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Abstract: A typical characteristic of bimodular material beams is that when bending, the neutral
layer of the beam does not coincide with its geometric middle surface since the mechanical properties
of materials in tension and compression are different. In the classical theory of elasticity, however,
this characteristic has not been considered. In this study, a bimodular simply-supported beam under
the combination action of thermal and mechanical loads is theoretically analyzed. First, a simplified
mechanical model concerning the neutral layer is established. Based on this mechanical model,
Duhamel’s theorem is used to transform the thermoelastical problem into a pure elasticity problem
with imaginary body force and surface force. In solving the governing equation expressed in terms
of displacement, a special solution of the displacement equation is found first, and then by utilizing
the stress function method based on subarea in tension and compression, a supplement solution
for the displacement governing equation without the thermal effect is derived. Lastly, the special
solution and supplement solution are superimposed to satisfy boundary conditions, thus obtaining a
two-dimensional thermoelasticity solution. In addition, the bimodular effect and temperature effect
on the thermoelasticity solution are illustrated by computational examples.

Keywords: thermoelasticity; bimodular material beams; thermal load; tension and compression;
neutral layer

1. Introduction

In the classical theory of elasticity [1], it is generally assumed that materials exhibit
the same elastic properties in tension and compression, but this is only a simplified re-
sult and does not account for the nonlinear characteristics of materials. Many studies
have indicated that most materials [2,3], including concrete, ceramics, graphite, rubber
and some biomedical materials, exhibit different tensile and compressive strains when
they are subjected to tensile and compressive stresses with the same magnitude. Thus,
these materials exhibit different elastic moduli in tension and compression, and are called
bimodular materials [4]. Generally, there are two basic material models widely used in
theoretical analysis within the engineering profession. One is the criterion of positive–
negative signs in the longitudinal strain of fibers proposed by Bert [5]. This model is mainly
applicable to orthotropic materials and is therefore widely used in the analysis of laminated
composites [6–9]. Another model is the criterion of positive–negative signs of principal
stress proposed by Ambartsumyan [10], which is mainly applicable to isotropic materials.
In structural analysis, this model is of particular significance, since it is this factor that
determines whether the point is in tension or in compression. This paper will focus on the
study of the latter model based on principal direction.

Ambartsumyan [10] linearized the bimodular materials model by two straight lines
whose tangents at the origin are discontinuous, as shown in Figure 1, in which σ is
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the principal stress and ε is the principal strain. The basic assumptions of this model
are as follows: (1) The studied body is continuous, elastic, homogeneous, and isotropic;
(2) Small deformation is satisfied; (3)Young’s modulus of elasticity and Poisson’s ratio
of materials are E+ and µ+ when the materials are in tension along a certain principal
direction; and they are E− and µ− when the materials are in compression; (4) When
the three principal stresses are uniformly positive or uniformly negative, the three basic
equations are essentially the same as those of the classical theory of elasticity; when the
signs of the three principal stresses are different, the differential equations of equilibrium
and the geometrical equations are the same as those of the classical theory of elasticity,
with the exception of the physical equations; (5) µ+/E+ = µ−/E− is introduced and this
will ensure symmetry of the flexibility matrix.
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Due to the fact that this bimodular theory defines its constitutive model based on
principal directions, the principal stress is generally obtained as a final result but not as a
known condition before solving; this inevitably incurs difficulties of description of the stress
state of a point. In addition, this model lacks the ability to describe experimental results
of elastic coefficients in the complex states of stress. Analytical solutions are available
in a few simple cases, although they only concern beams and plates [11–14]. In some
complex problems, it is necessary to resort to the finite element method (FEM) based on
an iterative technique [15–19]. According to our literature collection, there are only a few
works on the application of a bimodular materials model in the analysis of thermal stress,
and even if there are several studies, most of them are based on the Bert model, not on the
Ambartsumyan model.

In the theory of thermoelasticity [20], the influence of temperature field in the govern-
ing equations is presented through the constitutive law, in which the modulus of elasticity
of materials is an important constant. The theory of linear thermoelasticity is established
on linear supplement of thermal strains to mechanical strains. Generally, problems of
thermoelasticity have been solved by finding solutions of the Lamé displacement equations
when a body is acted upon by arbitrary mass forces. Thus, many basic thermoelasticity
problems have been considered within the classical theory of elasticity. This is the classical
body force analogy, which may date back to Duhamel, who made great contribution to this
field in history.

With the development of the theory of thermoelasticity, some generalized thermoelas-
tic models have been proposed for transient responses in many applications (for example,
ultra-fast lasers heating and low temperatures) where the classical theory of thermoelastic-
ity fails. Some representative theories in this regard can be found in [21–24]. It should be
emphasized that Green and Lindsay’s theory has been addressed for many types of media,
in which Marin et al. [25] used this theory in the context of the dipolar thermoelastic bodies.
On the other hand, besides the development of the theory itself, it is also very important
to apply the theory to the analysis of the engineering components, or more specially, it
is equally important to analyze the thermoelastic behavior of engineering structures, for
example, the thermoelasticity behaviors of nanobeams [26], microbeams [27], composite
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beams [28], and laminated beams [29]. Of course, the bimodular material beams should
also be included in the thermoelastical analysis of structures.

At present, the bimodular problem is mostly not considered in the theory of thermoe-
lasticity. Once the bimodular problem is introduced into the theory of thermoelasticity, it is
predictable that there will be changes in the governing equation used for the solution of
the bimodular thermal problem and in the solving method, and what are the correspond-
ing changes? This study will focus on the establishment of the displacement governing
equation and the corresponding solving process, with the emphasis on the differences
introduced by bimodular characteristics of materials.

This study is devoted to obtaining a two-dimensional thermoelasticity solution for
the bimodular beam under the combination action of thermal and mechanical loads. For
this purpose, this paper is organized as follows. First, the mechanical model based on the
neutral layer is established in Section 2, thus realizing the regional segmentation of tension
and compression. The governing equation expressed in terms of displacement components
is given in Section 3, and the composition of the solution is presented in Section 4. Aiming
at the governing equation, the special solution and corresponding supplement solution
are derived in Section 5, in which the supplement solution is obtained by applying the
stress function method as well as the de Saint-Venant’s Principle. In Section 6, some typical
computational examples are given, in which the bimodular effect and temperature effect
on the thermoelasticity solution are discussed. Section 7 is the conclusions.

