
mathematics

Article

An Enhanced Evolutionary Software Defect Prediction Method
Using Island Moth Flame Optimization

Ruba Abu Khurma 1, Hamad Alsawalqah 1, Ibrahim Aljarah 1,* , Mohamed Abd Elaziz 2,3

and Robertas Damaševičius 4,*

����������
�������

Citation: Khurma, R.A.; Alsawalqah,

H.; Aljarah, I.; Elaziz, M.A.;

Damaševičius, R. An Enhanced

Evolutionary Software Defect

Prediction Method Using Island Moth

Flame Optimization. Mathematics

2021, 9, 1722. https://doi.org/

10.3390/math9151722

Academic Editors: Tadashi Dohi and

Shaoying Liu

Received: 28 June 2021

Accepted: 20 July 2021

Published: 22 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 King Abdullah II School for Information Technology, The University of Jordan, Amman 11942, Jordan;
ruba_abukhurma@yahoo.com (R.A.K.); h.sawalqah@ju.edu.jo (H.A.)

2 Department of Mathematics, Faculty of Science, Zagazig University, Zagazig 44519, Egypt;
abd_el_aziz_m@yahoo.com

3 School of Computer Science and Robotics, Tomsk Polytechnic University, 634050 Tomsk, Russia
4 Faculty of Applied Mathematics, Silesian University of Technology, 44-100 Gliwice, Poland
* Correspondence: i.aljarah@ju.edu.jo (I.A.); robertas.damasevicius@polsl.pl (R.D.)

Abstract: Software defect prediction (SDP) is crucial in the early stages of defect-free software
development before testing operations take place. Effective SDP can help test managers locate
defects and defect-prone software modules. This facilitates the allocation of limited software quality
assurance resources optimally and economically. Feature selection (FS) is a complicated problem
with a polynomial time complexity. For a dataset with N features, the complete search space has
2N feature subsets, which means that the algorithm needs an exponential running time to traverse
all these feature subsets. Swarm intelligence algorithms have shown impressive performance in
mitigating the FS problem and reducing the running time. The moth flame optimization (MFO)
algorithm is a well-known swarm intelligence algorithm that has been used widely and proven its
capability in solving various optimization problems. An efficient binary variant of MFO (BMFO) is
proposed in this paper by using the island BMFO (IsBMFO) model. IsBMFO divides the solutions in
the population into a set of sub-populations named islands. Each island is treated independently
using a variant of BMFO. To increase the diversification capability of the algorithm, a migration
step is performed after a specific number of iterations to exchange the solutions between islands.
Twenty-one public software datasets are used for evaluating the proposed method. The results of
the experiments show that FS using IsBMFO improves the classification results. IsBMFO followed
by support vector machine (SVM) classification is the best model for the SDP problem over other
compared models, with an average G-mean of 78%.

Keywords: moth flame optimization; island-based model; feature selection; software defect prediction;
software reliability

1. Introduction

The software industry has recently undergone further development in various aspects
related to the software development life-cycle (SDLC). An important aspect to achieve
during SDLC is reliability and error-free code. Software defect describes the error status
that occurs at the program or system level which leads to erroneous results and unexpected
actions and allows the system to behave in an unintended way [1]. There are several
reasons behind software defects [2] such as incomplete or ambiguous requirements due
to miscommunication and misinterpretation during requirements elicitation, errors in
assumptions and preliminary specifications, lack of knowledge in the domain, developers
with insufficient practical experience and technical skills, poor programming logic, and so
forth. Software defects have many negative consequences for the quality of the software
and the overall effectiveness of the system in terms of time, budget, risks, and resources [3].
For example, errors in the design stage may require a high cost of maintenance and

Mathematics 2021, 9, 1722. https://doi.org/10.3390/math9151722 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-9265-9819
https://orcid.org/0000-0002-7682-6269
https://orcid.org/0000-0001-9990-1084
https://doi.org/10.3390/math9151722
https://doi.org/10.3390/math9151722
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9151722
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9151722?type=check_update&version=1

Mathematics 2021, 9, 1722 2 of 20

restructuring. Poor quality software production will not satisfy customer requirements and
will ultimately affect the company’s reputation [4].

Defect prediction plays an important role in identifying error-prone modules and
controlling the percentage of defects in the software, which improves the quality of the
software. This will improve the testing process as it will focus on parts that are more likely
to work incorrectly [5]. On the other hand, the distribution of errors in the code determines
the refactoring candidates, which enhances the quality and the efficiency of the software
product [6,7]. There are three categories of software defect prediction (SDP): prediction of
the number of defects, prediction of the severity of defects, and prediction of whether the
software module is defective or not. Among them, the last category is the most frequently
used, where the SDP is formulated as a binary classification problem that deals with two
classes called defect and non-defect [8].

In the literature, many machine learning algorithms have been proposed to predict
software defects either through supervised or unsupervised learning [9–14]. Supervised
learning is the most common machine learning method used to create SDP models, where
the applied learning strategy is based on inferring a pattern from a set of instances (training
data set). This pattern can then be applied to invisible instances (testing data set) to predict
their class labels. Examples of supervised data mining methods used to reliably solve the
software defects problem include decision trees (DT), artificial neural network (ANN),
naïve Bayesian (NB), support vector machine (SVM), and random forest (RF) [15].

Feature selection (FS) is a data mining step to select the most informative features in
the dataset. Its main target is to obtain a feature subset with a minimum length that, at the
same time, achieves the maximum classification performance [16]. The FS process consists
of search and evaluation sub-processes. The evaluation sub-process utilizes the dataset
characteristics (e.g., filters) or classifier (e.g., wrappers) to evaluate a feature subset [17].
For applying the search in the FS process, many methods can be performed. Traditionally,
brute force methods have been applied, but they are time-consuming. These are complete
search methods because they generate the entire feature space and traverse all the feature
subsets. Meta-heuristic methods such as swarm intelligence [18] algorithms generate
random solutions and achieve promising results within less time [19]. Swarm intelligence
methods have been used widely for enhancing the FS process, such as face recognition [20],
machine scheduling [21], medical diagnosis [17,22], multi-objective power scheduling [23]
and software defect prediction [24].

The moth flame optimization (MFO) algorithm is a swarm intelligence algorithm that
is commonly used in many applications [25–27]. MFO generates a swarm of solutions to
explore the search space. Furthermore, it adopts a spiral method to update the positions
of moths and change their positions. The gradual degradation of the number of solutions
improves the exploration/exploitation trade-offs. This supports the adaptive convergence
behavior of the algorithm. However, MFO inherits the drawbacks of swarm intelligence
algorithms, such as stagnation in local minima and premature convergence. To address
these shortcomings, the improvement of the MFO algorithm has been proposed [28–31].

The island-based model has been integrated with many swarm intelligence algorithms.
In this model, the members of the population are distributed among a set of sub-populations
where they are managed separately using local rules. In a migration step, migrants interact
with each other. Usually, this is done by exchanging the highly fit solutions between islands.
This step increases the diversity among solutions and enhances the convergence trends.
Three main factors affect the performance of the migration: the rate, the frequency, and
the topology of migration. The rate of migration determines the number of exchanged
solutions between islands. The frequency of migration indicates the number of invocations
for the migration process. Lastly, the topology of migration defines the way the solutions
are exchanged between islands. In the literature, there are many studies that integrate the
island models with metaheuristic algorithms [32–35].

