8954

32 1.4396 0.9747 0.8044 0.7869 0.8831 1.1048 1.5060

33 1.4966 0.9729 0.8102 0.8291 0.9707 1.2480 1.7235

34 2.6559 1.7741 1.4900 1.5060 1.7365 2.1750 2.8915
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Table 2. Total expected cost rate interms of s and H.

H/s 3 4 5 6 7

3 0.9623 0.9560 0.9772 1.1089 1.3626

4 0.8967 0.8933 0.9065 1.0349 1.2932

5 3.8915 3.7048 3.5771 3.5779 3.7260

6 6.6794 6.4398 6.2803 6.2629 6.3866

7 9.7410 9.5087 9.3401 9.2999 9.3926

Table 3. Total expected cost rate in terms of S and H.

S/H 6 7 8 9 10

9 32.0697 30.3781 32.8875 38.2844 44.1008

10 31.8089 29.1228 32.8407 37.5364 42.5232

11 29.5793 28.5009 33.1264 37.1302 41.1433

12 30.5683 28.1685 33.3080 36.8679 39.9816

13 31.3798 28.3862 33.4184 36.7971 39.1530

14 32.0893 28.6924 33.7491 36.6116 38.6069

15 32.6321 29.2989 34.2411 36.8371 38.0025

16 33.1071 29.8624 34.7161 37.2047 37.9498

17 33.5074 30.6399 35.2495 37.5077 37.8875

18 33.9234 31.3228 35.7665 37.9689 38.0269

Let H = 8, N = 5, β = 0.95, µ = 1.04, γ = 0.6, α = 0.35, λ = 0.8 and CC = 0.1, CS = 0.8,
CB = 0.07, CP = 0.05, CR = 0.1, CW = 0.1.

In Table 1, the values of TC(S,s,8) are shown.
The numerical example suggests that TC(S, s, 8) in (S, s) is convex and that the local

optimum occurs at (S, s) = (32, 11), as displayed in Table 1 and Figure 1.

Figure 1. Total expected cost rate of S and s.

Let S = 40, N = 2, β = 0.11, µ = 1, γ = 0.235, α = 0.59, λ = 0.93 and CC = 0.011,
CS = 0.001, CB = 0.03, CP = 0.01, CR = 0.4, CW = 0.05.

From Table 2, the numerical example suggests that TC(40,s,H) in (s,H) is convex and
that the local optimum occurs at (s,H) = (4,4).

Let s = 2, N = 2, β = 0.46, µ = 1.25, γ = 0.14, α = 0.1, λ = 0.24 and CC = 0.17,
CS = 0.005, CB = 0.97, CP = 0.03, CR = 0.08, CW = 0.06.

TC(S,2,H) values are displayed in Table 3.
The numerical example suggests that TC(S, 2, H) in (S, H) is convex and that the local

optimum occurs at (S, H) = (12, 7).
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Figure 2 grants the impact of the impatient customer rates(α), on the total expected
cost rate TC via five curves thatrelate to N = 2,3,4,5,6. The acquired values for the remaining
parameters and costs are displayed in the actual figure. Because ofFigure 2, we perceive that
the total cost value decreases when the customer requirements for service begin (i.e., N)
increases and the impatient customers’ rate(α) increases.

Figure 2. TC(32,11) vs. α, H = 8, β = 0.95, µ = 1.04, γ = 0.6, CC = 0.1, CS = 0.8, CB = 0.07, CP = 0.05,
CR = 0.1, CW = 0.1.

Figure 3 grants the impact of the impatience customer rates (α), on the total expected
cost rate TC via three curves thatrelate to µ = 2,3,4. Because ofFigure 3, we perceive that the
total cost value decreases when the service rate (µ) decreases, and the impatient customer
rate(α) increases.

Figure 3. TC(32,11) vs. α, H = 8; β = 0.95; N = 3; γ = 0.6; CC = 0.1; CS = 0.8; CB = 0.07; CP = 0.05;
CR = 0.1; CW = 0.1.

Figure 4 grants the impact of the service rates (µ) on the total expected cost rate TC
via four curves thatrelate to γ = 0.03,0.04,0.05,0.06. Because ofFigure 4, we perceive that
the total cost value increases when the service rate (µ) increases and the perishable rate
(γ) increases.

In Tables 4–9, we show the impact of the setup cost CS, the carrying cost CC, the
balking cost CB, the reneging cost CR, and the waiting time cost CW on the optimal values
(S∗, s∗) and the corresponding total expected cost rate TC∗. Towards this end, we first
fix the parameters and cost value as H = 8, N = 5, β = 0.95, µ = 1.04, γ = 0.6, α = 0.35,
λ = 0.8, and CP = 0.05.
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Figure 4. TC(32,11) vs. µ, H = 8; β = 0.95; N = 5; CC = 0.1; CS = 0.8; CB = 0.07; CP = 0.05; CR = 0.1;
CW = 0.1.

Table 4. Impact of CC and CS costs on the optimal value.

CC/CS 0.7 0.8 0.9 1.0 1.1

32 11 32 11 32 11 32 11 32 11

0.09 0.664642 0.698524 0.732406 0.766289 0.800171

32 11 32 11 32 11 32 11 32 11

0.10 0.694095 0.727977 0.761860 0.795742 0.829625

32 11 32 11 32 11 32 11 32 11

0.11 0.723549 0.757431 0.791313 0.825196 0.859078

32 11 32 11 32 11 32 11 32 11

0.12 0.753002 0.786885 0.820767 0.854649 0.888532

32 11 32 11 32 11 31 10 31 10

0.13 0.782456 0.816338 0.850221 0.884103 0.917985

Table 5. Impact of CW and CB costs on the optimal value.