2. Mechanical Model Based on Neutral Layer

A rectangular section beam with the height h and thickness t is subjected to the
bending moment M at its two ends, and we isolated a part from the whole beam as our
studied object, as shown in Figure 2. Obviously, the beam will deflect downward to resist
the external bending moment, thus resulting in tension in the lower part of the beam and
compression in the upper part. For convenience, we established the x-axis of the coordinate
system (xoy) on the unknown neutral axis, which may be determined thereafter. The height
of the tensile part of the beam is h1 and the corresponding modulus in this part is E+; while
at the same time, the compressive height and the modulus in the compressive part is h2
and E−, as shown in Figure 2, in which y0 is the offset distance between the neutral axis
and the geometrical middle layer.
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According to the plane section assumption, the curvature ρ of the neutral axis may be
expressed as

1
ρ
=

dθ

dx
, (1)

in which, dx and dθ denote the length and rotation angle of a segment on the neutral axis,
respectively, as shown in Figure 2. The relative elongation of the segment AB with distance
y from the neutral axis, εx, is equal to

εx =
(y + ρ)dθ − ρdθ

dx
= y

dθ

dx
=

y
ρ

. (2)
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Thus the tensile normal stress and compressive normal one may be expressed as follows

σ+
x = E+ y

ρ
, 0 ≤ y ≤ h1; σ−x = E−

y
ρ

, −h2 ≤ y ≤ 0. (3)

The condition of equilibrium gives

∫ h1

0
σ+

x tdy +
∫ 0

−h2

σ−x tdy = 0, (4)

and ∫ h1

0
σ+

x ytdy +
∫ 0

−h2

σ−x ytdy = M. (5)

Combining Equations (3) and (4) yields

E+h2
1 = E−h2

2. (6)

After considering h1 + h2 = h, we have

h1 =

√
E−√

E+ +
√

E−
h, h2 =

√
E+

√
E+ +

√
E−

h (7)

which determines the location of the unknown neutral axis. Similarly, combining Equa-
tions (3) and (5) yields

1
ρ

(
E+th3

1
3

+
E−th3

2
3

)
= M. (8)

If D is defined as the bending stiffness of the bimodular problem, that is,

D =
t
3
(E+h3

1 + E−h3
2). (9)

Equation (8) will return to a familiar form

1
ρ
=

M
D

. (10)

When E+ = E− = E, we have h1 = h2 = h/2, the above expressions may be reduced
to the classical forms, in which D = Eth3/12. Thus, we establish the so-called mechanical
model on subarea in tension and compression under mechanical loads. Next, based on
this model, we will analyze the thermal stress of a bimodular beam under the combination
action of mechanical and thermal loads.

It should be noted here that if the bimodular materials beam is subjected to uniformly
distributed loads, not only the bending moment but also the shearing forces will develop in
the beam, that is to say, the beam is under lateral bending but under pure bending. In this
case, the mechanical model based on the neutral layer is still applicable since the shearing
stress has no influence on the determination of the neutral axis, which depends only on the
bending stress. This conclusion was demonstrated by Yao and Ye [11].

3. Displacement Governing Equation

The problem we consider here is a typical plane stress problem concerning thermal
effect. If we let εx, εy and γxy be the strain components of a plane stress problem and
σx, σy and τxy be the corresponding stress components, α represents the linear thermal
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expansion coefficient and T represents the temperature variation, the physical equation of
the two-dimensional theory of thermoelasticity may be given as follows

εx = 1
E+/−

(
σx − µσy

)
+ αT

εy = 1
E+/−

(
σy − µσx

)
+ αT

γxy = 2(1+µ)
E+/− τxy

, (11)

in which the tensile-compressive Young’s modulus is denoted by E+/−. In our study,
however, there is no way to specify that, from the very beginning, the stress state of any
point is tensile or compressive, thus we have to express the modulus in the form of E+/−.
Once the final result is obtained, with the stress state becoming clear, we can differentiate
the tension from the compression. This fact is quite different from the case that is only
under mechanical load shown in Section 2, in which the so-called subarea in tension and
compression, that is, the neutral axis, is obvious from the beginning and may also be
determined later. However, under the combination action of mechanical and thermal loads,
not only the bending from the mechanical load, but also the axial tension or compression
from the temperature rise, may have influences on the final stress results, thus the so-called
neutral layer becomes obscure at present. Therefore, the form E+/− has to be adopted to
express the physical equation for the time being.

For the physical equation, we may have another form as follows,
σx = E+/−

1−µ2 (εx + µεy)− αTE+/−
1−µ

σy = E+/−

1−µ2 (εy + µεx)− αTE+/−
1−µ

τxy = E+/−

2(1+µ)
γxy

. (12)

If we let u and v be the displacement along x and y direction, respectively, the geomet-
rical equation of the plane problem gives [1]

εx =
∂u
∂x

, εy =
∂v
∂y

, γxy =
∂v
∂x

+
∂u
∂y

. (13)

Substituting Equation (13) into Equation (12), we may obtain the stress components
expressed in terms of the displacement u and v and the temperature variation T as

σx = E+/−

1−µ2 (
∂u
∂x + µ ∂v

∂y )−
αTE+/−

1−µ

σy = E+/−

1−µ2 (
∂v
∂y + µ ∂u

∂x )−
αTE+/−

1−µ

τxy = E+/−

2(1+µ)

(
∂v
∂x + ∂u

∂y

) . (14)

Substituting Equation (14) into the equation of equilibrium of the plane problem
∂σx
∂x +

∂τxy
∂y + X = 0

∂σy
∂y +

∂τxy
∂x + Y = 0

, (15)

in which X and Y are the body forces along x and y directions, respectively, we will have
the Lamé equation, which may be used in the displacement method (noting X = Y = 0).

∂2u
∂x2 +

1−µ
2

∂2u
∂y2 + 1+µ

2
∂2v

∂x∂y − (1 + µ)α ∂T
∂x = 0

∂2v
∂y2 +

1−µ
2

∂2v
∂x2 +

1+µ
2

∂2u
∂x∂y − (1 + µ)α ∂T

∂y = 0
. (16)
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In addition, substituting Equation (14) into the following stress boundary condition of
the plane problem {

l(σx)s + m(τxy)s = X
m(σy)s + l(τxy)s = Y

, (17)

in which, l and m are direction cosines, and X and Y are the surfaces forces, we will have
the stress boundary condition used in the displacement method (noting X = Y = 0). l

(
∂u
∂x + µ ∂v

∂y

)
s
+ m 1−µ

2

(
∂u
∂y + ∂v

∂x

)
s
= l(1 + µ)αT

m
(

∂v
∂y + µ ∂u

∂x

)
s
+ l 1−µ

2

(
∂v
∂x + ∂u

∂y

)
s
= m(1 + µ)αT

. (18)

Therefore, the Lamé equation and corresponding boundary conditions of a two-
dimensional thermoelasticity problem are established, as shown in Equations (16) and (18),
also including displacement boundary condition not listed here.