This paper proposes the island model to enhance the binary MFO (BMFO) algorithm.
The new variant named IsBMFO is used to enhance the FS process and the prediction

Mathematics 2021, 9, 1722 3 of 20

of software defects. The main objectives are enhancing the diversity of the solutions,
alleviating the local minima problem, and enhancing convergence trends. The islands
are generated from dividing the population into a group of islands. Each island consists
of a group of solutions. Solutions are enhanced locally in each island, and then they
are exchanged using a migration mechanism that adopts a random-ring topology. This
topology exchanges the solution with the worst fitness in the destination island with the
solution with the best fitness from the source island.

The remaining parts of this paper are arranged into sections as follows: Section 2
discusses related studies in the literature. Section 3 provides background about the applied
classifiers, the MFO algorithm, and the island model. Section 4 describes the IsBMFO.
Section 5 describes the experiments and the related discussions. Finally, Section 6 draws
the conclusions of the paper and suggests some possible future works.

2. Related Works

Recently, the SDP problem has become a noteworthy research topic that has increasingly
attracted the interest of researchers. Several methods from statistics, information theory,
and machine learning fields have been used to predict defected models and reduce the cost
of software production and maintenance [36,37].

In [38], the authors aimed to find the count of defects when the software process is
not properly executed. For the classification of defects, the authors employed different DT
algorithms such as C4.5 and ID3. Pattern mining methods were used to evaluate the defect
patterns.

Can et al. [39] proposed a prediction model for software defects using particle swarm
optimization (PSO) and SVM called the P-SVM. Specifically, the PSO was used for the
optimization of parameters of the SVM. After identifying the optimal parameters of the
SVM, it was used to predict the defects in the software. The experiments were performed
over the JM1 dataset. P-SVM was compared with the SVM model, back propagation neural
network (BPNN) model, and optimized SVM using the genetic algorithm (SVM-GA) model.
The results proved the superiority of the P-SVM model.

Shuai et al. [40] proposed a cost-sensitive SVM (CSSVM) model which is based on
dynamic SVM using the concept of cost-sensitivity. The model was optimized using the
GA algorithm. The fitness function used the geometric accuracy metric. The results of the
experiments showed that the GA-CSSVM achieved a higher area under the curve (AUC)
value, indicating better prediction accuracy.

Agrawal and Tumar [41] proposed an FS approach based on a linear twin SVM
(LTSVM) classifier to predict the defective software modules. They worked on determining
the most important metrics set. The reduced metrics set, obtained after the FS process,
was used to enhance the predictive power of their approach. The experiments on four
PROMISE datasets showed the effectiveness of the LSTVM model.

In [42], the authors studied the software defect prediction using different methods
such as DT, decision tables, RF, NN, NB, artificial immune recognition system, CLONALG,
and Immunos. They used four software datasets from NASA. Principal component analysis
(PCA) and correlation-based FS methods were applied for evaluation. The experiments
proved that RF is the best predictor for large datasets while NP is the best predictor for small
datasets. Moreover, the experiments showed that the Immunos-99 algorithm performed
well when the FS method was applied, while the AIRSParallel algorithm performed better
without applying FS methods.

Singh and Chung [15] applied common machine learning algorithms including
artificial NN, PSO, DT, NB, and linear classifier. The authors used the KEEL tool and
k-fold cross-validation method. The results on seven open-source NASA datasets proved
the superiority of the linear classifier in terms of accuracy.

Recently, in [43], the authors used the oversampling technique SMOTE along with FS
using PSO on object-oriented metrics. The obtained features were then utilized to train
the datasets on SVM to predict defects. The experiments showed that SVM performed

Mathematics 2021, 9, 1722 4 of 20

better when the dataset was balanced with SMOTE and PSO was used for selecting the
feature set.

In [44], the authors studied the effect of 46 FS methods based on NB and DT classifiers
over software defect datasets. The results proved that there is no model that can be
considered the best FS method. This is because their performances depend on the applied
classifiers, used evaluation metrics, and datasets.

Overall, in the literature, many studies used classification algorithms for classifying
software defects datasets such as NB, KNN, C4.5, and SVM. Some of these studies proposed
GA and PSO algorithms for optimizing the SVM. However, the number of works that
addressed the problem of FS in the domain of software defect prediction is still few. This
work focuses on identifying the features subset that is considered the optimal one for
improving the efficiency of classifiers. Based on the no free lunch (NFL) theorem, no
optimization algorithm is considered the best solution to solve every optimization problem.
Hence, there is always room to develop, propose, and enhance optimization algorithms to
tackle different optimization problems. MFO has remarkable proprieties among swarm
intelligence algorithms. Therefore, in this study, we further enhance its performance to
optimize FS and produce better results for software defect prediction.

3. Background
3.1. Classification Algorithms
3.1.1. K-Nearest Neighbor Classifier (k-NN)

This is a type of classification algorithm that belongs to a larger category of pattern
recognition algorithms known as instance-based or lazy learning algorithms. Instead of
conducting the generalization in an explicit training phase, they rely on computing the
distance (similarities) between the unlabeled new query instance and its nearest k neighbors
from the labeled training instances stored in memory. The basic idea for k-NN is that the
nearby points in space are likely to have a similar class concept. In classification problems,
the input to the k-NN is the k closest examples among the training examples, and the
output is the labels of these examples. Assigning labels depends on the majority of votes
obtained from the k closest neighbors for the required example. The comparison and the
calculation of the closeness between points are done based on a predefined distance metric
such as the Euclidean distance.

3.1.2. Support Vector Machines (SVM)

SVM is a supervised robust learning model that is based on a statistical learning
framework. Given a set of training examples, the SVM maps these examples to one or the
other category. This means that SVM is a binary classifier that applies an improbable linear
method. The SVM tries to put the training examples in points in space in such a way to
maximize the gap between the two categories. In addition, SVM can perform a non-linear
classification using the kernel trick.

3.1.3. Naive Bayes Classifier (NB)

NB is a classification algorithm that applies the Bayes’ theorem, and it is considered
a probabilistic classifier. NB assumes strong independence between features. NB gives
the probability of membership of an example to each class. NB is among the simplest of
Bayesian network models that can achieve higher classification results.

3.2. Overview of Moth Flame Optimization Algorithm

The moth flame optimization algorithm (MFO) is a widely applied swarm intelligence
algorithm [45] with remarkable results. The inspiration of MFO is from an insect called a
moth. Moths move straight in nature by following a natural mechanism called transverse
orientation. This mechanism enables moths to go far distances straight by keeping the same
angle with a distant source of light such as the moon. However, the transverse orientation
does not work correctly when the source light is near the moths. Consequently, moths are

Mathematics 2021, 9, 1722 5 of 20

forced to enter a spiral path and move around the light. Figure 1 shows the movement of
moths around a candle by following a spiral path.

Figure 1. The spiral path of moths around a candle.

