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Abstract: In 1981, Foias, Guillopé and Temam proved a priori estimates for arbitrary-order space
derivatives of solutions to the Navier-Stokes equation. Such bounds are instructive in the numerical
investigation of intermittency that is often observed in simulations, e.g., numerical study of vorticity
moments by Donzis et al. (2013) revealed depletion of nonlinearity that may be responsible for
smoothness of solutions to the Navier-Stokes equation. We employ an original method to derive
analogous estimates for space derivatives of three-dimensional space-periodic weak solutions to the
evolutionary equations of diffusive magnetohydrodynamics. Construction relies on space analyticity
of the solutions at almost all times. An auxiliary problem is introduced, and a Sobolev norm of its
solutions bounds from below the size in C3 of the region of space analyticity of the solutions to
the original problem. We recover the exponents obtained earlier for the hydrodynamic problem.
Moreover, the same approach is followed here to derive and prove similar a priori bounds for
arbitrary-order space derivatives of the first-order time derivative of the weak MHD solutions.

Keywords: magnetohydrodynamics; Navier-Stokes equation; space analyticity; a priori bounds

1. Introduction

A standing problem of the analytical study of turbulence is to derive from the basic
equations of hydrodynamics, the Euler equation and the Navier—Stokes equation, the em-
pirical relations characterising this phenomenon. This requires a profound understanding
of the behaviour of small-scale structures in flows, which is also necessary to achieve
progress in pure mathematical problems such as to identify the class of functions in which
existence and uniqueness of solutions is guaranteed, or to answer the related question on
whether singularities can develop at a finite time in the solutions.

A possible approach to addressing these problems consists of obtaining information
on norms of high-order derivatives of the solutions: the higher the order, the more the
respective norms are controlled by the small-scale components of the solutions. The
energy inequality

1 T -
SIVIB+v [ IvIFar < [vomoy3 )
for solenoidal solutions to the Navier-Stokes equation,

aalt] =vV?V — (V-V)V - VP, )
bounds the Lebesgue space L?(Q)) norms of an incompressible fluid flow V and its spatial
gradient only, and not of the second derivatives describing the action of diffusivity. This
led J. Leray [1] and E. Hopf [2] (see also [3—6]) to formulate the concept of weak solutions
to the Navier-Stokes equation—namely,vector fields satisfying integral relations that are
obtained by scalar multiplying (2) by a sufficiently smooth solenoidal test function with a
finite support, integrating over the fluid volume () and transferring differentiation from
the unknown solution V to the test function by integration by parts. If the resultant
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integral identity holds for all such test functions and V is sufficiently smooth, it is simple
to show that it also solves (1); such solutions are called strong. Later it was shown [7,8]
that second-order spatial derivatives and the time derivative of a three-dimensional weak
solution to (2) as well as the gradient of pressure, that are involved in (2), do exist and
belong to the Lebesgue space L5/4([0, T], L°>/4(Q2)); the proof relies on the observation that
for a vector field obeying the energy bound (1), the nonlinear term in (2) belongs to this
space. Existence of weak solutions was demonstrated in [1,2]; the existence of strong three-
dimensional solutions is an open question. While for an incompressible fluid residing in a
bounded domain ) uniqueness was proven for three-dimensional flows satisfying suitable
boundary conditions and belonging to the Lebesgue space L ([0, T], L(Q2)) for which the
Ladyzhenskaya—Prodi-Serrin condition 2/p +3/g < 1 [9-12] holds, the energy bound (1)
for weak solutions implies only 2/p +3/g = 3/2.

Due to importance of these mathematical questions, numerous papers were devoted
to the investigation of smoothness and spatial analyticity of solutions to the Navier-Stokes
equations. In the seminal work [13], C. Foias and R. Temam examined Gevrey class
regularity of space-periodic solutions and proved that three-dimensional flows, which
initially have spatial gradients in L2(T?), instantaneously become space-analytic and, for a
finite time, the size of the region of analyticity in C3is proportional to time. (A similar
derivation in [14] serves for estimating the minimum length scales in the flow and Fourier
spectrum decay in terms of the instantaneous rate of the bulk energy dissipation; see
also [15,16].) Space analyticity persists while the L?(T?) norm of VV remains finite (for
weak solutions, this can be guaranteed for finite times only).

In the celebrated paper [17], C. Foias, C. Guillopé and R. Temam established another
regularising effect of the Navier-Stokes equation that is manifested by new a priori esti-
mates: for initial conditions of a minimum regularity, the weak solutions admit the bounds

2

T
/O IVl dt < oo for wy = > —.

®G)
(Here and in what follows, || - ||, denotes the norm in the Sobolev space H,,(T3); it
is essentially equivalent to the sum of the Ly(T®) norms of all derivatives of order m.)
This result was derived in [18,19] by a different method relying on the so-called ladder
inequalities employed for estimating the “natural” length scale developing in a forced
flow [15,18-22]. Recent developments in the study of analyticity of solutions to the Navier—
Stokes equations are described in [23]. An ordinary differential equation (ODE) is studied
in [24] that governs the evolution of the size in C3 of the region of analyticity of the solution
and involves the Gevrey class norms; this is reminiscent of the approach [25] that we
follow here. A bound from below for the size of the region of analyticity that vanishes on a
measure zero time set was constructed in [26].

An important problem is to characterise the singularities presumably developing
in solutions to the equations of hydrodynamics and magnetohydrodynamics (MHD).
Citing [6], “It was Leray’s conjecture on turbulence, which is not yet proved nor disproved,
that the solutions to the Navier—Stokes equations do develop singularities. .. It seems
useful to study the properties of weak solutions of Navier-Stokes equations with the
hope of either proving that they are regular, or studying the nature of their singularities
if they are not. ... Of course” the results “would lose all of their interest if the existence
of strong solutions were demonstrated.” J. Leray [1] showed that for any weak solution
of the force-free Navier—Stokes equation, there exists at most a countable set of disjoint

open time intervals ], such that ]y is infinite, ], are finite for g > 0, Y04/ length(J;) < oo,

the Lebesgue measure of the complement [0, c0)\ Uy J; is zero and the solution is smooth
in all space-time regions J; x R3. If a body force acts on the fluid, the singularity set has
the same structure [17] (except for the inequality on the lengths of the time intervals of
smoothness does not necessarily remain valid). Investigation of the partial regularity
of solutions to the Navier-Stokes equations was continued by V. Scheffer [27-30] and
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culminated in the work by L. Caffarelli, R. Kohn and L. Nirenberg [31], who proved that
for any suitable weak solution of the Navier-Stokes equation on an open set in space-time,
the singular set has a zero Hausdorff measure 7.

Proven bounds are instructive in numerical analysis of the nature of intermittency
observed in solutions to hydrodynamic or MHD equations. For instance, the numerical
study [32] of vorticity moments of solutions to the Navier-Stokes equations revealed
depletion of nonlinearity that may be responsible for the smoothness of the solutions
under investigation.

Existence of weak solutions to equations of diffusive magnetohydrodynamics was
proven in [33]. The large-time behavior of a solution to the Navier-Stokes equation [34]
or an MHD solution [35] is completely determined if it is known in a sufficiently large
but finite set of points in the fluid region. Since the nature of the quadratic nonlinearities in
the magnetic induction and Navier-Stokes equations (in the MHD case, the latter involving
the Lorentz force acting on the electrically conducting fluid) is the same, most results for
the hydrodynamic Navier-Stokes equation can be generalised, often straightforwardly,
to encompass the system of equations of diffusive magnetohydrodynamics. For instance,
the methods of [13] provided an opportunity to investigate the Gevrey class regularity of
the MHD solutions and to obtain the results [36] analogous to [13].

The present paper has three goals:

¢ To carry over the a priori bounds for arbitrary-order space derivatives of solutions to
the Navier—Stokes equation to space-periodic solutions to the equations of diffusive
magnetohydrodynamics;

¢  Toderive similar a priori bounds for arbitrary-order space derivatives of the first-order
time derivative of the Fourier—Galerkin approximants and to prove that the bounds
are admitted by weak solutions to the equations of magnetohydrodynamics;

e  Toreveal a link between these bounds and space analyticity of the MHD solutions at
almost all times.

They are achieved by following an original approach [25] based on a transformation
of coefficients in the expansion of the solutions in the Fourier series in spatial variables.
We introduce an auxiliary problem, solutions of which are Fourier series involving the
transformed coefficients; in it, an additional first-order pseudodifferential operator emerges.
This enables us to estimate a Gevrey class norm of the MHD solutions. The time-dependent
index of this norm controls the size in C3 (in the imaginary directions) of the region of
space analyticity upon complexification of the spatial variables; it is inversely proportional
to a Sobolev norm of the solution to the auxiliary system of equations. The estimate is
global, i.e., applicable at all times except for a set of Lebesgue measure zero, where the
norm becomes infinite. Finiteness of a Gevrey class norm of a solution implies that its
Fourier series converges as a geometric series, as well as the Fourier series of its spatial
derivatives. Following this observation, we construct bounds for norms of arbitrary high
spatial derivatives in terms of estimates of a suitable norm of the solution and the common
ratio of the geometric series.

The structure of the paper is as follows. In the next section we state the problem,
introduce the main equations to be investigated and set the notation. In Section 3, we
follow [13] to show that space analyticity sets in instantaneously, provided that the initial
data belongs to the Sobolev space H;(T?). We are only interested in real analyticity. We
introduce in Section 4 the auxiliary system of equations and derive an a priori bound of the
energy type for its solutions. It is used for construction of a priori bounds for Sobolev spaces
and Wiener algebra norms of weak solutions to the equations of magnetohydrodynamics
in Section 5 and of the first-order time derivatives of the solutions in Section 6. While
carrying a priori bounds for Fourier-Galerkin approximants over to the weak solutions
relies on standard arguments that are straightforward, this is not the case for bounds for
the time derivatives. They are justified in Section 7. We provide concluding remarks in
the last section of the paper. For the sake of the reader’s convenience, our presentation
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is reasonably detailed. The end of the proof of a lemma or theorem is marked by the
symbol .