Comparing Equations (16) and (18) with the counterparts in the plane stress prob-
lem without thermal effect, it is found that the original X and Y are now replaced by
−αE+/−(∂T/∂x)/(1− µ) and −αE+/−(∂T/∂y)/(1− µ), respectively, and the original X
and Y are now replaced by lαTE+/−/(1− µ) and mαTE+/−/(1− µ), respectively. This fact
suggests to us that under certain displacement boundary conditions, the displacement due
to temperature variation T is equal to the displacement of the elastic body without temper-
ature variation, which is subjected to the imaginary body forces, −αE+/−(∂T/∂x)/(1− µ)
and −αE+/−(∂T/∂y)/(1− µ), and the imaginary surface forces, lαTE+/−/(1− µ) and
mαTE+/−/(1− µ). Therefore, the thermoelasticity plane stress problem is transformed
into a pure elasticity problem under the action of the known body forces and known surface
forces; this is Duhamel’s theorem that we are familiar with.

It should be noted here that there exists no term of modulus of elasticity in Equations
(16) and (18) since this term is eliminated during the derivation of the two equations. For
the classical thermoelasticity problem with singular modulus, this conclusion is true, which
may be easily found in many textbooks. However, once the bimodular effect is introduced,
will the form of the equations change? From Equations (14) and (15), we may see that
whether the tensile modulus or the compressive modulus may be eliminated will depend
on the fact that σx and τxy have the same positive or negative sign, or σy and τxy have
the same sign. First, σx and σy are two normal stresses along the directions of x and y,
respectively, and they may be positive or negative; in this case, the positive or negative
sign of τxy is a relatively key factor, that is to say, whether the sign of τxy may change as
the sign of the corresponding σx and σy during the derivation. In the bimodular theory
proposed by Ambartsumyan, there is a basic assumption that µ+/E+ = µ−/E−, which
ensures the symmetry of the flexibility matrix. In this study, we ignore the difference of µ+

and µ−, regarding them as a constant µ, thus when only τxy is considered, according to
µ+/E+ = µ−/E−, we may have E+ = E− only in this case. That is to say, the positive of
negative sign of τxy may change as the positive of negative sign of σx and σy. Therefore,
even if the bimodular effect is introduced, the basic forms of Equations (16) and (18)
remain unchanged.

4. Composition of Solution

Generally speaking, under the stress boundary condition (18) and displacement bound-
ary condition, it is hard to obtain the analytical solution of the governing Equation (16). In
an actual solving process, it is a common practice to follow the next two steps. First, any
special solution of Equation (16) is found that does not necessarily satisfy the boundary
conditions. Second, another supplement solution is found, not considering temperature
changes, and then by superimposing the supplement solution and the previous special
solution, the total stress is obtained to satisfy the boundary conditions.
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To find the special solution of Equation (16), a potential function of displacement,
ψ(x, y), is introduced and the special solution of displacement may be taken as

u′ =
∂ψ

∂x
, v′ =

∂ψ

∂y
. (19)

Regarding the u′ and v′ as u and v, respectively, and substituting them into Equa-
tion (16), we have {

∂
∂x∇

2ψ = (1 + µ)α ∂T
∂x

∂
∂y∇

2ψ = (1 + µ)α ∂T
∂y

. (20)

Note that µ and α are both constants in this problem, this shows if the function ψ(x, y)
can satisfy the following differential equation

∇2ψ = (1 + µ)αT, (21)

then the ψ(x, y) can satisfy Equation (20), thus also satisfying Equation (16). Finally, the u′

and v′ in Equation (19) may be selected as a special solution of displacement. Substituting
Equations (19) and (21) into Equation (14), the stress component corresponding to the
special solution of displacement may be obtained as

σx
′ = − E+/−

1+µ
∂2ψ

∂y2

σy
′ = − E+/−

1+µ
∂2ψ

∂x2

τxy
′ = E+/−

1+µ
∂2ψ
∂x∂y

. (22)

On the other hand, the supplement solution of displacement, u′′ and v′′ , need to satisfy
the homogeneous form of Equation (16), this gives

∂2u′′
∂x2 + 1−µ

2
∂2u′′
∂y2 + 1+µ

2
∂2v′′
∂x∂y = 0

∂2v′′
∂y2 + 1−µ

2
∂2v′′
∂x2 + 1+µ

2
∂2u′′
∂x∂y = 0

. (23)

By using Equation (14) and also letting T = 0, we have the stress components corre-
sponding to the supplement solution of displacement,

σx ′′ =
E+/−

1−µ2 (
∂u′′
∂x + µ ∂v′′

∂y )

σy ′′ =
E+/−

1−µ2 (
∂v′′
∂y + µ ∂u′′

∂x )

τxy ′′ =
E+/−

2(1+µ)

(
∂v′′
∂x + ∂u′′

∂y

) . (24)

Lastly, the total displacement is

u = u′ + u′′ , v = v′ + v′′ , (25)

which needs to satisfy displacement boundary conditions. In addition, the total stress is

σx = σx
′ + σx

′′ , σy = σy
′ + σy

′′ , τxy = τxy
′ + τxy

′′ , (26)

which needs to satisfy stress boundary conditions.
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5. Obtainment of Solution
5.1. Special Solution

If the temperature variation is always a function of y, that is, T = T(y), it is easy to
obtain the special solution according to the description above. Substituting Equation (21)
into Equation (22), the following stress components may be obtained

σx
′ = −E+/−αT(y) = −E−αT(y)

σy
′ = 0

τxy
′ = 0

, (27)

which corresponds to the special solution of displacement. Note that the σx
′ in the special

solution always corresponds to the compressive stress since the linear thermal expansion
coefficient α is positive and T(y) also represents the temperature rise. Therefore, the E+/−

in the term σx
′ should be modified as E−, according to the bimodular characteristics of

tension and compression described above.