The MFO identifies a set of solutions (population) where the solutions are called moths.
The moths represent the possible solutions to the optimization problem. A specified fitness
function is used to determine the fitness of each moth. Another component of the MFO
is the flame. Both a moth and a flame are solutions; they differ in their update strategy.
Moths are the identified solutions that are candidates to be the best solutions, but flames
are the best achieved solutions. Each flame is replaced whenever a better solution is found
so that the best solutions are never missed.

The spiral movement of moths around the flames is formulated in Equation (1), which
describes the movement of moths in a spiral path around a candle where Moi is the ith
moth, Flj is the jth flame, and Sp is the function of spiral path.

Equation (2) shows the logarithmic function used to formulate the spiral movement
of moths, where Dsi is the distance between the ith moth and the jth flame as shown in
Equation (3), b is a constant value that determines the shape of the logarithmic spiral, and t
is a random number in [−1, 1]. The parameter t = −1 represents the closest position of a
moth to a flame, where t = 1 represents the farthest position between a moth and a flame.
To increase exploitation, the t parameter is selected in the range [r, 1], where r is decreased
linearly across iterations from −1 to −2.

Moi = Sp(Moi, Flj) (1)

Sp(Moi, Flj) = Dsi × ebt × cos(2Π) + Flj (2)

Dsi = |Moi − Flj| (3)

Equation (4) shows the gradual decrease of the number of flames across the iterations,
where Ct is the current number of iterations, M f l is the maximum number of flames, and
Mt is the maximum number of iterations.

FlameNumber = round(M f l − Ct× (M f l − 1)/Mt) (4)

Mathematics 2021, 9, 1722 6 of 20

3.3. Binary Moth Flame Optimization for Feature Selection

MFO was designed to solve continuous optimization problems. FS is a discrete
problem in which the search space consists of two values, “0” or “1”. For this reason, MFO
needs some modification to be able to optimize in a binary feature space. In [46], the authors
used the transfer functions to produce a binary optimizer from the original continuous
version of the optimizer. A mapping procedure is used to convert the continuous update
process into a binary process. Thus, the elements of the updated solutions are either “0”
or “1”.

In the proposed models, the sigmoid transfer function is used to produce a BMFO
from the original MFO. The sigmoid function defines a probability for each element of the
solution within a range [0, 1]. It was used in [47] to produce a binary variant of PSO. The
velocity (step) is analogous to the first term of Equation (2) in the MFO algorithm. This
term is redefined in Equation (5) as the probability for changing the position of moths.
Each moth updates its position in the binary search space using Equation (7) based on the
probability generated from Equation (6). Algorithm 1 shows the BMFO algorithm.

∆Mo = Dsi × ebt × cos(2Π) (5)

Tr f (∆Mot) = 1/(1 + e∆Mot) (6)

Mod
i (t + 1) =

{
0, if rand < Tr f (∆Mot+1)

1, if rand > Tr f (∆Mot+1)
(7)

Algorithm 1 The pseudo-code of BMFO.
Input: Mt, n (# moths), d (# dimensions)
Output: near optimal moth
Initialization process for the moths

while Ct ≤ Mt do
modify the number of flames using Equation (4)
FMo = Fitness(Mo);
if Ct == 1 then

Fl = sort(Mo);
FFl = sort(FMo);

else
Fl = sort(MoCt−1, MoCt);
FFl = sort(FMoCt−1, FMoCt);

end if
for i = 1: n do

for j = 1: d do
Modify r and t;
Compute Ds by Equation (3) based on the corresponding moth;
Modify the step vector of a moth ∆Mo using Equation (5).
Compute the probabilities by Equation (6).
Modify the position of a moth by Equation (7)

end for
end for
Ct = Ct + 1;

end while

The fitness function is formulated in Equation (8), where Err is the error rate, |S f |
is the number of selected features in the reduced data set, |C f | is the number of features
in the original data set, and α ∈ [0, 1], β = (1− α) are two parameters that indicate the
significance of classification and the number of selected features according to [19].

Mathematics 2021, 9, 1722 7 of 20

Fitness = α× Err + β× |S f |
|Cf| (8)

3.4. Fundamentals to Island-Based Model

The island model is an efficient method for structuring the population and increasing
its heterogeneity [33,34]. This is applied by dividing the population into smaller sub-
populations called (islands). The evolutionary algorithm is applied on each island either
in a synchronous or asynchronous way. A migration process is applied after a period
to allow solutions from different islands to exchange their positions. The exchange of
solutions between islands improves exploration/exploitation trade-offs. This happens
because the low-quality solutions with low-fitness values can approach the region where
the global optima locate. Another advantage of the island model is that it enables the
parallel implementation of the evolutionary algorithm on each island. This can minimize
the computation time of complex optimization problems.

The island model has been applied with several evolutionary computation algorithms.
The main purpose is to increase the population diversity and search the search space
effectively. Examples of island-based models include the island differential evolution [48],
island flower pollination algorithm [33], island ant colony [49], island bat algorithm [32],
and island harmony search [34].

Several factors affect the island model such as the number of islands or the number of
times the solutions are exchanged between islands. For integrating the island model with
evolutionary algorithms, the partitioning and migration operators are used. Partitioning
accounts for the number of islands (Isn) and the size of the island (Iss). In migration, the
Mrm × Iss moths are to be swapped between islands after a predetermined number of
iterations Itm, where Mrm is the migration rate and Iss is the island size.

The migration process can be performed in a synchronous or asynchronous way. In
the synchronous way, the solutions are swapped between islands simultaneously. The
asynchronous way enables solutions to change their islands to other ones after a specific
time. Therefore, the migration times are different between islands. An important factor in
migration is the topology. There are two migration typologies: either static or dynamic.
The static typologies determine the paths between islands, so they are not changeable. The
dynamic typologies determine the paths between islands during the execution time. The
effectiveness of the island model is also affected by the migration process. This indicates
which solutions will be selected to migrate between islands. A common migration policy is
known as best–worst. It selects the best solution (with the highest fitness value) from the
source island to be swapped with the worst solution (with the lowest fitness value) from the
destination island [48]. Another known policy for applying migration is random-random.
It selects a random solution from the source island to be swapped with a random solution
from the destination island [50].

4. Island-Based MFO (IsMFO) Algorithm

This section proposes the island MFO algorithm. Figure 2 shows the overall methodology
followed in this work. Initially, the population of moths is split into a set Isn islands of
moths. Each island is of size Iss moths. The MFO runs independently and asynchronously
on each island. The number of times the algorithm runs depends on the migration frequency
Frm. The moths are exchanged based on random-ring migration topology, and the number
of moths to be exchanged depends on the migration rate Mrm. The migration policy
used is the best–worst. This technique is applied more than one time until reaching the
maximum iteration.

Mathematics 2021, 9, 1722 8 of 20

Data preprocessing

Training

data

Testing

data

Selected feature

subset

Testing set with

selected feature

subset

Training set with selected

feature subset

K-NN

SVM

NB

Evaluation of the

trained model

Fitness

evaluation

Maximum

iterations?

Optimized

feature subset

MFO optimization

Final evaluation based

on testing dataset

Yes

No

SW

defect

datase

Figure 2. Architecture of the proposed methodology.