CB/CW 0.09 0.10 0.11 0.12 0.13

32 11 32 11 32 11 32 11 32 11

0.07 0.719856 0.721000 0.722143 0.723287 0.724431

32 11 32 11 32 11 32 11 32 11

0.08 0.786885 0.788028 0.789172 0.790316 0.791460

32 11 32 11 32 11 32 11 32 11

0.09 0.853914 0.855057 0.856201 0.857345 0.858489

32 11 32 11 32 11 32 11 32 11

0.10 0.920942 0.922086 0.923230 0.924374 0.925518

32 12 32 12 32 12 33 12 33 12

0.11 0.980997 0.982192 0.983386 0.984581 0.985776
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Table 6. Impact of CW and CR costs on the optimal value.

CW/CR 0.09 0.10 0.11 0.12 0.13

32 11 32 11 32 11 32 11 32 11

0.09 0.696894 0.719856 0.742817 0.765779 0.788741

32 11 32 11 32 11 32 11 32 11

0.10 0.763923 0.786885 0.809846 0.832808 0.855770

32 11 32 11 32 11 32 11 32 11

0.11 0.830952 0.853914 0.876875 0.899837 0.922799

32 12 32 11 32 11 32 11 32 11

0.12 0.897962 0.920942 0.943904 0.966866 0.989828

32 12 32 12 32 12 32 12 33 12

0.13 0.956834 0.980997 1.005160 1.029322 1.053485

Table 7. Impact of CW and CS costs on the optimal value.

CW/CS 0.7 0.8 0.9 1.0 1.1

32 11 32 11 32 11 32 11 32 11

0.09 0.685973 0.719856 0.753738 0.787620 0.821503

32 11 32 11 32 11 32 11 32 11

0.10 0.753002 0.786885 0.820767 0.854649 0.888532

32 11 32 11 32 11 32 11 32 11

0.11 0.820031 0.853914 0.887796 0.921678 0.955561

32 11 32 11 32 11 32 11 32 11

0.12 0.885104 0.920942 0.954825 0.988707 1.022590

33 11 33 11 33 11 33 11 33 11

0.13 0.943977 0.980997 1.018017 1.055037 1.089619

Table 8. Impact of CW and CC costs on the optimal value.

CW/CC 0.09 0.10 0.11 0.12 0.13

32 11 32 11 32 11 32 11 32 11

0.09 0.631495 0.660949 0.690402 0.719856 0.749309

32 11 32 11 32 11 32 11 32 11

0.10 0.698524 0.727977 0.757431 0.786885 0.816338

32 11 32 11 32 11 32 11 32 11

0.11 0.765553 0.795006 0.824460 0.853914 0.883367

32 11 32 11 32 11 32 11 32 11

0.12 0.832582 0.862035 0.891489 0.920942 0.946720

31 11 31 11 31 11 31 10 31 10

0.13 0.899611 0.929064 0.956402 0.980997 1.005592
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Table 9. Impact of CS and CR costs on the optimal value.

CS/CR 0.09 0.10 0.11 0.12 0.13

32 11 32 11 32 11 32 11 32 11

0.7 0.730040 0.753002 0.775964 0.798926 0.821888

32 11 32 11 32 11 32 11 32 11

0.8 0.763923 0.786885 0.809846 0.832808 0.855770

32 11 32 11 32 11 32 11 32 11

0.9 0.797805 0.820767 0.843729 0.866691 0.889652

32 11 32 11 32 11 32 11 32 11

1.0 0.831688 0.854649 0.877611 0.900573 0.923535

32 11 32 11 32 11 31 11 31 11

1.1 0.865570 0.888532 0.911493 0.934455 0.957417

From Tables 4–9, we observe the below monotonic behavior of (S∗, s∗):

• The total expected cost rate increases when each of the setup cost CS, the carrying cost
CC, the balking cost CB, the reneging cost CR, and the waiting time cost CW increase.

• As is to be expected, (S∗, s∗) monotonically increase when CW increases.
• (S∗, s∗) monotonically decrease when CC and CS increase.
• (S∗, s∗) monotonically increase when CC and CW increase.
• S∗ increases with CB and CW increasing.

8. Conclusions

In this paper, we proposed a perishable inventory system model in which the demands
arrive according to a MAP and the replenishment process is negatively exponential. The
server provides service at least N number of customers in the system(i.e., N-policy). We
investigated the effect of the N-policy on the arriving customers to the inventory system.
The joint distribution is derived in the steady-state, and we analyzed some measures of
system performance and obtained the total expected cost rate in the steady-state. Addi-
tionally, we presented the numerical illustration that describes the impact of impatient
customers caused by the N-policy on the inventory system’s total expected cost rate. From
the sensitive analysis, we can see that the total expected cost value diminishes because
of the impatient customer rate. The total expected cost value seriously diminishes when
the customer requirements for service begin(i.e., N) with rate increments. The service rate
building also did not assist with decreases in the effect on the total expected cost rate.
Additionally, the total expected cost value decreases due to the customer loss cost by the
impatient customer rate, which is greater than the total expected cost value decrease due to
other cost and rate values. From these perceptions, we stated that the impatient customers
due to N-policy have an enormous impact on the total expected cost of the system. Future
work can investigate the way to reduce the increasing of impatient customers caused by
the N-policy server in the inventory system by adding other concepts like vacation policy
with the N-policy server.
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