5.2. Supplement Solution and Superposition with Special Solution

In an elasticity problem only with stress boundary conditions, it is hard to find the
supplement solution of displacement. To overcome the difficulties, it is a common practice
to adopt the stress function method, that is, introduce a stress function, ϕ(x, y), and then
express the stress components corresponding to the supplement solution of displacement
as follows

σx
′′ =

∂2 ϕ

∂x2 , σy
′′ =

∂2 ϕ

∂y2 , τxy
′′ = − ∂2 ϕ

∂x∂y
, (28)

in which the selection for ϕ(x, y) may be carried out according to the specific stress bound-
ary conditions, which has been demonstrated in many real examples.

As shown in Figure 3, a simply-supported beam in a thermal environment is subjected
to the uniformly distributed loads, in which the beam consists of certain bimodular materi-
als, and it will deflect downward to resist the external loads, thus resulting in tension in the
lower part of the beam and compression in the upper part. In Figure 3, the span length of
the beam is 2l, the height is h and the thickness is t and is taken as unit 1; q is the magnitude
of the uniformly distributed loads and ql denotes the reaction of two supports of the beam.
Note that in such a bimodular beam, the tensile height of the beam is h1, the compressive
height h2; accordingly, the tensile modulus is E+ in the tensile part and the compressive
modulus is E− in the compressive part. For convenience, we establish the x-axis of the
coordinate system (xyz) on the known neutral axis, which was determined in Section 2.
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If the two plane dimensions of the beam, 2l and h, are in the same order of magnitude,
it is hard to obtain the analytical solution of this problem. However, if 2l >> h, the left and
right sides of the beam become second boundary, thus making the application of the de
Saint-Venant’s Principle rational. For this purpose, the following stress function is adopted

ϕ(x, y) =
x2

2
f (y) + x f1(y) + f2(y), (29)
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in which, f (y), f1(y) and f2(y) are three unknown function of y. The obtainment of
this stress function is based on the so-called semi-inverse method, which may be simply
described as follows. First, according to the real stress condition, the beam is subjected
to the uniformly distributed loads along the direction of span length, and it is assumed
that the stress component along y direction does not change with x, thus beginning with
σy = f (y). Using σy = ∂2 ϕ/∂2x and integrating twice with respect to x, Equation (29) may
be derived. By satisfying the consistency equation ∇4 ϕ(x, y) = 0, in which ∇4 denotes
the dual Laplace operator, as well as after considering the symmetry of this problem, that
is, f1(y) = 0, lastly the stress function expressed in terms of unknown constants may
be obtained,

ϕ(x, y) =
x2

2
(Ay3 + By2 + Cy + D)− A

10
y5 − B

6
y4 + Hy3 + Ky2, (30)

in which, A, B, C, D, H and K are six unknown constants that may be determind by boundary
conditions. Note that the mechanical model on subarea in tension and compression is
adopted here, the stress components are given in the tensile part and the compressive one,
respectively. Substituting Equation (30) into Equation (28), we have the stress components
expressed in terms of unknown constants, for the tensile part, 0 ≤ y ≤ h1

σ+
x
′′ = x2

2 (6A+y + 2B+)− 2A+y3 − 2B+y2 + 6H+y + 2K+

σ+
y
′′ = A+y3 + B+y2 + C+y + D+

τ+
xy
′′ = −x(3A+y2 + 2B+y + C+)

, (31)

and for the compressive part, −h2 ≤ y ≤ 0,
σ−x

′′ = x2

2 (6A−y + 2B−)− 2A−y3 − 2B−y2 + 6H−y + 2K−

σ−y
′′ = A−y3 + B−y2 + C−y + D−

τ−xy
′′ = −x(3A−y2 + 2B−y + C−)

. (32)

Now, superposing with the special solution (27), we have, for 0 ≤ y ≤ h1,
σ+

x = −αE−T(y) + x2

2 (6A+y + 2B+)− 2A+y3 − 2B+y2 + 6H+y + 2K+

σ+
y = A+y3 + B+y2 + C+y + D+

τ+
xy = −x(3A+y2 + 2B+y + C+)

, (33)

and for −h2 ≤ y ≤ 0,
σ−x = −αE−T(y) + x2

2 (6A−y + 2B−)− 2A−y3 − 2B−y2 + 6H−y + 2K−

σ−y = A−y3 + B−y2 + C−y + D−

τ−xy = −x(3A−y2 + 2B−y + C−)

, (34)

in which the quantities with superscript ‘+’ denote the quantities relating to tension and the
quantities with superscript ‘−’ denote the quantities relating to compression. Note that after
the subarea in tension and compression, the number of undetermined constants is double,
from the original six to twelve. Obviously, not only stress boundary conditions but also
certain continuity conditions need to be combined to determine these unknown constants.

These total stresses should satisfy the following boundary conditions: first, at the
bottom of the beam,

σ+
y = 0 τ+

xy = 0 at y = h1, (35)

and at the top of the beam,

σ−y = −q τ−xy = 0 at y = −h2. (36)
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Due to 2l >> h indicated above, the left and right sides become the secondary
conditions, thus the de Saint-Venant’s Principle may be used to formulate the boundary
conditions at two ends of the beam. At x = ±l, three boundary conditions with integrals
are as follows ∫ 0

−h2

σ−x tdy +
∫ h1

0
σ+

x tdy = 0, (37)

∫ 0

−h2

σ−x tydy +
∫ h1

0
σ+

x tydy = 0, (38)

∫ 0

−h2

τ−xytdy +
∫ h1

0
τ+

xytdy = −ql. (39)

Obviously, the above boundary conditions are insufficient for solving the twelve
unknown constants. Therefore, the continuity conditions at the neutral axis must be used,
which gives

σ+
y = σ−y τ+

xy = τ−xy at y = 0, (40)

and the normal stress along x direction should be zero, that is,

σ+
x = σ−x = 0 at y = 0. (41)

Eventually, the twelve unknown constants may be determined by the boundary
conditions (35)–(39), in combination with the continuity conditions (40) and (41).

Now, let us begin with the application of continuity conditions. First, substituting the
last two expressions of Equations (33) and (34) into Equation (40), we have

C+ = C−, D+ = D−. (42)

Substituting the first expression of Equations (33) and (34) into Equation (41), we have

σ+
x = B+x2 + 2K+ = 0, σ−x = B−x2 + 2K− = 0. (43)

It should be noted here that the neutral axis of the beam is determined only under
the action of mechanical load, which has nothing to do with the thermal load, thus the
term −αE−T(y) in σ+

x and σ−x should not be included here. Thus, to satisfy (43) for all x,
we obtain

B+ = B− = K+ = K− = 0. (44)

It is found that after the application of all continuity conditions, we obtain six relations
concerning the twelve unknown constants, as shown in Equations (42) and (44).