The IsBMFO flowchart is shown in Figure 3, and the pseudo-code is shown in
Algorithm 2.

Figure 3. The flowchart of the proposed IsBMFO algorithm.

Mathematics 2021, 9, 1722 9 of 20

Algorithm 2 The IsBMFO pseudo-code.
———–Identification of the IsBMFO parameters———————
Set the IsBMFO parameters Mt, n, d, Isn, Iss, Mrm, Frm
———–Initialize the IsBMFO positions———————
Initialize the positions of moths
0: ——–Split IsBMFO into a group of islands———————-

Flag(y) = False, ∀y = (1, 2....n)
for K = 1 : Isn do

for i = 1 : Iss do
select y , where y ∈ (1, 2,..., n)
while Flage(y) is true do

select y , where y ∈ 1, 2, . . . , Sn
end while
Add xy to island Isk

end for
end for
while Ct ≤ Mt do

——–Improvement step———————-
for i = 1: Isn do

Update flame no using Equation (4)
FMo = Fitness(Mo);
if Ct == 1 then

Fl = sort(Mo);
FFl = sort(FMo);

else
Fl = sort(MoCt−1, MoCt);
FFl = sort(FMoCt−1, FMoCt);

end if
for i = 1: Is do

for j = 1: d do
Modify r and t;
Compute Ds by Equation (3) based on the corresponding moth;
Modify the step vector of a moth ∆Mo by Equation (5).
Compute the probabilities by Equation (6).
Modify the position of a moth by Equation (7)

end for
end for

end for
———- —– Migration of moths———-
if t mod Frm = 0 then

for y = 1, .., Isn do
k = 1
while k ≤ Mrm × Is do

xWorst(k, y + 1) = xBest(k, y)
end while

end for
end if
Ct = Ct + 1

end while

The IsBMFO steps are explained next:
Step 1: This is the initialization step for the BMFO parameters. These include the #

dimensions (d), # moths (n), and the # iterations (#Mt). The fitness function f (Mo) and the
representation of a moth Mo = (mo1, mo2, . . . , mod) are also defined. The island model
parameters should be identified as follows:

Mathematics 2021, 9, 1722 10 of 20

• Island number (Isn): this determines the number of sub-populations that is less than
or equal to n.

• The size of island (Iss): the population size for each island can be computed using the
formula Iss = n/Isn since all islands are homogeneous.

• The frequency of migration (Frm): this indicates the required iterations number to call
the migration function.

• The rate of migration (Mrm): this indicates the number of moths swapped between
islands based on Iss, where Mrm × Iss ≤ Iss.

Step 2: Identifies the solutions in the population of IsBMFO. In this step, IsBMFO
follows the same process as in the MFO. The random moths are Mo = (mo1, mo2, ..., mon),
and the fitness function (i.e., f (mo)) for each moth (moj , where j ∈ (1, 2, ..., n)) is computed.

Step 3: Split the IsBMFO population into a set of islands Isn of size Iss for each one
as shown in Figure 4. The island vector is Is = (Is1, Is2, . . . , Isn), where each variable
Isj ∈ (1, 2, ..., Isn). As an example, assume Isn = 4 and Iss = 3 are the division of IsBMFO
population of size n=12. Assume that Is = (3, 4, 2, 1, 4, 2, 4, 1, 3, 2, 1, 3), then island
Is1 = (M4, M8, M11), island Is2 = (M3, M6, M10), island Is3 = (M1, M9, M12), and island
Is4 = (M2, M5, M7). Remember that each moth is assigned randomly to an island.

Step 4: The step of improvement includes updating the flames number, calculating
the objective values of moths, and sorting of moths based on their fitness values. In this
stage, the moth is updated based on the computed distance between a moth and the flame
corresponding to it.

Step 5: Migration process of IsBMFO. The main target of the migration process is to
exchange the moths between islands. After a predefined iteration number specified by
(Frm), the migration process is applied as shown in Algorithm 2. A specific number of moths
are exchanged on each island based on the migration rate Mrm, where Mrm × Iss ≤ Iss.
The migration uses the best–worst policy and a random ring topology. The best–worst
policy selects the best Mrm × Iss moths from an island to replace the worst Mrm × Iss
moths on a neighboring island. In random-ring topology, the islands are rearranged in a
random way to compose a ring (Isj, Isj+1, ..., Isk, Isj) in which the island neighbor to Isj is
island Isj+1, and the island neighbor to Isj+1 is island Isj+2, etc.

Figure 4. An illustration of island-based model.

5. Experimental Results
5.1. Model Evaluation Metrics

The basic evaluation metric that is used to evaluate the proposed software defect
prediction algorithm is the confusion matrix. Table 1 shows the confusion matrix.

Mathematics 2021, 9, 1722 11 of 20

Table 1. Confusion Matrix.

Actual Labels

Predicted labels

Defect Non-Defect

Defect TruePos FalsePos

Non-defect FalseNeg TrueNeg

From the confusion metric, other evaluation metrics can be deduced, such as:

1. Recall: The ratio of correctly classified defected instances, as in Equation (9):

Recall =
TruePos

TruePos + FalseNeg
(9)

2. Precision: The ratio of the correctly classified defected instances among the retrieved
instances. It can be calculated by Equation (10):

Precision =
TruePos

TruePos + FalsePos
(10)

3. G-mean: The recall of each class, as in Equation (11):

G-mean =

√
TruePos

TruePos + FalseNeg
× TrueNeg

FalsePos + TrueNeg
(11)

5.2. Datasets Specifications

The methodology is verified by a series of 21 public benchmark software datasets.
Table 2 describes the datasets. Eleven of these datasets are downloaded from the NASA
corpus (cleaned versions) https://figshare.com/articles/dataset/MDP_data_sets_D_and_
D_-_zipped_up/6071675 (accessed on 28 May 2021), while the remaining datasets are from
the PROMISE software engineering corpus http://promise.site.uottawa.ca/SERepository/
(accessed on 28 May 2021). NASA collected datasets from real software projects with
different specifications such as the programming language, the code size, and software
measures. The datasets consist of a set of features that have values and a goal field that
describes the instance as defect or non-defect. These features describe the program from
different sides including the lines of code measure (program length, count of lines of
comments, count of lines of comments), McCabe metrics, base Halstead measures, derived
Halstead measures, unique operators, unique operands, total operators, total operands,
cyclomatic complexity, essential complexity, design complexity, and a branch-count. The
PROMISE datasets were collected from open-source software projects.

https://figshare.com/articles/dataset/MDP_data_sets_D_and_D_-_zipped_up/6071675
https://figshare.com/articles/dataset/MDP_data_sets_D_and_D_-_zipped_up/6071675
http://promise.site.uottawa.ca/SERepository/

Mathematics 2021, 9, 1722 12 of 20

Table 2. Description of datasets.