This paper is dedicated to Professor Uriel Frisch on the occasion of his 80th anniversary
as a sign of appreciation of the Scientist and the Teacher.

2. Statement of the Problem

An electrically conducting fluid flow, the velocity of which is V(x, t) in the Eulerian
coordinates x € R3, in the presence of magnetic field B(x, t) satisfies the equations

VoV (V.V)VE (B V)B - VP, (4.1)
9B )
g:17V B+ V x (VxB). (4.2)

Here, P is the total pressure and ¢ is time. The first equation, (4.1), is the fluid momentum
equation known as the Navier-Stokes equation and the second equation, (4.2), is the
magnetic induction equation. We assume that the only external body force acting on the
fluid is the magnetic Lorentz force. (This assumption is made for the sake of simplicity
only; adding a prescribed space-analytic body force does not present any fundamental
mathematical difficulty but renders the presentation more involved.) The flow is supposed
to be incompressible and magnetic field is solenoidal:

V-V=V-B=0. 4.3)

Initially (at t = 0) the flow velocity VMt and magnetic field B("Y) are prescribed.
We seek space-periodic solutions, the periodicity cell being a cube T® = [0,27]>.
Expanding the solution in Fourier series

V=) Vpe™,  B=) Bpe™™ ®)
n n

(where summation is over three-dimensional vectors n with integer components), mul-
tiplying (4.1) and (4.2) by e~"* and integrating over T? yields a system of ODEs for the
Fourier coefficients

dv. - _ - DU .
dtn + Vo = =i} Za (Voo k) Vi — (Bn_ick)By), (6.1)
k
dB, e . - -
TR nn"Ba =1)_n x (Va_x x By). 6.2)
k

Fourier-Galerkin approximants of solutions to the system of equations (4) are trun-
cated series
vIN) — y VN ginx. B(N) — y BNV ginx @)
In|<N [n|<N

(we set \719’) = ﬁgN) = 0 for |[n| > N). Fourier coefficients of the approximants satisfy (6)
for [n| < N. Henceforth, we drop the superscript (N) indicating the dependence of the
approximants on the resolution parameter N but reinstate this notation in Section 7.

The fields V and B are assumed to be zero-mean:

(27'[)73/1;‘3de:(27T)73/H‘3dezo N VOZE(]:O (8)

(note that in the course of temporal evolution due to equations (4), the spatial means of V
and B are conserved). They are real as long as

el

= V*Il/

=
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(the bar denotes complex conjugation). The solenoidality conditions (4.3) reduce to
the orthogonality
Va-n=B,-n=0. 9)

We denote by &, the linear projection of a three-dimensional vector on the plane normal

ton # 0:
_fn
|2

P f—f

Let | - |, denote the norm in the functional Lebesgue space L (T?),

p

= (0 [ra)”,  p=a

We denote by H;(T3) the subspace of Hs(T®) comprised of space-periodic (with the pe-
riodicity cell T%) three-dimensional zero-mean solenoidal vector fields equipped with
the norm

2 2 1/2 i
Iwls = (L In/*[#al?) ", where w= Y wne™
n n#0

By the embedding theorem for Sobolev spaces ([37], see also, e.g., [38—42]), for every
positive s < 3/2 there exists a constant C; such that each function f € Hs(T3) of a three-
dimensional space variable satisfies the inequality

flo/3—25) < Csllfls- (10)

The Gevrey class norm is defined for ¢ > 0 by the relation

[wl2, =Y [Wn2e M n>  for w=) wnel™™.
n n

If the norm of a field is finite, it is space-analytic inasmuch as the size of the open region of
analyticity of the field in the imaginary directions for complex x is at least o. The inequality

In|%e~ b < (eb/a)™" forall a>0, b>0, (11)
implies a relation between Gevrey norms of different indices:
Iwlo, < |wlos(e(oc =)/ (p—5))P~° for o’ <o, s <p. (12)

3. Instantaneous Onset of Space Analyticity
In this section, we prove Theorem 1.

Theorem 1. Let the initial data V") and BUNY gt time t = 0 belong to Hs(T®) for some
s > 1/2. Then there exists t. > 0 such that the weak solution to the system of Equations (4) is
space-analytic in the open interval 0 < t < t,.

Proof. Following [13], we set
Vo = vpe 7Pt B, = bpe I, (13)

where ¢ < min(v, 7) is a strictly positive constant, and derive a priori bounds on the
interval 0 < t < t, for the modified solutions

v= ) va(t)e™, b= Y. bn(t)e™.
0#[n|<N 0#[n|<N
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Substituting the truncated series (7) and (13) into (6) yields

d . IK—ln_
== Wlnf = ofn)vy =i ) e MK TKD (v v = (b)), (1401)
k
dbns 2 : ot(jn|~[k|~|n—Kk|)
5 =" (7|n]* — o|n|)by + in X Ze Va_k X by. (14.2)
k

By the triangle inequality, the exponential in the r.h.s. of Equations (14) does not
exceed 1. For 1/2 < s < 1, we scalar multiply (14.1) and (14.2) by |n|*v_y and |n|*b_,,
respectively, sum up the results over all n # 0 (see (8)) and take into account the inequalities

Vo ick| < [k[Pn)'Plvy_1],  [bnik| < |k[fIn'"P|b, 4| foranyp, 0< B <1 (15)
(stemming from the orthogonality (9)) and
In|* < max(1,25" N (|k* 4+ |n —k|*) foranys > 0. (16)
Choosing g = s, we find
d 2 2 2 2
= (IvI[s +bll5) + (v = o) IviT4s + (7 — o) [[bll1 1
dt

< Y ((9n sl vicl+ b el i) 1K [v—n -+ ([l + [ = KP*) vy [ b ) In] 4. (17)
nk

N =

In terms of scalar functions

fq X, t) Z|gn ||n|‘7emx for an arbitrary g(x, t) Zg einx (18)

the r.h.s. of (17) can be expressed as

@) [ (R + ) st (B + 2R £ ) dx
and further bounded as follows:
< (1f5 16/ (3—25) | 1375 + |f5 oy (3-26) [ £2 13 /8) | sl
+ (10167 (3—25) | £ 1375 + 1213/ £ |6 (3-25)) | s 2
(by Holder’s inequality)
< CLRNME Nsrzmst LB F 3 2-5) 1A s

+ (SIS s 2—s+ A s N A2 N3 /2-5) ||f5’||1+s)

(by the embedding theorem inequalities (10); we have denoted C, = C;C3,5_5)

s+1 s+1
< (VI IS0 Bl v s

s—1 3-s s—5 3—5
+Hbllsbllislvils VI +Ivilslbls 2||b||1+s)

172 g||?/ 275 for any g by Holder’s inequality)

(since |[gll3/2 < lIglls™
< (572 =s)v(IbIR s+ v
+(s— 1/2),Y—(5—2s)/(2s—1)(Hb||§(25+1)/(2sfl)+ ”VHE(ZSH)/(Zsfl)))
(by Young's inequality; v > 0 is an arbitrary constant)
< (572 9)7(Ibl o+ IvI3)

(5_1/2) (5—2s)/(2s—1) HbHs+ HVH )25+1)/(2s71)).
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Choosing now ¢ > 0 such that C/(5/2 —s)y < min(v,5) — ¢, denoting
Cl = Cly~(5-2)/(25-1) solving the inequality (17) and applying (13) yields

IVIZ:s + IBIG:s = (VI + [[b]I2
< fls( ) ((HV (init) H2+ ||B (init) H ) -2/(2s-1) _ C;/t)f(sfl/z) (19)

for
< b= (V2 4 B0 2) 250 s 0)

(The initial data for the Fourier—Galerkin system of Equations (14) should be used in the
rh.s. of (19) and (20), but we replace the norms in (19) and (20) by the norms of the initial
data for the original problem (4), since the Hs(T3) norms of the truncated initial conditions
monotonically increase with the resolution parameter N.) Thus, the Fourier—Galerkin
approximants (7) of solutions to (4) obey an a priori bound that is independent of N.
The usual arguments show that they converge to a weak solution to the problem (4) (see
Section 7) that is space-analytic for 0 < t < t, even if the initial condition is not and, hence,
on this time interval it is strong and unique. O

4. An a Priori Bound for Approximants of Solutions to the Auxiliary Problem

We now consider the initial-value problem stated at t = tg such that 0 < fp < t,.
We have shown in the previous section that the “initial” fields V(*®8) = V(x,t;) and
B(Pe8) — B(x, ty) are space-analytic. By virtue of (19) and (12),

| vbes) |2 23+ | B |U,,3/2 < q3/2(tg) < oo forany o < ot.

Constructions of the present section are based on this property of the initial data and
otherwise do not rely on the results of the previous section: It suffices to assume that the
norms |-|,/3/2 of the data at t = t; are finite for some ¢ > 0 and uniformly in N bounded
for the finite-space Fourier—Galerkin approximants, and consider the initial-value problem
paying no attention to the prior existence of the solution to (4) for 0 < t < t5. We assume
[V®e8)||3, + [BPe8)|3,5 > 0.