Substituting the last two expressions of Equations (33) and (34) into Equations (35)
and (36), we have

A+h3
1 + B+h2

1 + C+h1 + D+ = 0, (45)

3A+h2
1 + 2B+h1 + C+ = 0, (46)

− A−h3
2 + B−h2

2 − C−h2 + D− = −q, (47)

and
3A−h2

2 − 2B−h2 + C− = 0. (48)

Substituting the last two expressions of Equations (33) and (34) into Equations (37)
and (38), we have∫ 0

−h2
[−αE−T(y) + l2

2 (6A−y + 2B−)− 2A−y3 − 2B−y2 + 6H−y + 2K−]dy

+
∫ h1

0 [−αE−T(y) + l2

2 (6A+y + 2B+)− 2A+y3 − 2B+y2 + 6H+y + 2K+]dy = 0
, (49)
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and ∫ 0
−h2

[−αE−T(y) + l2

2 (6A−y + 2B−)− 2A−y3 − 2B−y2 + 6H−y + 2K−]ydy

+
∫ h1

0 [−αE−T(y) + l2

2 (6A+y + 2B+)− 2A+y3 − 2B+y2 + 6H+y + 2K+]ydy = 0
. (50)

Using Equations (45)–(50) in combination of Equations (42) and (44), we obtain

A+ = − q
2hh2

1
, A− = − q

2hh2
2
, B+ = B− = 0, C+ = C− = 3q

2h , D+ = D− = − qh1
h ,

H+ = J1h2
3hh2

1
+ J2

2hh2
1
+ ql2

4hh2
1
− qN1

10h , H− = J1h1
3hh2

2
+ J1

2hh2
2
+ ql2

4hh2
2
− qN2

10h ,

K+ = K− = 0

, (51)

in which, J1 and J2 are two integral terms about T(y), N1 and N2 are two known constants,
they are, respectively,

J1 =
∫ 0
−h2

[−αE−T(y)]dy +
∫ h1

0 [−αE−T(y)]dy

J2 =
∫ 0
−h2

[−αE−T(y)]ydy +
∫ h1

0 [−αE−T(y)]ydy
, (52)

and

N1 = 1− 1
6

h2

h1
+

1
6

(
h2

h1

)2
, N2 = 1− 1

6
h1

h2
+

1
6

(
h1

h2

)2
. (53)

Up to now, Equation (39) has not been used. Substituting the known solution into
Equation (39), it is found that it is naturally satisfied. Lastly, substituting the known con-
stants into Equations (33) and (34), we have the final stress for the tensile part 0 ≤ y ≤ h1,

σ+
x = −αE−T(y) + 3q

2hh2
1
(l2 − x2)y + q

h y
(

y2

h2
1
− 3

5 N1

)
+

(
2J1h2
hh2

1
+ 3J2

hh2
1

)
y

σ+
y = − q

2hh2
1
y3 + 3q

2h y− qh1
h

τ+
xy = 3q

2hh2
1
xy2 − 3q

2h x

(54)

and for the compressive part −h2 ≤ y ≤ 0,
σ−x = −αE−T(y) + 3q

2hh2
2
(l2 − x2)y + q

h y
(

y2

h2
2
− 3

5 N2

)
+

(
2J1h1
hh2

2
+ 3J2

hh2
2

)
y

σ−y = − q
2hh2

2
y3 + 3q

2h y− qh1
h

τ−xy = 3q
2hh2

2
xy2 − 3q

2h x

(55)

6. Results and Discussions
6.1. A Computational Example

If the function of the temperature rise is known, for example, we assume the highest
temperature rise takes place at the middle of the beam and the lowest temperature rise at
the up and down edges, this temperature rise may be simulated with a function as

T(y) = T0 cos
y− y0

h
π, (56)

in which T0 is the temperature at the center and y0 is the distance of the geometric center
of the beam from the neutral axis, see Figure 2. Via Equation (7) and h/2 + y0 = h1 (or
h/2− y0 = h2), the magnitude of y0 may be determined as

y0 =

√
E− −

√
E+

√
E− +

√
E+

h
2

. (57)
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Substituting the known T(y) into Equation (52), the two integrals may be computed as

J1 = −αE−T0h
π

(
sin h2+y0

h π + sin h1−y0
h π

)
J2 = αE−T0h

π2

(
πh2 sin h2+y0

h π − πh1 sin h1−y0
h π + h cos h2+y0

h π − h cos h1−y0
h π

) . (58)

Thus, the normal stress along x direction is, for 0 ≤ y ≤ h1,

σ+
x = −αE−T0 cos y−y0

h π +
3q

2hh2
1
(l2 − x2)y +

q
h y
(

y2

h2
1
− 3

5 N1

)
+αE−T0

 − 2h2
πh2

1

(
sin h2+y0

h π + sin h1−y0
h π

)
+ 3

π2h2
1

(
πh2 sin h2+y0

h π − πh1 sin h1−y0
h π + h cos h2+y0

h π − h cos h1−y0
h π

)
y

. (59)

and for −h2 ≤ y ≤ 0,

σ−x = −αE−T0 cos y−y0
h π +

3q
2hh2

2
(l2 − x2)y +

q
h y
(

y2

h2
2
− 3

5 N2

)
+αE−T0

 − 2h1
πh2

2

(
sin h2+y0

h π + sin h1−y0
h π

)
+ 3

π2h2
2

(
πh2 sin h2+y0

h π − πh1 sin h1−y0
h π + h cos h2+y0

h π − h cos h1−y0
h π

)
y

. (60)

Note that there are four terms in the above stress expression, in which the first and the
fourth are from the temperature stress, and the second and the third are from mechanical
stress. In the mechanical stress, the second stands for the stress from the bending moment
in a one-dimensional solution, while the third stands for the rectified term from a two-
dimensional elasticity solution.

When E+ = E− = E, we have h1 = h2 = h/2, y0 = 0, J1 = −2EαT0h/π,J2 = 0 and
N1 = N2 = 1. Substituting them into Equations (59) and (60), the stress expression without
bimodular effect is obtained as follows

σx = −αET0

(
8
π

y
h
+ cos

y
h

π

)
+

6q
h3 (l

2 − x2)y + q
y
h

(
4

y2

h2 −
3
5

)
. (61)

Thus, the regression of the solution is satisfied, which also verifies the correctness of
the derivation from the side.