No. Name Features Instances Defects Non-Defects Defect Ratio Non-Defect Ratio

D_1 cm1 38 327 42 285 12.8 87.2
D_2 jm1 22 7782 1672 6110 21.5 78.5
D_3 kc1 22 1183 314 869 26.5 73.5
D_4 kc3 40 194 36 158 18.6 81.4
D_5 mc1 39 1988 46 1942 2.3 97.7
D_6 mw1 38 253 27 226 10.7 89.3
D_7 pc1 38 705 61 644 8.7 91.3
D_8 pc2 37 745 16 729 2.1 97.9
D_9 pc3 38 1077 134 943 12.4 87.6

D_10 pc4 38 1287 177 1110 13.8 86.2
D_11 pc5 39 1711 471 1240 27.5 72.5

D_12 ant-1.7 21 745 166 579 22.3 77.7
D_13 camel-1.6 21 965 188 777 19.5 80.5
D_14 ivy-2.0 21 352 40 312 11.4 88.6
D_15 jedit-4.3 21 492 11 481 2.2 97.8
D_16 log4j-1.2 21 205 189 16 92.2 7.8
D_17 lucene-2.4 21 340 203 137 59.7 40.3
D_18 poi-3.0 21 442 281 161 63.6 36.4
D_19 tomcat-6 20 858 77 781 9 91
D_20 xalan-2.6 21 885 411 474 46.4 53.6
D_21 xerces-1.4 21 588 437 151 74.3 25.7

5.3. Results and Discussion

The methodology for applying training and testing in the experiments is based on
a hold-out strategy in which each data set is split in a random way into 80% for training
and 20% for testing. The experiments were repeated 30 times to obtain significant results.
All experiments were conducted using a personal computer with AMD Athlon Dual-Core
QL-60 CPU at 1.90 GHz and 2 GB of memory. The EvoloPy-FS [51] was used to run
the experiments. It is a framework in Python for applying binary swarm intelligence
algorithms to solve FS problems. It is open-source and available at (www.evo-ml.com
accessed on 28 May 2021). The population size and the maximum iterations were set to 10
and 100, respectively [52].

Figure 5a illustrates the average recall obtained from applying the classifiers NB,
KNN, and SVM without FS, with BMFO-FS, and with IsBMFO-FS. As can be seen, there
was a dynamic increase in the values of recall. The lower values from the three classifiers
were achieved when the classifiers were applied to the datasets without implementing
FS. There was an increase in the recall values of the three classifiers when BMFO-FS was
implemented. The best recall results were achieved when the IsBMFO-FS was implemented.
This can be explained by the FS process having an effective influence on the classifiers’
performance. Furthermore, the island-based affected the performance of the classifiers and
enhanced the optimizer job in the feature search space. In three experiments, the SVM
classifier achieved the best performance, followed by the NB classifier. The lowest recall
results were obtained by the KNN classifier. This can be explained by the SVM having the
capability to distinguish between classes more than the KNN and NB. Furthermore, the
integration of the FS process and the island enhancement helped to increase its efficiency.
Figures 5b and 6 show the results of the precision and gmean. As can be seen, the precision
and gmean were increased dramatically when FS and FS with the island enhancement
were applied to the BMFO.

Figures 7a,b and 8 show the recall, precision, and recall results obtained from applying
IsBMFO-FS to all the datasets. It can be noticed that the SVM classifier achieved the best
results on most of the datasets. On the other hand, lower results were achieved by the NB

www.evo-ml.com

Mathematics 2021, 9, 1722 13 of 20

and KNN classifiers. It can be noticed that the performance results of the NB and KNN
were similar.

Figure 9 shows the convergence behavior of the three classifiers KNN, NB, and SVM
with the proposed IsBMFO. It can be seen that the convergence behavior of the classifier
SVM was better than the NB and KNN on 71% of the datasets. This can be seen in the tails
of the convergence curves that reached low values of fitness. This means that IsBMFO with
the SVM classifier can reach the global best in the time the other classifiers fall in the local
minima. In addition, the classifier NB achieved better convergence scales compared with
KNN on fifteen datasets. The convergence scales of the three classifiers were similar on six
datasets: mw1, pc2, pc3, ant-1.7, xalan-2.6, and xerces-1.4.

Table 3 shows p-values of the Wilcoxon test based on fitness. This statistical test takes
into consideration all runs to determine if the IsBMFO-SVM is meaningfully different
from other methods. Table 3 shows the superiority of IsBMFO-SVM over IsBMFO-NB and
IsBMFO-KNN.

(a) (b)
Figure 5. Results of applying classifiers without FS, with BMFO-FS, and with IsBMFO-FS on all datasets. Average recall (a)
and average precision (b).

Figure 6. Average gmean results of applying classifiers without FS, with BMFO-FS, and with IsBMFO-
FS on all datasets.

Mathematics 2021, 9, 1722 14 of 20

(a) (b)
Figure 7. Results of applying classifiers with IsBMFO-FS on all datasets. Average recall (a) and Average precision (b).

Figure 8. Gmean results of applying classifiers with IsBMFO-FS on all datasets.

Mathematics 2021, 9, 1722 15 of 20

(a) D_1 (b) D_2 (c) D_3

(d) D_4 (e) D_5 (f) D_6

(g) D_7 (h) D_8 (i) D_9

(j) D_10 (k) D_11 (l) D_12

(m) D_13 (n) D_14 (o) D_15

Figure 9. Cont.

Mathematics 2021, 9, 1722 16 of 20

(p) D_16 (q) D_17 (r) D_18

(s) D_19 (t) D_20 (u) D_21
Figure 9. Convergence curves for IsBMFO with the three classifiers KNN, NB, and SVM.

Table 3. p-values of the Wilcoxon test for the IsBMFO-SVM and other classifiers using fitness (p > 0.05
are underlined).

Datasets IsBMFO-KNN IsBMFO-NB

D_1 2.44 × 10−5 1.56 × 10−5

D_2 4.31 × 10−5 2.24 × 10−4

D_3 1.21 × 10−1 1.37 × 10−1

D_4 1.28 × 10−4 1.61 × 10−10

D_5 1.31 × 10−4 1.81 × 10−9

D_6 1.23 × 10−10 1.62 × 10−10

D_7 2.38 × 10−13 1.30 × 10−12

D_8 2.46 × 10−10 2.23 × 10−10

D_9 4.52 × 10−6 5.14 × 10−7

D_10 4.95 × 10−11 2.25 × 10−11

D_11 3.14 × 10−11 3.56 × 10−10

D_12 6.63 × 10−4 9.22 × 10−14

D_13 9.41 × 10−13 5.56 × 10−12

D_14 1.78 × 10−1 1.12 × 10−1

D_15 2.32 × 10−1 2.35 × 10−5

D_16 2.23 × 10−11 3.25 × 10−12

D_17 5.18 × 10−12 2.12 × 10−13

D_18 4.13 × 10−7 3.82 × 10−7

D_19 3.66 × 10−9 8.4 × 10−12

D_20 2.61 × 10−6 3.13 × 10−7

D_21 2.65 × 10−11 2.14 × 10−11

5.4. Analytical Description of the Relevant Features

This section presents an analytical description of the most informative features. These
features are obtained by the IsBMFO-SVM approach. Referring to Table 4, it shows the # all
features in each dataset (AF), the number of selected features (SF), the feature reduction
ratio (FRR), and the selected relevant features (RF) in the dataset. For the FFR, it is calculated
by Equation (12).