4.1. A Transformation of Solutions to (4) and the Auxiliary System of Equations

Following [25], we transform the Fourier coefficients,
Vi = Vpe 2P B, = bre 0%, (21)
of the truncated Fourier-Galerkin approximants (7) of a solution to (4); here we have denoted

O =1+ V32 + b3 % V=Y W)™, b= Y, ba(t)e™ (22)
0#n|<N 0#[n|<N

and ¢ > 0 is a constant. Substituting the Fourier series (7) and (21) into (6) yields

v do
ar +V|n\2vn—5|n|vn T

= —i)_e?®nl=lki=In-kD %, (%, 1 k)¥i — (bn_ik)by), (23.1)
k

d" B iy nf2Ba — olnfba ‘Lﬂzew(ln\ K-k n o« (¥, 4 xBy).  (232)
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_ The system of ODEs (23) is satisfied by the Fourier-Galerkin approximants of solutions
v, b to the system of pseudodifferential equations which we call an auxiliary problem:

g—m % In®=vV2 +¢®(= (e %)-V) (e %)+ (e ®b)-V) (e b))~ Vp, (24.)

ob _~d - IS

S —0b = In®=V?b+ Vx (e? ((e7°9) x (e D)), (24.2)
V-¥=V-b=0 (24.3)

where ® = 6®(—V?2)!/2 is defined in the subspace of zero-mean vector fields of the
Lebesgue space L?(T?). While not very illuminating in the present setup, the equations
in this form may be useful when considering the problem with appropriate boundary
conditions in a finite fluid domain. For § = 0, they reduce to the original equations of
magnetohydrodynamics (4).

In order to render (23) as an explicit system of ODEs, we scalar multiply (23.1) and
(23.2) by |n|>¥_, and |n[>b_p, respectively, sum up the results over all n # 0 (see (8))
and obtain

1 - ~ d, . =~ - ~ .
5 (14 s[5 + ||b||§))a(\|V||§/z +[bl3/2) +vIl5,2 + b5, =iZs,  (25)

where we have denoted

2, =Y [n|Pes®(inl - Ik~ In-k)) (_ (Va1 K) ViV
nk

+ (bt KBy Von + (N X (Vo_g X Sk))-b,n)

— Y |n|Pef®(Inl= k|~ n-k) ( — (V1K) (¥ V_n+t b-b_n)
nk

+ (B 1K) (BicV-n+ Vicbn) ). (26)

(Here and in what follows, we use the orthogonality relations ¥ - k = by - k = 0 stem-
ming from (9) and swap the indices of summation k and n — k in some terms when it is
convenient to rearrange the sums.) Finding

d . _ ~
do/dt = —(@°/2) L (913 2+ [bI32)

from (25) and substituting into (23) yields the desired explicit system of ODEs for which
we now need to supply the initial conditions.

The transformed solutions can be constructed for both the truncated sums (7) and
infinite series (5). By virtue of (21), the harmonics

Vl(lbeg) _ {,E\beg> H®ln|. ggbeg) _ ﬁﬁ\beg) oO®|n|

are available at t = ¢, if the value of the parameter ® is known. These relations imply
O(®(ty)) =0, where O(®) =V o2+ |B(>8) 3oz +1-272 (27

We regard (27) as an equation in ®(tp). Let R denote the size of the region of analyt-
icity, defined as the infimum of such r that [V®e®)|2, , + [B®e®)|2, = co. By the
results of the previous section, R > oty > 0; evidentfy, R = oo for untruncated series
(5). We note that 0 < & < 1 and O(®P) increases monotonically from @(0) = —co to
0(1) = |V(beg)|§,3/2 + | B(beg) 53/2 > 0if R > & or otherwise to @(R/J) = co. Hence,
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~(beg)

in both cases, the equation (27) has a unique solution ®(#;). Now the initial data v, ©’ and

l;;beg) at t = tg are fully determined.

4.2. The “Energy” Bound for the Transformed Solutions

Thus, for a given resolution parameter N, v, and l;n can be found for any t > tpas a
solution to an explicit finite system of ODEs, provided it does not blow up at a finite time.
Theorem 2 rules out this possibility.

Theorem 2. Suppose
6 < (18v2C} ;) ' min(v, 1), (28)

where C /5 = Cy,Cy (see (10)). Solutions ¥, b to the auxiliary problem (22) obey an a priori bound:

9 -
2SI+ IBIR)]_, + [ (v(191% + 46207 518+ n (IBIF + 40 BI)a < 50 @9)
forall T > to, where

1,,. ~ ~ ~ N ~ 258
Q = (SUIFIB+IBIR) ~S@ (¥R 2+ DI} 2) + 8@ (WIF+BID) + 5 (9 -3@+2) |

depends only on the initial conditions V(b¢8), B(°¢8) at t = tq and the parameter 6.

Proof. We consider an analogue of the energy equation for (23). Since new terms are
present in (23), we scalar multiply (23.1) and (23.2) by V_n (1 — 26|n|® + 262|n|2®?) and
b_n(1 — 26|n|® + 26%|n|2P?), respectively. Summing up the results over n yields

d - ~ @3
55 (SURIR-+1B18) — 60(IF1R 2+ [B13,) + 02918 + 151 +26°( 5 - @)

+v(|[VIF - 20213 5 +26°@%|913) + 1 (IIb]1F — 26@]b 3, + 26202 |b]|3)

- i(Zo — 260, + 252¢222) (30)

(see (26)). The terms constituting the Lh.s. of (30) are bounded as follows:
1, ~ 1, ~
SURIG+ IB1F) = (V15 /5 + BT /2) + SR> (I¥IIF + IBIF) = 5 (1915 + [[BI5),
2 4

since [[9 5 + B3, < 1¥91lo/I¥[l1 + [[bllo/[blx;
0> 203(d3/3 — ) > —46%/3,
since on the interval 0 < ® < 1 the function ®3/3 — ® monotonically decreases;

V|2 — 200 |%||2 28202||v 25 Lig 2, ‘52@2
¥y I¥l13,2 + Ivllz > SHle ——I¥l3,

since HVH%/Z < ||¥]|1/|¥]]2 and due to the elementary inequality 2|ab| < x~'a? + xb?* that holds true

for any a,b and « > 0; similarly,

1 522
b — 26@[[b]13, +20*®?|[b[13 > 3BT + ——b]3.

The sums X, in the r.h.s. of (30) are bounded by essentially different procedures depending

on whether p vanishes or it is positive. We note that the exponential does not exceed 1, since the
exponent in the r.h.s. is negative. For p = 1,2, (26) implies

2] SZ|n|p‘k|<|V—n‘(Wk"vn7k|+|gk||gn7k|)+|g—n|(|Bn7k||‘~’k|+|vn7k”gk‘)> (31)
nk

=) [ (TR + )+ LSS + 7)) ax
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(see (18))

< (A IS e + I 1T 16) + 17 L (AT 18 6 + 7 515 l6)
(by Holder’s inequality)

= C{/z<\|V|\p(IIVII3/zIIVH1 +[Blla/2lIBll1) + 1Bl (I¥]3/2]ll + HBHa/zHVHl))
(by the embedding theorem inequalities (10))

- =1 201/2 /11~ =2 \1/2 = ~12\1/2
< Ci o V2(I9I15 + 1BI5) (19152 + IBI13 ,2) (W15 + I[b]17)

(by the Cauchy-Schwarz inequality). For p = 2, this implies
28°97(55| < 6C; o v2( IR + I + 292|913 + [I3)).

For p = 0, we symmetrise (26) by changing the indices of summationn — —kand k — —n
and by using the solenoidality conditions (9):

1 o
o= - Z(GN(ID\*\kI*\n*kD — e0¢(\k\*|n|*\n*k|)>
2 nk

% (~(Fnoic k) eV n 4 Bicb ) + (B ick) (bic¥on +¥icB ).
Evidently, [e"1 —e*2| < |x; — kp| forall k1 < 0 and xp < 0, implying

S0/ < 63 [ — Kl K| (|9l (¥ [9 -] + [Bic /b)) + Bl (¥l [Bn] + [Bic[¥n])
nk

< 6C1 ;o V2(II91F + [1B]1),

because the sum in the middle is identical to (31) for p = 1.
Integrating (30) in time and applying the above inequalities yields

LU+ 1818+ [ (v (31918 + S5 118 )+ (31818 + S5 13 )

< Q+aci V2 [ (4(IvIE -+ 1) + 52d>2<||v||% +b]3))dt.
Applying now the condition (28), we obtain the inequality (29) as required. O

Compared to the usual energy bound, we have thus obtained a new bound:

T "
@I + 13 dt < 90 / (462 min(v, )

for the Fourier-Galerkin approximants of solutions to the auxiliary problem (24). Al-
though it is uniform over the resolution parameter N, a further effort is required to deduce
from it a bound for weak solutions to the system of Equations (4). This “bonus” bound is
due to the presence of the first-order dissipative operator in the modified equation that
emerges upon the transformation (13). An operator of this type was originally employed
in the study of the “lake” equation in [43], where a time dependence of the index of the
respective Gevrey class norm of the solution was assumed; our transformation (13) also
introduces such a dependence but a different one.

5. A Priori Bounds for Approximants of Solutions to the System (4)

Here, we use Theorem 2 for constructing bounds for the Fourier-Galerkin approx-
imants of solutions to the MHD system of Equations (4) in Sobolev and Wiener algebra
norms that are uniform in the truncation parameter N. They feature the same exponents
«s as those proven in [17]. A similar approach was entertained in [44], where bounds
for algebraic decay of high-order derivatives of strong solutions to the unforced Navier—
Stokes equations in R” were constructed by bounding a single Gevrey class seminorm of
the solutions.
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Theorem 3. Foras =2/(2s—1), vs =2/sand any T > ty,

T
s/2 ~
| (IVIE+BI2)" 2t < Q. for s > 1, (32.1)
0
T ~
[ VB2 @< @ fro<s<1,  @22)
0
T s .
/ (max (|(-V2)/2V] + |(_v2)s/23|)>“ Pt < QW for s> —1/2, (32.3)
tg T

where Qs and QW depend only on the initial conditions V(be8), B(be8) at t = t) and parameters
é,5,vand n. For 0 < s < 1 Qs are independent of T > to, while Qs for s > 1 and QWY a
sublinear functions of T —

The Proof differs in details when the inequalities for Sobolev and Wiener algebra
norms are considered. It is presented in the next two sections.