6.2. Bimodular Effect on Thermoelasticity Solution

For analyzing the bimodular effect on the final stress σx, the following three typical
cases relating to modulus are adopted: (1) E+ = 2E−, (2) E+ = E− and (3) E+ = 0.5E−,
which correspond to, respectively, the tensile modulus is greater than, equal to and less
than the compressive modulus. Thus, the tensile modulus and the compressive one, as well
as the tensile section height, the compressive one and the distance between the geometrical
middle surface and the neutral layer, are given in Table 1 in dimensionless form.

Table 1. Values for three bimodular cases.

Bimodular
Cases

Tensile
Modulus

Compressive
Modulus h1/h h2/h y0/h

E+ > E− 2E− E− 0.4142 0.5858 −0.0858
E+ = E− E− E− 0.5 0.5 0
E+ < E− 0.5E− E− 0.5858 0.4142 0.0858

For a better understanding of the effects of the parameters on the stress, all figures
in this section are plotted in dimensionless form, in which the x-axis stands for the di-
mensionless stress σx/αE−T0 and the y-axis for the dimensionless section height y/h. On
the cross section of the beam midspan, the bending moment achieves the most, thus we
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take this section x = 0 as our analysis object. In addition, it is also necessary to give the
relative magnitudes between αE−T0 and the intensity q of the uniformly distributed loads,
thus after considering the real case, we take the following three ratios: (1) αE−T0/q = 20,
(2) αE−T0/q = 30 and (3) αE−T0/q = 40. At the same time, the ratio of beam span to beam
height is assumed to be 6, that is, 2l/h = 6, to agree with the geometrical characteristic of a
two-dimensional deep beam.

Figures 4–6 show the stress composition from the temperature stress, the mechani-
cal stress, and total stress under three bimodular cases, in which only the curves when
αE−T0/q = 20 are given here, and the other two cases, that is, αE−T0/q = 30 and
αE−T0/q = 40, are not presented here since they are basically the same as Figures 4–6.
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(i) Under three cases of different moduli, the mechanical stresses all present as ob-
viously linear, although the stress σx is the cubic relation with respect to y; this indicates
that the second term in the stress expressions is dominant, compared to the third, whose
influence on the mechanical stress is relatively small.

(ii) When E+ = E−, the slopes of the straight line are consistent in the tensile and
compressive parts since the stress growth ratio is constant with the strain (which is propor-
tional to the distance along the y-axis); when E+ = 2E−, the slope of the straight line in
the compressive part is greater than that in the tensile part, showing that when E+ > E−,
the stress growth has slowed down; when E+ = 0.5E−, the slope of the straight line in the
compressive part is smaller than that in the tensile part, showing that when E+ < E−, the
stress growth has accelerated.

(iii) The temperature stress curves basically present the shape of a cosine function,
having no up and down symmetry. After superposition with the mechanical stress curves,
which are linear, the total stress curves still present the shape of a cosine function, only
having their vertices somewhat offset.

Figures 7–9 show that the total stress when αE−T0/q = 20, αE−T0/q = 30 and
αE−T0/q = 40 varies with the section height direction, in which three bimodular cases
are given.
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From Figures 7–9, it is easy to see that
(i) Under three cases of different moduli, and also for αE−T0/q = 20, αE−T0/q = 30

and αE−T0/q = 40, the total stress curves all present the shape of a cosine function, having
no up and down symmetry, and their vertices are at different places.

(ii) With the decrease of q, or alternatively, with the increase of αE−T0, that is, from
Figures 7–9, we may find that when αE−T0/q = 20, there are some tensile stresses in the
lower part of the beam (see Figure 7), when αE−T0/q = 30, there are only small quantities
of tensile stresses remaining (see Figure 8), and when αE−T0/q = 40, there are no any
tensile stresses in the lower part (see Figure 9). The tensile stress situation in the upper part
of the beam is just the opposite.

(iii) Under three cases of different moduli, and also for αE−T0/q = 20, αE−T0/q = 30
and αE−T0/q = 40, most of the total stresses are in compression, this reveals that after the
introduction of the temperature stress, the original stress state with tension in the lower
part and compression in the upper part, now gradually transits to the status almost in
compression. This phenomenon is especially obvious for the case E+ = 2E−.

6.3. Temperature Effect on Thermoelasticity Solution

For analyzing the temperature effect on the thermoelasticity solution, the three modes
of temperature rise, including linear, square, and cubic relations, are taken to discuss
the different modes of temperature rise on the thermal stress, in which the maximum
temperature rise keeps T0 in the three modes. First, for the linear temperature rise, we have

T(y) =
T0

2

[
1 +

2(y− y0)

h

]
. (62)

Substituting the known T(y) into Equation (52), the two integrals give
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Thus, the normal stress along x direction is, for 0 ≤ y ≤ h1
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and for −h2 ≤ y ≤ 0

σ−x = −αE− T0
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(
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Similarly, for the square temperature rise, we have

T(y) = T0
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Thus, the normal stress along x direction is, for 0 ≤ y ≤ h1
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and for −h2 ≤ y ≤ 0,
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For the cubic temperature rise, we have
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Thus, the normal stress along x direction is, for 0 ≤ y ≤ h1,
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and for −h2 ≤ y ≤ 0

σ−x = −αE− T0
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Taking the case αE−T0/q = 20 as an example, the total thermal stress curves are
plotted under the three modes of temperature rise, as shown in Figures 10–12, which
correspond to the three modulus cases, E+ = 2E−, E+ = E− and E+ = 0.5E−, respectively.
Figures 10–12 show that the variation trends of the three thermal stress curves are basically
the same as those from the three modes of temperature rise, in which the curve from the
square relation is basically consistent with the curve from the cosine relation, with a vertex
but no up and down symmetry.
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respond to the three modulus cases, 2E E+ −= , E E+ −=  and 0.5E E+ −= , respectively. 
Figures 10–12 show that the variation trends of the three thermal stress curves are basi-
cally the same as those from the three modes of temperature rise, in which the curve from 
the square relation is basically consistent with the curve from the cosine relation, with a 
vertex but no up and down symmetry. 

 

Figure 10. The total stress when 2E E+ −=  and 0 / 20E T qα − = . Figure 10. The total stress when E+ = 2E− and αE−T0/q = 20.