Mathematics 2021, 9, 1722 17 of 20

FFR =
AF− SF

AF
(12)

As can be seen, the FFR ranged between 48% on poi-3.0 and jedit-4.3 datasets to 74%
on pc1 dataset. The average FRR on all the datasets is 62%. This ratio indicates that the
proposed IsBMFO-SVM can reduce the dimensionality of the datasets by more than half.
This supports the proposed IsBMFO-SVM, which also outperformed other approaches in
terms of recall, precision, gmean, and convergence scales.

Table 4. Relevant features in software datasets.

Datasets AF SF FFR% RF

cm1 38 15 61% F2, F3, F7, F9, F11, F14, F17, F19, F23, F25, F26, F32, F33, F36, F38
jm1 22 9 59% F1, F2, F4, F6, F7, F11, F13, F16, F19
kc1 22 8 64% F3, F7, F9, F10, F14, F15, F18, F21
kc3 40 16 60% F2, F4, F7, F8, F9, F11, F17, F19, F23, F26, F28, F31, F33, F35, F39, F40
mc1 39 12 69% F3, F7, F8, F12, F13, F15, F20, F24, F28, F29, F32, F38
mw1 38 13 66% F1, F5, F9, F11, F14, F16, F19, F20, F22, F25, F27, F30, F31
pc1 38 10 74% F1, F6, F13, F15, F17, F21, F24, F27, F29, F35
pc2 37 14 62% F1, F3, F4, F8, F13, F14, F17, F25, F27, F29, F30, F34, F36, F37
pc3 38 11 71% F2, F3, F6, F9, F17, F20, F22, F26, F31, F34, F37
pc4 38 11 71% F1, F5, F8, F9, F14, F22, F23, F26, F31, F35, F38
pc5 39 12 69% F2, F4, F8, F10, F12, F15, F19, F25, F29, F30, F32, F37

ant-1.7 21 7 67% F1, F5, F7, F10, F16, F19, F21
camel-1.6 21 9 57% F2, F5, F6, F9, F11, F12, F14, F17, F20

ivy-2.0 21 10 52% F3, F7, F10, F11, F13, F15, F16, F19, F20, F21
jedit-4.3 21 11 48% F1, F4, F5, F7, F9, F13, F14, F15, F18, F20, F21
log4j-1.2 21 8 62% F6, F9, F10, F13, F15, F17, F20, F21

lucene-2.4 21 9 57% F2, F4, F7, F10, F11, F15, F18, F19, F21
poi-3.0 21 11 48% F2, F5, F7, F8, F9, F10, F11, F14, F17, F19, F21

tomcat-6 20 7 65% F4, F5, F8, F11, F13, F19, F20
xalan-2.6 21 8 62% F1, F3, F6, F10, F11, F12, F19, F20
xerces-1.4 21 10 52% F1, F4, F6, F7, F8, F11, F14, F16, F20, F21

6. Conclusions and Future Trends

This paper proposes the island model to enhance the BMFO for solving the FS problem
in the domain of software defect prediction. The new variant is called (IsBMFO). The island
model divides the population of moths into a set of islands and applies a migration process
to share features between islands. This concept can improve the diversity of solutions
and control the convergence of the algorithm. In IsMFO, different copies of MFO are
applied separately on each island in an asynchronous way. Three measurements are
used to evaluate the proposed approach, recall, precision, and G-mean, in addition to the
convergence scales and statistical rank test. The experiments compared the average recall,
precision, and gmean obtained from applying the classifiers NB, KNN, and SVM without
FS, with BMFO-FS, and with IsBMFO-FS. There was a dynamic increase in the values of
the evaluation measures. The lower values from the three classifiers were achieved when
the classifiers were applied to the datasets without implementing FS. The best results were
achieved when the IsBMFO-FS was implemented. In three experiments, the SVM classifier
achieved the best performance, followed by the NB classifier. The lowest results were
obtained by the KNN classifier. Furthermore, the convergence behavior of the classifier
SVM was better than the NB and KNN on 71% of the datasets.

The best achieved results were obtained by the IsBMFO-SVM model. These results
demonstrate that the proposed model can serve as an effective predictive model for the
software defect problem.

Mathematics 2021, 9, 1722 18 of 20

For future works, we suggest applying the proposed model on other classification
problems such as for medical diagnosis. Furthermore, the island-based enhancement can
be investigated with other metaheuristic algorithms.

Author Contributions: Data curation, R.A.K. and I.A.; Formal analysis, R.A.K. and I.A.; Funding
acquisition, R.D.; Investigation, R.A.K., H.A. and I.A.; Methodology, R.A.K. and H.A.; Resources,
R.A.K. and I.A.; Software, R.A.K., H.A. and I.A.; Supervision, I.A.; Validation, R.A.K., M.A.E., I.A. and
R.D.; Visualization, R.A.K. and H.A.; Writing—original draft, R.A.K., H.A. and I.A.; Writing—review
& editing, R.A.K., I.A., M.A.E., H.A. and R.D. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are available from the corresponding author upon reasonable
request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Levendel, Y. Reliability analysis of large software systems: Defect data modeling. IEEE Trans. Softw. Eng. 1990, 16, 141–152.

[CrossRef]
2. Ehrlich, W.K.; Iannino, A.; Prasanna, B.; Stampfel, J.P.; Wu, J.R. How faults cause software failures: Implications for software

reliability engineering. In Proceedings of the 1991 International Symposium on Software Reliability Engineering, Austin, TX,
USA, 17–18 May 1991; IEEE Computer Society: Washington, DC, USA, 1991; pp. 233–234.

3. Laprie, J.C. Dependability of computer systems: Concepts, limits, improvements. In Proceedings of the IEEE Sixth International
Symposium on Software Reliability Engineering (ISSRE’95), Toulouse, France, 24–27 October 1995; pp. 2–11.

4. Mandeville, W.A. Software costs of quality. IEEE J. Sel. Areas Commun. 1990, 8, 315–318. [CrossRef]
5. Singpurwalla, N.D. Determining an optimal time interval for testing and debugging software. IEEE Trans. Softw. Eng. 1991,

17, 313–319. [CrossRef]
6. Mens, T.; Tourwé, T. A survey of software refactoring. IEEE Trans. Softw. Eng. 2004, 30, 126–139. [CrossRef]
7. Alsawalqah, H.; Hijazi, N.; Eshtay, M.; Faris, H.; Radaideh, A.A.; Aljarah, I.; Alshamaileh, Y. Software defect prediction using

heterogeneous ensemble classification based on segmented patterns. Appl. Sci. 2020, 10, 1745. [CrossRef]
8. Wahono, R.S. A systematic literature review of software defect prediction. J. Softw. Eng. 2015, 1, 1–16.
9. Li, Z.; Jing, X.; Zhu, X. Progress on approaches to software defect prediction. IET Softw. 2018, 12, 161–175. [CrossRef]
10. Son, L.H.; Pritam, N.; Khari, M.; Kumar, R.; Phuong, P.T.M.; Thong, P.H. Empirical study of software defect prediction: A

systematic mapping. Symmetry 2019, 11, 212. [CrossRef]
11. Shen, Z.; Chen, S. A Survey of Automatic Software Vulnerability Detection, Program Repair, and Defect Prediction Techniques.