5.1. Bounds in the Sobolev Space Norms
By the Cauchy-Schwarz inequality,

9152 + 1B113/2 < 911 19112 + Bl lIBll2 < (19115 + 1B 1F)! 2 (19113 + 1B ]13)*2.
This implies
V2 (913 + [IBI) (915 + 1B ]13)",
if []132 + Ib3,2 > 1,
V2 (|93 + [[b]3)'2,
if [9]13,, + Ibl3,, <1

(9132 + IIBII32) ' <

Integrating in time and using (29) yields
T Ti2 y1/2
| 9182+ 1)/ a
0
T o2 (15112 4 15112 T2 o 1512 =
< (2 [ @P(I1B + 1BI) at max( [ (113 + [BIR) .7~ 10
0 0
< Q' =6 'max <9Q/(\ﬁ min(v,7)), (9Q(T — to) /(2 min(v,;y)))l/z). (33)
Hence, for s > 1 and a5 = 2/(2s — 1), the inequality
(a+b)° <a®+b° foralla>0, b>0, 0<c<1, (34)
Holder’s inequality, (33) and (29) imply
q/2 -
I + [BIR)* eV
~ s/2 ~ 1 —1)as/2
< OISR+ IBIRY™" (14 (19132 + BI3,) )t
0

ws/2
<Ql= (9Q)) ((T = 1) =%/2 4 (Q)17%/2). (35)

min(v, 7
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We can now establish a priori bounds for the truncated Fourier-Galerkin approximants
(7) of solutions to the original equations of magnetohydrodynamics (4). By (21) and the
inequality (11),

B - _ N _ s—1 2(s—1)
IVIZ+ B2 = Y e @M ([3af* + [bal?) < Y Inf*([¥nl* + |b“|2)<e(5q>) /
n#0 n#0

and hence applying (35) proves (32.1):
T 1 (s—1)as
L[UV&+MN@%”dHECas) ! for s > 1.
0

For 0 < s < 1, the exponents are obtained by interpolating between the endpoints
of the interval and thus constitute a different family. Young’s inequality and the energy
inequality for (4) prove (32.2):

T V2 B21/Sd< TV2 Bzd V2 Bz(l—s)/s
C(IVIE =+ IBIE) ™ de < [ (IVIF+IBIT) df max (VI3 + [BIF)
< (2min(v, 7))~ (VI 5+ BE 7).

Corollary 1. Foranyp > 2,5 >3/p—1/2and T > ty:

[av

where we have denoted aps = p/(p(s +1) — 3) and ||f||ps = |(—V?)*/2f|,.

ps + ||Bllps) " dt < oo,

Proof of the Corollary. By (10), |f|, < C3/2-3/pl|f[l3/2-3/,. We apply this inequality to
(—V?2)5/2V and (—V?)*/2B, and note &y s = &s13/2-3/p- By (32.1),

[av

O

T
s Xp,s s _
ps) dtﬁcg/pz_g/,, /to (IVlls13/2-3/p+IBlls3/2-3/p) " >2 /7 dt < co.

ps+|B

For solutions to the Navier-Stokes equation, this was proven in [22]. Using (32.2), it is
easy to derive the analogous exponents for the case 0 <s+43/2—-3/p < 1.

5.2. A Priori Bounds for the Wiener Algebra Norm

We finish here the proof of Theorem 3.

The bound (32.3) follows from a bound for the Wiener algebra norm of the fields
(—V?2)*/2V and (—V?)*/2B. The norm of a field is defined as the sum of absolute values of
its Fourier coefficients, i.e., a field has a finite Wiener algebra norm whenever its Fourier
series converges absolutely; obviously, the norm bounds the field’s maximum. (Applying
this Banach space proved useful, for instance, for estimating the dissipation length scale
for turbulence [45] and for showing time analyticity of solutions to the Euler equation in
Lagrangian coordinates [46,47].) The proof exploits the following Lemma.

Lemma 1. For any ®,a and p such that 0 < ® <1,a > 0and p > -3,

Y e ®nl|n|r < Cia o (P13)
n#0 '

where constants Cy, , depend on p and a but not on .
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Proof. Let K, denote the cube {k||n; —k;| <1/2}. Then

Y e t@hnljpp = ¥ / =%l In |7 i
Kn

n#0 n#0
< ¥ sup e sup (jnl/[K])? [ e @i di
n#0 keKn keKy Kn

< e1®V3/2lpl / e~ @Ikl |1 |? dk

< .

< ea\ﬁ/Zz\P\ 47T/Ooefa®ppp+2 dp
0

= C}%,u (D_(p+3)/

where 12
Cpa = (470e™3/2 2l g~ (713 / e Ppr2dp)
, I

By (21), the Cauchy-Schwarz inequality and Lemma, for s > —1/2,

|(—V2)5/2V| + |(_v2)s/ZB| _ ‘ Z |n|svne—5¢)|n|+in'x + ’ Z |n|sgne—(5q>\n\+in~x
n#0 n#0
< Z |n|swn|e75®\n\ + Z |n|5|gn‘e7(5d>|n|
n#0 n#0
1/2

< (( HZ#O |n|2|Vn|2)1/2+ (nz#o |n|2|gn|2)1/2 )(n;) |n|25—2e—2(5¢°|n|>

< V2([9]F + [B]IF)"? Cospps @~ H2).

Thus, application of (35) upon changing s — s 4 3/2 for s > —1/2 establishes (32.3):

T s
/ (max(l(_v2)5/2V| + |(—V2)S/2B’))IX +3/2
to T3

dt < (V2Cp5-25)"+32 QY 5 »-

O
The bound (32.3) was proven for solutions of the Navier—Stokes equation for s = 0
in [17] (the authors attribute the proof to L. Tartar [48]) and for s > 0 in [22].

6. A Priori Bounds for Time Derivatives of Solutions to the System (4)

Similar bounds for higher-order norms of 0V/9dt and 9B /9t can now be constructed by
using space analyticity of the solutions to (4). An alternative derivation based on bounds
(32.1) for the solutions is presented in Section 6.3.

Theorem 4. Time derivatives of the solutions to the system of equations of magnetohydrodynamics
(4) satisfy the following a priori inequalities:

T s+2/2
av/at|2 + |aB/at)2) " "ar < DV, for s > —1/2; (36.1)
S S
to
T 0y 2\ Vs+5/2/2 @)
/ (lav/ar|2 + 2B /at|?) dt<D?, for —5/2<s<-1/2; (36.2)
to
1aV/at|)? + ||aB/at||2 < D), for s < —5/2; (36.3)

T S
/ max <|(—V2)S/28V/8t| + |(—v2)s/2aB/at;)“ T4t <DW, fors> -2, (36.4)
fo
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Here, Ds(i) are sublinear functions of time T > tq that depend on the initial data and constants s, v
and n only.

Proof. We have introduced a transformation (21) of coefficients of the Fourier—Galerkin
approximants V, B of solutions to (4). The modified coefficients satisfy the system of
Equations (23) and the time derivatives of V and B can be expanded as follows:

oV xS oB s
5 _ 2 g;/l(t)emx ACD\n\/ = _ 2 gg(t)emx 0©\n\/ (37)
0#[n|<N 0#[n|<N
where it is denoted
v dVa _ do b/, dby ~ do
gn(t) = a S|n|vn T gnlt) = T d|n[bn TR (38)

6.1. Bounds in the Sobolev Space Norms

We need to bound Sobolev norms of the quantities

gv: Z g;eimx and gb — Z ggeinx.

[n|<N n|<N

Scalar multiplying (23.1) and (23.2) by |n|>¢¥ , and |n|>¢? , respectively, and summing
up the results over n # 0 (note (8)) yields

1812+ 1°I8 = = X I 2 (v 8+ b - 200) 411 [Pl ink)
n nk
% (= @n k)i + (Ba ki) &% + (B 1K)V — (¥ 1K) 2% )

(by the orthogonality (9))

1 _ 1 ~ _
< JI8VIE + V292 + 4 18Y15 + #2120 + 1 P P
nk

% (180 (¥l [Fn ] + [Bucl b c]) + 180 (1Bl ¥ + [¥n ] b)) (39)
for an arbitrary g such that 0 < p < 1 (the triangle inequality is applied to bound the

exponential and the inequality (15) is used with v, i and b,y replacing v,_y and b, _y).
For different indices s of the norms, further derivations are similar but differ in details.

Proof of (36.1). We assume s = —1/2 and = 1/2. By the embedding theorem inequalities
(10), the last sum in (39) is majorised by

CL2 (18112 (1913 + IBIR) + 2118011 2lI¥ 1 B]1).
Consequently, (39) implies
1 v ~ ~ - ~
S U212 + 11801121 /2) < V21913 2 + 72l 2+ 2(Ch o) (19113 + B2 (40)
By virtue of (38), this inequality and (11),
[9v/0t] + 9B /9t Z = Y niP*e ¥ (137 + |23 [?)

n#0
< (&N 2 +1E°0124 ) max in |25+ e 2600n]

25+125+1 s o . ~ ) o s o
S2(285¢> (max(v=,77)(I[¥l3,2 + [Ibll3/2) +2(C2)*(I¥I17 + [Ib]I1)*)-
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Therefore, by Holder’s inequality, (34), (35) upon changing s — s/2 + 5/4 and (33):
T
[ (1avrat| + 9B/t )"t
to
T ) (1~ = 42/2 | (1= 2 N1/2
< [ (1913 2+ 1B1,2) ™"+ (19182+ 1B13,2)*)
0

+ DI @2/ @) (g4 [[B|[})2/ 2+ )

< DY = DIV ((Q/(T)/2(T — ) =5+2/2 4+ Q(T) ) + DI QL5 15/4(T)

fors > —1/2, where

, 25 4 1\2H1\1/(2543)
pith — (ZmaX(V21”2)( 2e6 ) ) ’
25 4 1\ (25+1)/ (2543)

D) _ (2] )2/ 25+ (W> .