Table 2 lists dimensionless thermal stresses for the linear, square, and cubic rise modes
as well as the variations of amplitude value throughout the beam. The computation of
amplitude value is, for the linear and cubic relation, from the top to bottom of the beam;
and for the square relation, is from the maximum tensile stress to maximum compressive
one. It is easy to see from Table 2 that, under the temperature rise mode of square relation,
the amplitude is 2.21 for E+ = 2E−, versus 1.80 for E+ = E−, and decreases to 1.58 for
E+ = 0.5E−; under the temperature rise mode of linear and cubic relations, the case is just
the opposite. Under the linear rise, the amplitude is 0.28 for E+ = 2E−, versus 1.28 for
E+ = E−, and increases to 2.43 for E+ = 0.5E−; and under the cubic rise, the amplitude is
0.41 for E+ = 2E−, versus 0.88 for E+ = E−, and increases to 1.47 for E+ = 0.5E−. This
indicates that if the highest temperature rise takes place in the middle of the beam, like
the square relation, more attention should be given when E+ > E−, and if the highest
temperature rise takes place at the bottom of the beam, like the linear and cubic relations,
more attention should be given when E+ < E−.
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Table 2. Dimensionless thermal stresses and amplitude values.

Bimodular Cases
Linear Square Cubic

Top
Stress

Bottom
Stress

Amplit.
Value 1

Max Tens.
Stress

Max Compr.
Stress

Amplit.
Value

Top
Stress

Bottom
Stress

Amplit.
Value

E+ = 2E− −0.43 −0.71 0.28 0.96 −1.25 2.21 −0.42 −0.83 0.41
E+ = E− 0.14 −1.14 1.28 0.69 −1.11 1.80 −0.06 −0.94 0.88

E+ = 0.5E− 1.06 −1.37 2.43 0.58 −1.00 1.58 0.45 −1.02 1.47
1 If two stresses are the same positive–negative sign, take the absolute value after their subtraction; if they are the contrary sign, take the
sum of the two abstract values of two stresses.

7. Concluding Remarks

In this study, based on the simplified mechanical model on regional segmentation
of tension and compression, we obtained a two-dimensional thermoelasticity solution
of a bimodular rectangular section beam under the combination action of thermal and
mechanical loads. The following conclusions can be drawn.

(i) After the introduction of the bimodular effect, there is no essential change in the
form of displacement governing the equation and the composition of the solution since the
modulus of elasticity is not included in Lamé’s displacement equation.

(ii) The stress superposition of special solution and supplement solution shows clearly
the stress composition contributed by the thermal load and mechanical load, respectively.
Which one is dominant will depend on the relative magnitude between the external load q
and the thermal stress term αE−T0.

(iii) Different temperature rise modes will influence the distribution of thermal stresses.
The analysis of the amplitude values of thermal stresses indicates that if the highest
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temperature rise takes place in the middle of the beam, the amplitude varies from 2.21
(E+ = 2E−) to 1.58 (E+ = 0.5E−); while if the highest temperature rise takes place at the
bottom of the beam, the case is just the opposite. Specifically, the amplitude varies from
0.28 to 2.43 for the linear rise and from 0.41 to 1.47 for the cubic rise.

(iv) The introduction of bimodular characteristics will bring great change in the total
stress. More specifically, when the tensile modulus is greater than the compressive one,
most of the total stresses are in compression, which should be give more consideration in
the analysis and design of bimodular material beams.

In addition, this study may be further extended into the field of functionally graded
materials. In this case, however, the obtained solution of the Lamé displacement equation
will be somewhat challenging, due to the fact that not only the modulus of elasticity but also
some redundant strain terms will appear in this equation. The changes of the governing
equation and the investigation into the corresponding solving methods (for example, the
application of the multi-parameter perturbation method [30]) will present us with huge
challenges. At the same time, in a thermal environment, the investigation into bimodular
functionally graded piezoelectric beams [31] as well as into carbon nanotube-reinforced
composite curved sandwich nanobeams [32] points out our future research direction. The
relevant work is in progress.

Author Contributions: Conceptualization, X.-T.H. and J.-Y.S.; methodology, X.-T.H. and S.-R.W.; for-
mal analysis, X.-T.H. and S.-R.W.; writing—original draft preparation, X.-T.H. and S.-R.W.; writing—
review and editing, H.C. and J.-Y.S.; visualization, H.C. and S.-R.W.; funding acquisition, X.-T.H. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant No.
11572061).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Timoshenko, S.P.; Goodier, J.N. Theory of Elasticity, 3rd ed.; McGraw Hill: New York, NY, USA, 1970.
2. Barak, M.M.; Currey, J.D.; Weiner, S.; Shahar, R. Are tensile and compressive Young’s moduli of compact bone different? J. Mech.

Behav. Biomed. Mater. 2009, 2, 51–60. [CrossRef] [PubMed]
3. Destrade, M.; Gilchrist, M.D.; Motherway, J.A.; Murphy, J.G. Bimodular rubber buckles early in bending. Mech. Mater. 2010, 42,

469–476. [CrossRef]
4. Jones, R.M. Stress-strain relations for materials with different moduli in tension and compression. AIAA J. 1977, 15, 16–23.

[CrossRef]
5. Bert, C.W. Models for Fibrous Composites with Different Properties in Tension and Compression. J. Eng. Mater. Technol. 1977, 99,

344–349. [CrossRef]
6. Bruno, D.; Lato, S.; Sacco, E. Nonlinear analysis of bimodular composite plates under compression. Comput. Mech. 1994, 14, 28–37.

[CrossRef]
7. Tseng, Y.P.; Lee, C.T. Bending analysis of bimodular laminates using a higher-order finite strip method. Compos. Struct. 1995, 30,

341–350. [CrossRef]
8. Zinno, R.; Greco, F. Damage evolution in bimodular laminated composites under cyclic loading. Compos. Struct. 2001, 53, 381–402.

[CrossRef]
9. Khan, A.H.; Patel, B.P. Nonlinear periodic response of bimodular laminated composite annular sector plates. Compos. Part B Eng.

2019, 169, 96–108. [CrossRef]
10. Ambartsumyan, S.A. Elasticity Theory of Different Moduli (Wu RF and Zhang YZ Trans.); China Railway Publishing House: Beijing,

China, 1986.
11. Wen-Juan, Y.; Zhi-ming, Y. Analytical solution for bending beam subject to lateral force with different modulus. Appl. Math. Mech.