Secur. Commun. Netw. 2020, 2020, 8858010. [CrossRef]
12. Li, N.; Shepperd, M.; Guo, Y. A systematic review of unsupervised learning techniques for software defect prediction. Inf. Softw.

Technol. 2020, 122, 106287. [CrossRef]
13. Aljarah, I.; Mafarja, M.; Heidari, A.A.; Faris, H.; Mirjalili, S. Multi-verse optimizer: Theory, literature review, and application in

data clustering. In Nature-Inspired Optimizers; Springer: Cham, Switzerland, 2020; pp. 123–141.
14. Mafarja, M.; Heidari, A.A.; Faris, H.; Mirjalili, S.; Aljarah, I. Dragonfly algorithm: Theory, literature review, and application in

feature selection. In Nature-Inspired Optimizers; Springer: Cham, Switzerland, 2020; pp. 47–67.
15. Singh, P.D.; Chug, A. Software defect prediction analysis using machine learning algorithms. In Proceedings of the 2017 IEEE

7th International Conference on Cloud Computing, Data Science & Engineering-Confluence, Noida, India, 12–13 January 2017;
pp. 775–781.

16. Khurma, R.A.; Aljarah, I.; Sharieh, A. Rank based moth flame optimisation for feature selection in the medical application. In
Proceedings of the 2020 IEEE Congress on Evolutionary Computation (CEC), Glasgow, UK, 19–24 July 2020; pp. 1–8.

17. Khurma, R.A.; Aljarah, I.; Sharieh, A. An Efficient Moth Flame Optimization Algorithm using Chaotic Maps for Feature Selection
in the Medical Applications. In Proceedings of the 9th International Conference on Pattern Recognition Applications and
Methods (ICPRAM), Valletta, Malta, 22–24 February 2020; pp. 175–182.

18. Faris, H.; Aljarah, I.; Alqatawna, J. Optimizing feedforward neural networks using krill herd algorithm for e-mail spam detection.
In Proceedings of the 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT),
Amman, Jordan, 3–5 November 2015; pp. 1–5.

19. Khurma, R.A.; Aljarah, I.; Sharieh, A. A Simultaneous Moth Flame Optimizer Feature Selection Approach Based on Levy Flight
and Selection Operators for Medical Diagnosis. Arab. J. Sci. Eng. 2021, 1–26. [CrossRef]

20. Agarwal, V.; Bhanot, S. Firefly inspired feature selection for face recognition. In Proceedings of the 2015 IEEE Eighth International
Conference on Contemporary Computing (IC3), Noida, India, 20–22 August 2015; pp. 257–262.

http://doi.org/10.1109/32.44378
http://dx.doi.org/10.1109/49.46887
http://dx.doi.org/10.1109/32.90431
http://dx.doi.org/10.1109/TSE.2004.1265817
http://dx.doi.org/10.3390/app10051745
http://dx.doi.org/10.1049/iet-sen.2017.0148
http://dx.doi.org/10.3390/sym11020212
http://dx.doi.org/10.1155/2020/8858010
http://dx.doi.org/10.1016/j.infsof.2020.106287
http://dx.doi.org/10.1007/s13369-021-05478-x

Mathematics 2021, 9, 1722 19 of 20

21. Jouhari, H.; Lei, D.; Al-qaness, M.A.A.; Abd Elaziz, M.; Damaševičius, R.; Korytkowski, M.; Ewees, A.A. Modified Harris Hawks
optimizer for solving machine scheduling problems. Symmetry 2020, 12, 1460. [CrossRef]

22. Sahlol, A.T.; Elaziz, M.A.; Jamal, A.T.; Damaševičius, R.; Hassan, O.F. A novel method for detection of tuberculosis in chest
radiographs using artificial ecosystem-based optimisation of deep neural network features. Symmetry 2020, 12, 1146. [CrossRef]

23. Makhadmeh, S.N.; Al-Betar, M.A.; Alyasseri, Z.A.A.; Abasi, A.K.; Khader, A.T.; Damaševičius, R.; Mohammed, M.A.;
Abdulkareem, K.H. Smart home battery for the multi-objective power scheduling problem in a smart home using grey wolf
optimizer. Electronics 2021, 10, 447. [CrossRef]

24. Anbu, M.; Mala, G.A. Feature selection using firefly algorithm in software defect prediction. Clust. Comput. 2019, 22, 10925–10934.
[CrossRef]

25. Khurma, R.; Castillo, P.; Sharieh, A.; Aljarah, I. Feature Selection using Binary Moth Flame Optimization with Time Varying
Flames Strategies. In Volume 1: ECTA, INSTICC, Proceedings of the 12th International Joint Conference on Computational Intelligence,
Budapest, Hungary, 2–4 November 2020; SciTePress: Setúbal, Portugal, 2020; pp. 17–27. [CrossRef]

26. Hussien, A.G.; Amin, M.; Abd El Aziz, M. A comprehensive review of moth-flame optimisation: Variants, hybrids, and
applications. J. Exp. Theor. Artif. Intell. 2020, 32, 705–725. [CrossRef]

27. Shehab, M.; Abualigah, L.; Al Hamad, H.; Alabool, H.; Alshinwan, M.; Khasawneh, A.M. Moth–flame optimization algorithm:
Variants and applications. Neural Comput. Appl. 2020, 32, 9859–9884. [CrossRef]

28. Kaur, K.; Singh, U.; Salgotra, R. An enhanced moth flame optimization. Neural Comput. Appl. 2020, 32, 2315–2349. [CrossRef]
29. Khurmaa, R.A.; Aljarah, I.; Sharieh, A. An intelligent feature selection approach based on moth flame optimization for medical

diagnosis. Neural Comput. Appl. 2021, 33, 7165–7204. [CrossRef]
30. Xu, Y.; Chen, H.; Luo, J.; Zhang, Q.; Jiao, S.; Zhang, X. Enhanced Moth-flame optimizer with mutation strategy for global

optimization. Inf. Sci. 2019, 492, 181–203. [CrossRef]
31. Khan, M.A.; Sharif, M.; Akram, T.; Damaševičius, R.; Maskeliūnas, R. Skin lesion segmentation and multiclass classification using

deep learning features and improved moth flame optimization. Diagnostics 2021, 11, 811. [CrossRef]
32. Al-Betar, M.A.; Awadallah, M.A. Island bat algorithm for optimization. Expert Syst. Appl. 2018, 107, 126–145. [CrossRef]
33. Al-Betar, M.A.; Awadallah, M.A.; Doush, I.A.; Hammouri, A.I.; Mafarja, M.; Alyasseri, Z.A.A. Island flower pollination algorithm

for global optimization. J. Supercomput. 2019, 75, 5280–5323. [CrossRef]
34. Al-Betar, M.A.; Awadallah, M.A.; Khader, A.T.; Abdalkareem, Z.A. Island-based harmony search for optimization problems.