Proof of (36.2). For s in the subinterval —1 <s<—1/2, we assume §=1+s and bound the
last sum in (39) by

@) [ (A + Roafd) + £ Leaf + Faff) ) ax
< (I L (A sl g 1]+ |l 1AF] )

5+2s 5+2s

+1F !2(\ff+s\%\fo|%+|f1+s|%|f3|%))

(see (18))
< G127 s (I911Bsze + 1B13.2.) + 202111911552 Bl 52 ), (41.1)

where the constant C, = C(1-25)/4C(25+5)/4 has been introduced. For —=5/2 <'s < —1, we
assume B = 0 and majorise the last sum in (39) as follows:

@) [ ((RP+ U0 + 2L A ) dx
< (Il e, (R, +181s) + 20 o ] 2 |8 s

< L1 s (19103 + 1BZ:) +2018° s [¥1 522 Bl s ). (41.2)

where C =C_q_ SC(25 +5)/4° Applying now (41.1) or (41.2) (depending on to which of the

two subintervals s belongs), we infer from (39)

~ ~ 2
18¥13 + 11213 < 202|913 2 + 22 [ z+4(C§)2<HVIIzs+5 + ||b||25+5)

< 22|92, + 272 |B|I2., + 4(C" onl ey @
< 20%||V]|1Z,, + 272 |b|12, o + 4(CL)? ||VH1 ||V\|o +|| % |l ||0 (42)

(by Holder’s inequality) for all the considered s in the interval —5/2 <'s < —1/2.

For —5/2 < s < —1/2, the last term (arising from the nonlinear terms in (4)) in the
r.h.s. of (42) becomes time-integrable upon raising to the power 45,,/2 = 2/(2s +5). For
—1 <5 < —1/2, the other two terms in the r.h.s. of (42), arising from the linear diffusivity
terms in (4), are time-integrable when raised to the higher power

ws42/2=1/(25s+3) >2/(25+5).
For -2 < s < —1,

V)22 + 72 IB]2, 2 < V319 N aLlh
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and therefore the terms describing diffusivity become integrable in time if raised to the
power 1/(s+2) > 2/(2s +5); for s < —2 they are finite at any time due to the energy
inequality. Thus, for s < —1/2 they do not affect the maximum power to which the Lh.s. of
(42) can be raised without losing the time integrability. We conclude in view of relations
(37), that for —5/2 < s < —1/2 the integrals

T Vs45/2/2 T
| (1av7ae + B /at|2) " Tar < [ (g I+ 1g 12"
0 0

remain bounded for all T > ty; it is easy to deduce explicit expressions for D )in (36.2)
from (42) and (29). Clearly, for s = —5/2 the integrals remain finite when raised to any
positive power.

Proof of (36.3). We assume s < —5/2 and 8 = 0. For p > 3/2, by the embedding theorem,

max|f(x)| <cpllfll,  forany fe Hy(T), (43)

where c;, is a constant that depends on p only. Applying this inequality to the last sum in
(39), we find its upper bound:

max| 5,1 @) [ ()2 + (5)%) dx+ 2max | (2m) 2 [ 1F5£5) dx
< coaa (12 s+ 12°1) (1915 + 1B13),

whereby (39) implies

~ =222
12412 + 11812 < D) = 2(max(v?, 7?) (1913 + I1BI3) + 2, (1913 + IB13)?)
(since the terms in the rh.s. of (39), related to diffusivity, have a negative norm index s + 1).

6.2. Bounds in the Wiener Algebra Norms

Proof of (36.4). Once again, we bound the maxima by the sums of absolute values of the
Fourier coefficients of the respective functions. By the Lemma and (40), for s > —2,

[(=V2)*/29V/at| + |(—V?)*/2 0B /ot|
_ ’ Z ‘n| gv —6®|n|+in-x

+’ Z |n| gb —0®|n|+in-x

n#0 n#0
2 b
(5B (g e

1/2 _
< V2(I&0012 2 + 18011 ) “Cosyps ® (s+2),

Thus, for s > —2, by (40), (34), Holder’s inequality, (35) upon changing s — s/2 42
and (33),

T S
/max <|(—v2)s/2aV/at| + |( VZ)S/ZBB/HH) +7/2 d
to T3

T ~

< [ (R132+ 181320+ + (1913 2+ 1B13,2)"72)
0
+ DD (|3 + [}/ -+~ (+2)/ (53 ) gy

< Ds(4) _ D§4’1><(Q,(T))1/(s+3)(T— to)(s+2)/(s+3) + Q/(T)) Qs/2+2( )

where D! = (2Cos41,05 max (v, 17))*s+7/2and D* = (V8Ca4126C) jp) %472, O
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6.3. Bounds for Time Derivatives Stemming from the Inequalities (32)

A priori bounds for higher-index norms of dV/dt and dB/dt can also be constructed
following the standard techniques by using (4) directly. We show here that fors > —1/2,
this yields inequalities similar to (36.1) and involving the same exponents &, (for which
the H;(T3) norms of the second derivatives are guaranteed to be time-integrable).

We scalar multiply (6.1) and (6.2) by [n|>*dV_,/dt and |n|*dB_,/dt, respectively,
and sum up the results over n # 0 (by virtue of (8)). Let us denote

& 1 for —1<s5<0;
ST 2t for s> 0.

Taking into account the orthogonality (9), the inequalities

2% [k [ Bpy i for —1<s<0;
Bh_ k|l < ~
P Back < kB sl for 520
(stemming from (15) where B = s and V. i and B, i replace v, i and b,_y, and from
(16)) and similar ones for V,_j, and the embedding theorem inequalities (10), we obtain
fors > —1

[0V/at[2 + |aB/at]2 = — 1 In>*2(vVy - dV_n/dt + 5By - dB_n/dt)

n

+i )P (= (Va sk Vie + (Buick)Bi)-dVon/dt
nk

+ ((ﬁn,kk)f/k — (\Afn,kk)ﬁk) 'dﬁfn/dt)

—_

7||8V/atHs +V2||V||s+2 + HaB/atHs + Ui ||B||s+2

~

+ G Y Inf (\avfn/aty (V- Vil + Bl [Bu)
nk

+ 1B/t (Bi [ Viid + Vil Bai)

(for s > 0, we have used the invariance of the last sum under the change of the index
k —>n—-k)

< Lav/at? 21V + 3198 /at + 1 B2,
+C1 oG ([aV/0t]|, (Vs 3/2 1V Il + [Blls+3/21B1)
+ [ /o, (I!B\Is+a/z|\V|\1 + IVllsx3/2]Bl1))

f||aV/at|| +1/2||V||s+2+ HaB/atH +177Bl13s

C///
(V113 32+ IBI2:5/2) (IVI+ [1BIIF), (44)

where C!/" = (2C£/255)2. Now the identity 1 — a5y p/as+5 = (p — q)&s+p, Young's inequal-
ity and the inequality (34) yield fors > —1/2

2 2\ g /2
([lovzat||; + [loB/at )™ +"" < (V2max(v,7))*+2(|[V[|Z:2 + B Z10) /2
+ (C sy / 0i3/2) 2 2 (| V12 50 + B2 5/0) %432/

+(Clasy2/2)" 2 2(||V]1F + [IB]17),

implying a bound of the form (36.1).
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7. From A Priori Bounds to Bounds for Weak Solutions

The goal of this section is to prove that a priori bounds (36) for the time derivatives of
the Fourier-Galerkin approximants of solutions to the problem (4) are also satisfied by the
derivatives of the weak solutions. In this section, the dependence of the approximants on
the resolution parameter N is shown explicitly.

7.1. Justification of the Bounds (32) for the Weak Solutions
It is instructive to recall how weak solutions to (4) are constructed.

Theorem 5. For any T > 0, there exists a subsequence N; — o0 such that, for all n, \Allef )

and ]ASE,Nj ) converge pointwise uniformly on [0, T] to continuous functions Vn and By, respec-
tively. The fields (5) are weak solutions to Equations (4). They belong to L,(T®) at any time and
are weakly continuous in time in Ly(T®); dV/0xy,dB/dxy € Lo(T3 x [0, T]) for all m. The
energy inequality

1 T 1, o ey
§(||V||%+ IBI3) +/O (vIVIT+7ylB|})dt <E = §(||V<”‘“)II%+ [BENY|Z)  (45)

is satisfied, as well as the bounds (32).

Proof. Coefficients of the truncated series (7) satisfy equations (6) which we consider on a

time interval 0 < t < T. Scalar multiplying (6.1) and (6.2) by 2\7(_1\111) and 2§(_I\I]1)

and summing up yields

, respectively,

T . .
\IV(N)II5+HB<N>H%+2/O WIVVIF + 7 BN |7) de= [ VOREN |5 4 BN <2E. (46)

Here, V(nitN) and B(itN) denote the initial fields upon projecting them onto the subspace in which
the Fourier-Galerkin approximant of the solution is sought. In view of this inequality, integrating
(6.1) over a time interval #; < t < t; such that 0 < #; < t; < T yields, for N > |n|:

~ ~ t2 ~ ~ ~ ~ ~
W) =V < [ PIRY E Y m9 — B B ar

~ N ~ ~
<|t; — to] (v\n|2 max |V£1 )\ + |n| max (HV(N)H% + HB<N)H%)>
H <t<ty

1 <t<t,
< |t; — ta| (v[n[*V2E + 2E|n|). (47.1)
Similarly, from (6.2) we obtain
BLY (t1) — B (12)] < [t1 — ta| (y|n|*V2E + Eln]). (47.2)

Inequality (46) implies that for each wave vector n coefficients VE,N), as well as BI(,N), are uniformly

(over the resolution N) bounded on the given time interval. For each wave vector n, by (47),
the functional sets {VEIN)|N > |n|} and {ﬁgN)‘N > |n|} are uniformly over N equicontinuous.
Applying the Arzela-Ascoli theorem and the diagonal process, we can extract a subsequence N, ;i — 00

such that, for any n, the approximants \Allej ) uniformly on [0, T] converge to a continuous in time
limit function V,, and similarly ]ABI(INj ) — Bn. Now (5) are weak solutions to (4).