2004, 25, 1107–1117. [CrossRef]
12. He, X.T.; Chen, S.L.; Sun, J.Y. Applying the equivalent section method to solve beam subjected lateral force and bending-

compression column with different moduli. Int. J. Mech. Sci. 2007, 49, 919–924. [CrossRef]

http://doi.org/10.1016/j.jmbbm.2008.03.004
http://www.ncbi.nlm.nih.gov/pubmed/19627807
http://doi.org/10.1016/j.mechmat.2009.11.018
http://doi.org/10.2514/3.7297
http://doi.org/10.1115/1.3443550
http://doi.org/10.1007/BF00350155
http://doi.org/10.1016/0263-8223(94)00048-4
http://doi.org/10.1016/S0263-8223(01)00048-4
http://doi.org/10.1016/j.compositesb.2019.03.061
http://doi.org/10.1007/BF02439863
http://doi.org/10.1016/j.ijmecsci.2006.11.004


Mathematics 2021, 9, 1556 20 of 20

13. He, X.T.; Sun, J.Y.; Wang, Z.X.; Chen, Q.; Zheng, Z.L. General perturbation solution of large-deflection circular plate with different
moduli in tension and compression under various edge conditions. Int. J. Non-Linear Mech. 2013, 55, 110–119. [CrossRef]

14. He, X.T.; Cao, L.; Wang, Y.Z.; Sun, J.Y.; Zheng, Z.L. A biparametric perturbation method for the Föppl-von Kármán equations of
bimodular thin plates. J. Math. Anal. Appl. 2017, 455, 1688–1705. [CrossRef]

15. Zhiming, Y.E.; Wenjuan, C.T.Y. Progresses in elasticity theory with different moduli in tension and compression and related FEM.
Mech. Eng. 2004, 26, 9–14.

16. Sun, J.Y.; Zhu, H.Q.; Qin, S.H.; Yang, D.L.; He, X.T. A review on the research of mechanical problems with different moduli in
tension and compression. J. Mech. Sci. Technol. 2010, 24, 1845–1854. [CrossRef]

17. Du, Z.; Zhang, Y.; Zhang, W.; Guo, X. A new computational framework for materials with different mechanical responses in
tension and compression and its applications. Int. J. Solids Struct. 2016, 100, 54–73. [CrossRef]

18. Gao, J.L.; Yao, W.J.; Liu, J.K. Temperature stress analysis for bi-modulus beam placed on Winkler foundation. Appl. Math. Mech.
2017, 38, 921–934. [CrossRef]

19. Ma, J.W.; Fang, T.C.; Yao, W.J. Nonlinear large deflection buckling analysis of compression rod with different moduli. Mech. Adv.
Mater. Struct. 2019, 26, 539–551. [CrossRef]

20. Hetnarski, R.B.; Eslami, M.R. Thermal Stresses—Advanced Theory and Applications; Springer: Berlin, Germany, 2019.
21. Green, A.E.; Lindsay, K.A. Thermoelasticity. J. Elast. 1972, 2, 1–7. [CrossRef]
22. Green, A.E.; Naghdi, P.M. On Undamped Heat Waves in an Elastic Solid. J. Therm. Stress. 1992, 15, 253–264. [CrossRef]
23. Choudhuri, S.K.R. On A Thermoelastic Three-Phase-Lag Model. J. Therm. Stress. 2007, 30, 231–238. [CrossRef]
24. Svanadze, M.; Scalia, A. Mathematical problems in the coupled linear theory of bone poroelasticity. Comput. Math. Appl. 2013, 66,

1554–1566. [CrossRef]
25. Marin, M.; Craciun, E.M.; Pop, N. Some Results in Green–Lindsay Thermoelasticity of Bodies with Dipolar Structure. Mathematics

2020, 8, 497. [CrossRef]
26. Abouelregal, A.E.; Marin, M. The Size-Dependent Thermoelastic Vibrations of Nanobeams Subjected to Harmonic Excitation and

Rectified Sine Wave Heating. Mathematics 2020, 8, 1128. [CrossRef]
27. Abouelregal, A.E.; Zenkour, A.M. Thermoelastic problem of an axially moving microbeam subjected to an external transverse

excitation. J. Theor. Appl. Mech. 2015, 53, 167. [CrossRef]
28. Warminska, A.; Manoach, E.; Warminski, J. Vibrations of a Composite Beam under Thermal and Mechanical Loadings. Procedia

Eng. 2016, 144, 959–966. [CrossRef]
29. Tao, C.; Fu, Y.M.; Dai, H.L. Nonlinear dynamic analysis of fiber metal laminated beams subjected to moving loads in thermal

environment. Compos. Struct. 2016, 140, 410–416. [CrossRef]
30. He, X.T.; Yang, Z.X.; Li, Y.H.; Li, X.; Sun, J.Y. Application of Multi-Parameter Perturbation Method to Functionally-Graded, Thin,

Circular Piezoelectric Plates. Mathematics 2020, 8, 342. [CrossRef]
31. Jing, H.X.; He, X.T.; Du, D.W.; Peng, D.D.; Sun, J.Y. Vibration Analysis of Piezoelectric Cantilever Beams with Bimodular

Functionally-Graded Properties. Appl. Sci. 2020, 10, 5557. [CrossRef]
32. Daikh, A.A.; Houari, M.S.A.; Karami, B.; Eltaher, M.A.; Dimitri, R.; Tornabene, F. Buckling Analysis of CNTRC Curved Sandwich

Nanobeams in Thermal Environment. Appl. Sci. 2021, 11, 3250. [CrossRef]

http://doi.org/10.1016/j.ijnonlinmec.2013.05.008
http://doi.org/10.1016/j.jmaa.2017.06.046
http://doi.org/10.1007/s12206-010-0601-3
http://doi.org/10.1016/j.ijsolstr.2016.07.009
http://doi.org/10.1007/s10483-017-2216-6
http://doi.org/10.1080/15376494.2017.1410898
http://doi.org/10.1007/BF00045689
http://doi.org/10.1080/01495739208946136
http://doi.org/10.1080/01495730601130919
http://doi.org/10.1016/j.camwa.2013.01.046
http://doi.org/10.3390/math8040497
http://doi.org/10.3390/math8071128
http://doi.org/10.15632/jtam-pl.53.1.167
http://doi.org/10.1016/j.proeng.2016.05.123
http://doi.org/10.1016/j.compstruct.2015.12.011
http://doi.org/10.3390/math8030342
http://doi.org/10.3390/app10165557
http://doi.org/10.3390/app11073250

	Introduction 
	Mechanical Model Based on Neutral Layer 
	Displacement Governing Equation 
	Composition of Solution 
	Obtainment of Solution 
	Special Solution 
	Supplement Solution and Superposition with Special Solution 

	Results and Discussions 
	A Computational Example 
	Bimodular Effect on Thermoelasticity Solution 
	Temperature Effect on Thermoelasticity Solution 

	Concluding Remarks 
	References