Expert Syst. Appl. 2015, 42, 2026–2035. [CrossRef]
35. Awadallah, M.A.; Al-Betar, M.A.; Bolaji, A.L.; Doush, I.A.; Hammouri, A.I.; Mafarja, M. Island artificial bee colony for global

optimization. Soft Comput. 2020, 24, 13461–13487. [CrossRef]
36. Gupta, A.; Suri, B.; Kumar, V.; Misra, S.; Blažauskas, T.; Damaševičius, R. Software code smell prediction model using Shannon,

Rényi and Tsallis entropies. Entropy 2018, 20, 372. [CrossRef] [PubMed]
37. Kumari, M.; Misra, A.; Misra, S.; Sanz, L.F.; Damasevicius, R.; Singh, V.B. Quantitative quality evaluation of software products by

considering summary and comments entropy of a reported bug. Entropy 2019, 21, 91. [CrossRef] [PubMed]
38. Naidu, M.S.; Geethanjali, N. Classification of defects in software using decision tree algorithm. Int. J. Eng. Sci. Technol. 2013,

5, 1332–1340.
39. Can, H.; Xing, J.; Zhu, R.; Li, J.; Yang, Q.; Xie, L. A new model for software defect prediction using particle swarm optimization

and support vector machine. In Proceedings of the 2013 IEEE 25th Chinese Control and Decision Conference (CCDC), Guiyang,
China, 25–27 May 2013; pp. 4106–4110.

40. Shuai, B.; Li, H.; Li, M.; Zhang, Q.; Tang, C. Software defect prediction using dynamic support vector machine. In Proceedings of
the 2013 IEEE Ninth International Conference on Computational Intelligence and Security, Emeishan, China, 14–15 December
2013; pp. 260–263.

41. Agarwal, S.; Tomar, D. A feature selection based model for software defect prediction. Int. J. Adv. Sci. Technol. 2014, 65, 39–58.
[CrossRef]

42. Abaei, G.; Selamat, A. A survey on software fault detection based on different prediction approaches. Viet. J. Comput. Sci. 2014,
1, 79–95. [CrossRef]

43. Malhotra, R.; Nishant, N.; Gurha, S.; Rathi, V. Application of Particle Swarm Optimization for Software Defect Prediction Using
Object Oriented Metrics. In Proceedings of the 2021 IEEE 11th International Conference on Cloud Computing, Data Science &
Engineering (Confluence), Noida, India, 28–29 January 2021; pp. 88–93.

44. Balogun, A.O.; Basri, S.; Mahamad, S.; Abdulkadir, S.J.; Capretz, L.F.; Imam, A.A.; Almomani, M.A.; Adeyemo, V.E.; Kumar, G.
Empirical Analysis of Rank Aggregation-Based Multi-Filter Feature Selection Methods in Software Defect Prediction. Electronics
2021, 10, 179. [CrossRef]

45. Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl. Based Syst. 2015, 89, 228–249.
[CrossRef]

46. Mirjalili, S.; Lewis, A. S-shaped versus V-shaped transfer functions for binary particle swarm optimization. Swarm Evol. Comput.
2013, 9, 1–14. [CrossRef]

47. Kennedy, J.; Eberhart, R.C. A discrete binary version of the particle swarm algorithm. In Proceedings of the 1997 IEEE
International conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, Orlando, FL, USA,
12–15 October 1997; Volume 5, pp. 4104–4108.

http://dx.doi.org/10.3390/sym12091460
http://dx.doi.org/10.3390/sym12071146
http://dx.doi.org/10.3390/electronics10040447
http://dx.doi.org/10.1007/s10586-017-1235-3
http://dx.doi.org/10.5220/0010021700170027
http://dx.doi.org/10.1080/0952813X.2020.1737246
http://dx.doi.org/10.1007/s00521-019-04570-6
http://dx.doi.org/10.1007/s00521-018-3821-6
http://dx.doi.org/10.1007/s00521-020-05483-5
http://dx.doi.org/10.1016/j.ins.2019.04.022
http://dx.doi.org/10.3390/diagnostics11050811
http://dx.doi.org/10.1016/j.eswa.2018.04.024
http://dx.doi.org/10.1007/s11227-019-02776-y
http://dx.doi.org/10.1016/j.eswa.2014.10.008
http://dx.doi.org/10.1007/s00500-020-04760-8
http://dx.doi.org/10.3390/e20050372
http://www.ncbi.nlm.nih.gov/pubmed/33265462
http://dx.doi.org/10.3390/e21010091
http://www.ncbi.nlm.nih.gov/pubmed/33266807
http://dx.doi.org/10.14257/ijast.2014.65.04
http://dx.doi.org/10.1007/s40595-013-0008-z
http://dx.doi.org/10.3390/electronics10020179
http://dx.doi.org/10.1016/j.knosys.2015.07.006
http://dx.doi.org/10.1016/j.swevo.2012.09.002

Mathematics 2021, 9, 1722 20 of 20

48. Kushida, J.i.; Hara, A.; Takahama, T.; Kido, A. Island-based differential evolution with varying subpopulation size. In Proceedings
of the 2013 IEEE 6th International Workshop on Computational Intelligence and Applications (IWCIA), Hiroshima, Japan, 13 July
2013; pp. 119–124.

49. Michel, R.; Middendorf, M. An island model based ant system with lookahead for the shortest supersequence problem. In
Proceedings of the International Conference on Parallel Problem Solving from Nature, Amsterdam, The Netherlands, 27–30
September 1998; Springer: Berlin/Heidelberg, Germany, 1998; pp. 692–701.

50. Araujo, L.; Merelo, J.J. Diversity through multiculturality: Assessing migrant choice policies in an island model. IEEE Trans. Evol.
Comput. 2010, 15, 456–469. [CrossRef]

51. Khurma, R.A.; Aljarah, I.; Sharieh, A.; Mirjalili, S. Evolopy-fs: An open-source nature-inspired optimization framework in python
for feature selection. In Evolutionary Machine Learning Techniques; Springer: Singapore, 2020; pp. 131–173.

52. Khurma, R.A.; Sabri, K.E.; Castillo, P.A.; Aljarah, I. Salp Swarm Optimization Search Based Feature Selection for Enhanced
Phishing Websites Detection. In Proceedings of the Applications of Evolutionary Computation: 24th International Conference,
EvoApplications 2021, Held as Part of EvoStar 2021, Virtual Event, 7–9 April 2021; Springer Nature: Basingstoke, UK, 2021;
Volume 12694, pp. 146–161.

http://dx.doi.org/10.1109/TEVC.2010.2064322

	Introduction
	Related Works
	Background
	Classification Algorithms
	K-Nearest Neighbor Classifier (k-NN)
	 Support Vector Machines (SVM)
	Naive Bayes Classifier (NB)

	Overview of Moth Flame Optimization Algorithm
	Binary Moth Flame Optimization for Feature Selection
	Fundamentals to Island-Based Model

	Island-Based MFO (IsMFO) Algorithm
	Experimental Results
	Model Evaluation Metrics
	Datasets Specifications
	Results and Discussion
	Analytical Description of the Relevant Features

	Conclusions and Future Trends
	References