They must satisfy integral identities obtained by scalar multiplying (4.1) and (4.2) by arbitrary
smooth space-periodic solenoidal test vector fields fy and fg, respectively, and integrating by parts
over the cylinder T3 x [0, T] so that the test fields only would be differentiated in the integrand. These
identities can be proven by the standard arguments, taking the limit N; — oo in (6) and recalling that

convergence V;N/ ) 4 Vand BS‘Nf ) By, is uniform in time and the embedding Hy (T?) — Ly(T®) is

compact. We do not provide a detailed proof here.
The equality (46) does not necessarily hold for weak solutions to (4), but it implies the inequality
(45). To observe this, we consider partial sums truncated at a certain level M < N.

T
T (VP4 BYVR) w2 [ % mPviV B ?) de < 26,
In|<M O |nj<m
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In the limit N; — oo for the chosen subsequence, this inequality takes the form
Y (Va2 + [Ba]? +z/ Y InP(v|Val + 5[Baf?) dt < 2E.
[nj<M In|<M

Since the latter inequality holds true for all truncation parameter values M, we obtain (45), whereby
V(x,t),B(x,t) € Ly(T®) at any time and dV/dx,,, 9B/ 9x,, belong to Ly (T2 x [0, T]).

In order to establish weak continuity of V(x, t) in time at time £, it suffices to show that, given a
field a € Ly(T®), we can find 7(f,a) > 0 such that

—’/ (t+1)— ())-adx‘

is below any given threshold. We split

Z ael™* 4 a’,
In|<M
By (47.1),
() <P T (Valt+7) - a4 | [ V(D) - V(D) -]
Iw=M
<t(2m) Y (v[n*V2E + E[n|)[a_n| + 2(27)?||a||o V2E.
In=M

On increasing M, ||a’||p becomes sufficiently small and for this M the first term is made sufficiently
small by choosing an appropriate T. Weak continuity of B is established along the same lines.

Like the energy inequality, (32) can be proven for the weak solution by passing to the limit
N; — oo in the a priori inequalities (32) for the approximants, where the norms of the approximants
are replaced by the respective sums over wave vectors for |n| < M. In the case of (32.3), we apply
this procedure to the stronger inequality, where sums of absolute values of the Fourier coefficients of
the respective terms replace the maxima in the Lh.s. O

Furthermore, suppose V and B belong to Hs(T?) at time t = #; for some s such that
1/2 < s < 1. Then (13), (19) and (11) imply that, for t < to + t.(fp) and any p > s,

[V + BN < (v]2 + [b]J2) ma nf2(7-)e-2r It
< np(t —to;to) = qs(t — o) ((p —5)/ (eo(t — 1)) )?P9) (48)
(the second argument in 1, reflects that g involves norms of the solution at t = t;), where
E(to) = (I V(to)[IZ + IIB(t0) 1) >V /cl >0 (49)
(cf. (20)). It is legitimate to pass to the limit N; — oo to obtain

V][5 + B3 < mp(t —to;to) for to <t < to+ (ko). (50)

7.2. A Bound for ||02V(N)/0t2||s and ||0?B(N)/ 982 |s for s < —7/2
We may try to apply a similar reasoning to establish bounds (36) for time derivatives
of a weak solution to (4). By (36.3), for each wave vector n, the derivatives dV / dt and

/ dt are uniformly (over the resolution parameter N) bounded on [0, T]. We could
apply the Arzela—Ascoli theorem, if we showed that for each wave vector n the functional

sets {d\AfﬁlN)/ dt} and {dﬁgN)/ dt} are uniformly (over N > |n|) equicontinuous. We need,
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therefore, bounds for second time derivatives of the approximants. Differentiating (6) in
time yields

vy 2d dV(N) g (g0 Vi
= —v|n| Vi +(Ven)
dr? 7o (( ) k k dt
dﬁfﬁ) S(N (N dﬁgN)
-(— k-n)Bf{ ' — (B ) ), (51.1)
a2B{N) dB( ) E,N ks v, 9B
=1 )y ( x BV 4+ V! T)' (51.2)

The r.h.s. of (51) involve first derivatives of the Fourier coefficients. Their bounds in
the space H_1(T?) fit best our goals. We obtain from (44):

1oV N/t 12, +[|oB™N) /0ty < C” (VY 3+ BM 3+ (VN I+ BNV |1)°72), - (52)

where C” depends only on the parameters of the problem (the diffusivities v and #7) and
the initial data V(init) and B(init),

Bounds for the norms [|02V(N)/9£2||s and ||9*B(N)/9£2| s of any index are suitable to
establish equicontinuity for a fixed wave vector n. We choose for simplicity s < —7/2
because this provides an opportunity to employ the embedding theorem inequality (43).
We scalar multiply (51.1) and (51.2) by |n|25d2V(N /dt? and |n|25d2B ) /de?, respectively,
use the inequality 2|n||k| > |n — k| valid for |n| > 1 and |k| > 1, sum up the results over
n # 0 and obtain

I N2 2 & %l el )
a2 s ot? 2dt s+1 ot llst1
N) aviM dB™ | -
<4 L AL n¢02|n_k|(! d‘;“\l U 1)
25 (N) < H(N)
a5 PR ) e (T 9 )
< P e (|25 v+ | )
2 N
T ol o (et T sl LT

(by (43)) and thus by (52),
d
[PV IN/02 2 + [2BN/02 2 + S (vIDVO/atR, + aBN a2, )
2
§20c252<H8V<N)/8tH 1+H8B(N)/8tH 1)(||v<N>||%+||B<N>|§)
<202, C" (VB + BN 3)* + (IVO |+ [BOV2)2). (53)
> —5—2 1 1 1 1 :

We observe that the r.h.s. of (53) involves powers of the sum |[V(N)||2 + || B(N)||2 that
are too high (larger than 1) to guarantee the time integrability of the r.h.s. (apparently,
this also happens for any larger s). Thus, the quadratic nonlinearity in (4) prevents us
from demonstrating, by using (53) directly, that the derivatives dVl(IN)/ dt and dB;N)/ dt are
uniformly (over the resolution parameter N) equicontinuous on [0, T] for a given T > 0.
Nevertheless, a subtler reasoning provides an opportunity to establish the desired result
by using the bound (53) for times when || V||; + ||B||; is finite. We show this in Section 7.4.
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7.3. The Singularity Set of Solutions to Equations of Magnetohydrodynamics

It was established in [1,17] that there exists an open set of times such that the Hy, (T3)
norms of weak solutions to the Navier-Stokes equation are finite and continuous for all
m > 1, and the complement has the Lebesgue measure zero provided that the initial
condition belongs to H;(T?). We apply now the approach of [17] to the equations of
magnetohydrodynamics (4).

We have shown that if ||V||s + ||B||s is finite for some s > 1/2 at a certain time ¢ = f;,
then for tg < t < to + t.(fo) (see (49)) the solution consists of space-analytic vector fields.

Definition 1. For s > 1/2, an open time interval tg < t < t1 such that 0 < tyg < t; < Tis
called an Hg-regularity interval for a solution to (4), if on this interval V(x, t) and B(x, t) belong to
H;(T3) and depend continuously on time in the norm || - ||s. The open interval is called a maximal
Hg-regularity interval, if no larger Hg-regularity interval including (to,t1) exists in [0, T for
this solution.

Definition 2. Suppose V and B belong to Hs(T®) at a time t = to for some s > 1/2. The open
time interval ty < t < to+ t.(ty) is called the time interval of quaranteed space analyticity.
An open interval is called a maximal interval of space analyticity, if there does not exist in [0, T|
any larger open interval on which this solution is space-analytic at any time, including (to, t1).

Theorem 6. Suppose VMit) and B belong to Hy(T?) for some s > 1/2. We focus on the
solution for t < T. Let O be the intersection of (0, T) with the union of all intervals of guaranteed
space analyticity of the solution, such that their left ends t satisfy 0 < t < T.

i.  Theset O is open. The Lebesgue measure of the complement [0, T|\ O is zero.

ii.  Forany p > 1/2, maximal Hy-regularity intervals coincide with maximal intervals of
space analyticity.

iii. ~ Each maximal Hy-regularity interval is also a maximal interval of Hzo-regularity of the
transformed solutions ¥ and b (see (21) and (22)) to the auxiliary problem (24).

Proof. By virtue of the energy inequality (45), the set
S ={te[0,T]||IV[s+|B|s = coforalls >1/2}

has the Lebesgue measure zero. Any time ¢ in the complement [0, T]\ S can serve as the
left end of an open interval €(t) of guaranteed space analyticity (by (50), €(t) has an
empty intersection with &). The union of open intervals & = Uyco \s(0(t) N (0,T)) is
open. Any connected component of & is a maximal interval of space analyticity of the
solution. The set ([0, T]\&)\ & consists of end points of such intervals and hence it is at
most countable (since each interval contains a rational point) and has the Lebesgue measure
zero. This proves i.

Let us consider a maximal Hy-regularity interval (,7) for p > 1/2. Any point in
(1,7) is the left end of an interval of guaranteed space analyticity. These intervals cover
the entire interval (I, 7). If, otherwise, f € (I,r) is not covered, then t.(t;) < f — t; for any
monotonically increasing sequence t; — f and a contradiction arises: by the time continuity
of || V||, and [[BJ|, on (I, 7), the norms have a uniform upper bound in a sufficiently short
closed interval [f — €, f] and thus the lengths £, (t) of the intervals of guaranteed space
analyticity with the left ends t € [f — ¢, f] have a uniform positive bound from below. Thus,
(1,7) belongs to a maximal interval of space analyticity.

In order to prove the converse, we note that at each point of a maximal interval of
space analyticity, which we now denote (I, 7), || V||, and |B||, are finite for any p > 1/2 and
hence the solution belongs to H,(T®). Thus, to establish that (I, 7) belongs to a maximal
Hp-regularity interval, it suffices to show that the norms are continuous in time.

To perform this, we first show that ||V||, and ||B||, are uniformly bounded for any
p > Oona closed subinterval [/ + €, r — €], where € > 0is sufficiently small. By construction,
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the maximal interval (I, r) is covered by open intervals & (t) of guaranteed space analyticity.
Hence, we can choose a finite coverage {0 (t) | 1 < k < K} of [l + €, 7 — €]. The function

~ . . 1/I’lp(i‘—tk;l‘k), be <t < b+ te(tg),
p(t = b ti) _{ 0, E<t, or t >t +t(t)

is continuous on R (see (48)). Consequently, max<x<x 7ip(t — t; t;) is also continuous on
R and hence it admits its minimum on the closed interval [ 4 €, 7 — €]|. The minimum is
strictly positive since its vanishing at a certain f would indicate that this f is outside of each
of the K intervals & (t;) covering the subinterval. Therefore,

IVIZ+ B2 <1/ max 7i,(t — ti; )
1<k<K

is uniformly bounded on [l + €, — €.

Second, for any s we establish the time continuity of the solution in the norm | - ||s on

(N;) (Nj)

the same closed subinterval. Due to convergence of the Fourier harmonics V,, /’ and By

on [0, T] when N; — oo, (47) implies
Va(t1) = Va(t2)] < ClnPlty —f2],  [Ba(t1) = Ba(t2)| < Cln*|ty —ta].
Thus,
IV(t) = V(£2) |2 + 1B(t1) — B(t2) 3
S S 2 a 5 2
= ¥ (Va(t) = Va(t2)[* + [Ba(t1) = Ba(t2)|*) Inf

n#0
< ‘tl - t2|6 Z ( |vn<tl)| + |vn(t2)| + |ﬁn(t1)| =+ |§n(t2)’)|n|2s+2
n#0
A /2 N 9 = 20| asrg\l/2
< |t t2|C(8n§On| ) l+€r§a§>§_e(§)(|vn<t>| + [Ba(8)*) Inf*=+*)
< e(8y n )" v B
< |t —to] (n%m ) max (19(0) fasea + [BO0)sa),

which proves the continuity on [l + €, — €], since ||V| 2544 and ||B||2s44 are uniformly
bounded on this closed interval. Since € > 0 is arbitrary, the solutions are continuous in
time in the norm || - ||s on the entire maximal interval of space analyticity.

If for some s > 1/2, the sum ||V () ||s+||B(t)||s is bounded for a sequence of t; — 7,
then by (49) the intervals of guaranteed space analyticity beginning at ¢, have lengths
bounded from below by a positive constant. This contradicts with the assumption that
(1,r) is a maximal interval of space analyticity of the solutions. Therefore, in every such
interval lim_,, | V()||s + ||B(t)||s = co. Statement ii is proven.

The transformation (21) of the Fourier coefficients introduced in Section 4 can be
implemented for any § > 0, provided that the Fourier series is an analytic function that has
a strictly positive size of the region of analyticity. In particular, such a transformation and
construction of the transformed series ¥ and b (22) is possible everywhere in &, the resultant
fields ¥ and b belonging to Hz,,(T?). Consequently, any connected component of & is also
a maximal interval of Hj ,-regularity of the solutions ¥ and b to the auxiliary problem (24).
The proof of the Theorem is completed. [

7.4. Application of (53) for Proving the Bounds (36) for Weak Solutions

We focus on the subsequence of the Fourier-Galerkin approximants VN, BN the

limit of which is the weak solution at hand to (4) on a certain time interval 0 < t < T.
N; N;

We prove here equicontinuity of the time derivatives dV,(1 ])/ dt and dB,(1 ! )/ dt for each
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wave vector n on any closed subinterval of a maximal interval of space analyticity. In order
to carry over the bounds (36) to weak solutions, we apply a technical Theorem 7.

Theorem 7. Let | < t < r be a maximal interval of space analyticity and € an arbitrary number
satisfying 0 < € < (r —1)/3. The Fourier—Galerkin approximants VN, BN that tend to
the weak solution to (4) under consideration converge in Hy(T®) uniformly on the time interval
I+2¢ <t < r—eand thus |[VN) |y and |BN) ||y are uniformly (over N;) bounded on
this interval.

Proof. Let us consider a closed subinterval [ + € < t < r — € of a maximal interval | < t < r
of space analyticity, where 0 < [ < r < T. We exploit compactness of the embedding
H,(T3) C Hy(T®). By Theorem 6,

= V|2 + ||B]|? ) 54
s l+eI£ta§ere(” 5+ IIB][5) < oo (54)

Since the maximum m, is finite,

E |n|2(\'€’n|2 + |1A3n|2) < ¢ foralltinthesubinterval | +¢ <t <r—¢, (55.1)
In|>(my/0)1/2

where { > 0 is arbitrary. The numbers

142
MY = [V 3+ B0 ) ar
I+e€

do not exceed the r.h.s. of (32.1) for s = 2, which is independent of N. Thus, for each N,
there exists a point ¢ = 7(N) in the interval [ + € < t < + 2¢, at which

VN2 + BV < M, = sup (MEN)/G)“Q’,
N

whereby
Y POV BNV < at b =W, (55.2)
[n|>(M,/)1/2

Due to the weak convergence vIN) 5 v and BM) — B for N; — oo, there exists M3
such that

y n2([Va — VO P2 4 By — BY12) < ¢ everywhere on [0, T] (55.3)
[n|<(max(my,My)/{)1/?
for all N; > Mj3. Together, inequalities (55) imply that, given { > 0 and € > 0, we can find
Ni) in the interval I + € < t < |+ 2¢ at which the norms of
the discrepanciesu = V — v ), a =B — B are controlled:

forany N; > Mz a point t = 7l

[ullf + ] <3¢ (56)

It is convenient to split the discrepancies in two parts:

~ in. SN in. S in
u= Zunemx — u< +u>’ u< — Z (Vn _V1(1 J))em x’ u> — Z Vnem x/,
n

a= Zﬁnei“"‘ =a“+a’, a< = Z (Bn — By
n
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Fourier coefficients of u= and a“ satisfy the following equations for |n| < N;:

dd O ~ PN BN ~ ~ ~
OT: =—vn[%n —1) Za((Gn-ick) Vi + (VoK) Tk — (i k)i
Kk
— (a1 k) Bk — (By_1-k)ak + (An_1-k)ak), (57.1)
da SO PP o N
% = — y7|n|%a, +in x Z (U X Bpok + Vi X @q_k — U X ap_). (57.2)
K

By (55.1), for the fixed ¢ and ¢, discrepancies for N; > max(Ms, (m2/{ )1/2) satisfy
the inequality

|u” |3+ []a”||? < ¢ for all t in the subinterval [ +e <t <r—e. (58)

Scalar multiplying (57.1) and (57.2) for |n| < N; by |[n[*t_p and |n|?3a_4, respectively, and

summing up the results yields

1d,

2 dt
<Cip (||“<H2(||u||1||V||3/2+ lall1IBll3/2) +l1a~[l2(lull1[Bll3/2+ HaHlHVH3/2)> (59.1)
+Cip (||u<||2(||11||3/2(||V||11L [ull1) + llalls/2 (1Bl + [lall1))

+ lla[l2([lulls /2 (Bl + llall1) + llalls 2 (VI + Hulh)))- (59.2)

w13+ a= () + vllu=|Z +nlla<|3

We bound the two sums in the r.h.s. of this inequality on the subinterval [ +¢ <t <r—e
separately. The first one, (59.1), by Young’s inequality, does not exceed

(w3 +nlla<I3) /4 + (C1,2)* (/v +1/p)([ullf + 2l (IVI52+ IBI3/2)
< luSIB +nlasl3)/4+ (C ) mapa(1/v +1/0) (Jus 1§ + [a<|F +2) (60.1)

((54) for s = 3/2 and (58) have been used). The second sum, (59.2), has an upper bound
! < < 2 2 2 2 1/2
a(lla + 1a<12) (1l 2 + al,2) (VI + lall)? + (1Bl + lall)?)
<Cp(luslz+lla<]l2) <2(||u< l2llu=ll1+ lla=[l2[la~ [1+ v/m2{)
1/2
< ([l [+ | [+ g+ )

1/2 1/4 1/4
<2] 5 (o= 3 + 1a<13)" (= 3 + 2= 13)"* (1113 + 1a=IB)"* + (mag) )

1/2
x (< |3+ lla<[3+ g+ my)
. 4
m1n(1/,17) <112 <12 108(C£/2) <12 <12 <12 <12
< \r0J A7’
< =5 (w34 1a%18) + oy (e 15-+ ) (oI + fla=
4(C) )2 (maQ) /2
2
Fghmy)? 2 (S| 4 a4 g ) (60.2)

min(v,7)

(Young's inequality has been again employed).
The two bounds (60) give rise to a differential inequality for ¢ = [[u<||3 + ||a<||? of the form
dy 3 2
dar < Az 4 Ay + A1y + Aop. (61)
The constant A in (61) is proportional to ¢!/2 and, for small {, the three remaining constants A; are
O(1). Initial conditions (56) at t = T(M) are O(). Thus, (61) implies an O(Z!/?) upper bound for
on the O(1)-long time interval 7(Nj) <t < r—e. Consequently, y — 0 uniformly on the interval
I+2e <t <r—einthelimit Nj — coand { — 0, and hence [[u||{ + [[a[|} = ¢+ [[u” |} +[[a”[|§ — 0.
This proves the Theorem. [
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We are now in a position to achieve the goal of this section.
Theorem 8. Time derivatives of weak solutions to the problem (4) obey the bounds (36).
Proof. Evidently,
| (vllav/anR,, + nllaB ™t )
< 20][pv/at| |2V 062 + 2]|9BE e o [ 087
1 1
<3 192vIN) /a2 |2 + S llP B 702||2 + 202(]avNyat |2, + 207 0Bt .

Hence, (53) for s < —7/2 and (52) imply

92V N /a2 |2 + HBZB(NJ‘)/atZHZ
<4max(v?, %) C" (|[VN[f + BN |13 + (v ||1+HB JI7)°2)
+4oc,sfzc”((||V<N/>II1+IIBN/>H1) + (VNI + BN [7)7%) < M,

where M’ denotes the finite on the interval I + 2¢ < t < r — € supremum (over N]-) of the
middle part of this inequality. Therefore,

() ()

anj / anj — ary 2

=) - =3 VM -],
5 (N)) 5 (N))

By~ BB ()] < In| VAT ")

for any ' and t" belonging to this interval, whereby, for each wave vector n, dV / dt

and clBEl I/dt are equicontinuous on this time interval. Relying on the Arzela—Ascoli
theorem and employing the diagonal process, we construct a subsequence N; — oo such

that, for any n, the derivatives dV / dt and dB / dt converge uruformly on the interval
I +2¢ <t < r— e to some continuous limit functions ¢y (t) and ¢B(t), respectively. Taking
the limit N; — oo in the identities

) o - 35Ny N N
/ Vo~ g — 90 (1) - 9™ (1 420, / B 4 = 8™ (r) — BN (1 1 20),
I+2¢ dt I+2¢ df
we obtain the relations
¢th Va(T) = Va(l +2¢), ¢Bdt Bn(7) — Ba(l +2¢),

1+2¢e 14+2¢

which are equivalent to gbrY = dvn /dt and ¢n dﬁn /dt.

Thus, for a subsequence of N; — oo, dV / df and dB / dt converge on the interval
I4+2e <t<r—etothe derlvatlves of the harmonics, dV,/dt and dB,/dt, respectively.
Recalling that € > 0 is an arbitrary sufficiently small number and considering now the
problem for a sequence €, — 0, we establish the convergence

N4 5 dVa/dt,  dBY/dt — dBy/dt

on the entire Hj-regularity interval I < t < r for a subsequence of N; — oo (for which
we keep the notation N;) by employing the diagonal process on increasing the interval.
Since the Hj-regularity intervals are countable, employing the diagonal process again, we
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can distill a subsequence for which the convergence occurs on the entire set &, i.e., almost
everywhere in the interval 0 <t < T.

In order to show that the a priori bounds (36) hold true for the weak solutions of the
problem (4), we note that the Fourier series for approximants truncated at a level M satisfy
(36), e.g., (36.3) implies

Y nf2(|dVydef + [aBLde ) < D).
mf<M

Convergence of the time derivatives of individual harmonics almost everywhere being
proven, this inequality, for a fixed M, holds upon taking the limit N; — oo and then the
inequality (36.3) for the weak solutions follows almost everywhere since M is arbitrary.
Similarly, (36.1) implies

T Xs42/2
(X mPe(ava”rae* + [y /)" ar < D,
[n|<M

For a fixed M, the sum in the integrand converges almost everywhere for t < T to the
analogous sum for the Fourier coefficients of the weak solution. Hence, by Fatou’s lemma
(see, e.g., [49]), the inequality holds true in the limit N]- — o0. Truncations being arbitrary,
(36.1) follows for weak solutions as desired when M — co. The inequality (36.2) is proven
by a similar argument.

Finally, we use a similar approach to demonstrate the Wiener norm bound (36.4) for
weak solutions. We have proven a stronger a priori bound

T _(N. (N o
/ (X nf*(|dVSY/dt| + \dBlef)/dt\)) "% 4t < ¥
Jtg n

which implies(36.4). In view of convergence V( ) — Vy and B( /) — Bn when N;j — oo,
by Fatou’s lemma this inequality holds true for truncated sums of the Fourier coeff1c1ents
of weak solutions. Letting the truncation parameter tend to infinity proves (36.4) for the
weak solution. [

8. Concluding Remarks

The similarity of the quadratic nonlinearity of the terms describing advection and
the Lorentz force in the Navier-Stokes equation and in the magnetic induction equation
has enabled us to carry over the results of the theory of the Navier-Stokes equation to
the system of equations of magnetohydrodynamics. Namely, by applying the techniques
of [13], we have shown that the MHD solutions instantaneously acquire space analyticity,
provided initially they have a minimum regularity of Hs(T?) for s > 1/2 (see Section 3).
Next, following [25] we have introduced the auxiliary problem (24) for vector fields, the
Fourier series of which involve transformed coefficients (Section 4.1). Solutions to the
auxiliary problem admit the energy-like a priory bound (29) (Section 4.2) that yields an
integral bound for the Hj/»(T?) norm of these solutions. The inverse of this norm serves
as a lower bound for the size of the spatial analyticity region of the solutions V, B to the
original MHD problem; we thus obtain a simple proof that V, B are space-analytic vector
fields at almost all times. Relying on space analyticity, we derive a priori bounds for Hs(T?)
norms of the solutions for arbitrary indices s (Section 5.1) that are direct generalisations of
the bounds derived in [17] in the hydrodynamic setup. An integral a priori bound for the
maximum of the flow velocity in the cube of periodicity was also presented ibid. We have
expanded this result by constructing bounds for the Wiener algebra norms (i.e., the sums
of absolute values of the Fourier coefficients) of the fields (—V?)*/2V and (—V?2)*/2B for
arbitrary s > —1/2 (Section 5.2). It is notable that three independent approaches (the
original one of [17], the one relying on ladder inequalities [18,19,21,22] and the present one)
yield the same exponents &y, in (3), suggesting that these values are optimal and cannot
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be improved unless construction of the bounds is based on new, significantly different
ideas. Finally, we have derived similar a priori integral bounds for the Sobolev space and
Wiener algebra norms (Section 6) of dV/dt and dB/dt. Proving that the a priori bounds
hold for the time derivatives of the weak MHD solutions (Section 7) is considerably more
involved than those for the solution itself. This has required identifying the structure of the
singularity set of the solution in the time domain and proving convergence in the H; (T?)
norm of the relevant subsequence of the Fourier-Galerkin approximants at times in the
complement to this set (Section 7.3). We have thus demonstrated that the bounds for the
Sobolev and Wiener norms of the MHD solutions and their time derivatives stem from
their space analyticity.

According to the present paradigm, the action of viscosity and diffusivity hampers the
development of small-scale structures generated by the nonlinearity. Thus, bounding the
diffusive and nonlinear terms jointly may be expected to result in more accurate bounds
for a larger “number of derivatives” (i.e., for a higher-index Sobolev space norm). We have
not achieved this when estimating the time derivatives of the MHD solutions: our bounds
for the nonlinear advective terms are for the same index norms, as for the dissipative
terms. Indirectly, this confirms that cancellation may be possible with the sum residing in a
higher-index Sobolev space; our estimations are then too conservative.

w(€)

Figure 1. A sketch of behaviour of w(e) when two distinct limit weak solutions to the MHD equations
coexist (see the text). Points (g j, w(ej)) (blue dots) tend to (0, wy) (black dots) for j — oo, k =1,2.
The sequence (&3, w(e3,j)) — (0, w) (red dots), where w(e3 ;) = w, exists due to continuity of w(e)
in ¢ for ¢ > 0. Dashed lines: boundaries of the regions |w — wy| < 7.

The singularity set of a weak solution is the zero-measure complement to the union
0 of its maximal intervals of space analyticity or the union of maximal H,-regularity
intervals for any p > 1/2. If for a certain initial condition weak MHD solutions are non-
unique, then their branching occurs only at times belonging to the singularity set. It is
unclear, whether any specific techniques for constructing weak solutions favour some
of them that are in some sense “better”. We may mention the prominent difference in
construction of weak solutions using their Galerkin approximations (as we have done
in this paper) or regularising the original system of MHD Equation (4). Regularisation
can be achieved by introducing the hyperdiffusivity terms —e(—V?2)PV and —¢(—V?)’B
into the rh.s. of (4.1) and (4.2), respectively, for e > 0 and p > 5/4 (see [40]). Like in the
hydrodynamic setup, it is easy to show that the regularised solutions V,(x,t), B¢(x, t) are
strong and unique, they depend continuously on ¢, and any sequence ¢; — 0 contains a
subsequence, for which the regularised solutions weakly converge to a weak solution to
the original problem (4). Either such a limit weak solution is unique (i.e., a weak limit exists
for ¢ — 0) or a continuum of weak solutions exist for the initial condition at hand. (This
stems from the fact that ¢ is not a discrete parameter: If the limit is non-unique, then there
exist vector fields fy and fg such that w(e) = V¢(x,t) - fv + B:(x, {) - fg tends for some
t > 0 to distinct limits w(sk,]-) — wg, w1 < wy for two sequences €j — 0,j >00,k=1,2
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(see Figure 1). By suitably rarefying the two sequences, we can render them intermittent:
€1 < € < €141 < €741 for all j. Let w satisfy w1 + v < w < wy — 7 for a sufficiently
small ¢ > 0. Due to the weak convergence, |w(ey ;) — wi| < 7 for a sufficiently large | and
all j > J for both sequences ¢ ;. Continuity in ¢ > 0 implies that there exists a sequence
€3 — Osuchthate;; <ej3; <é;and

ZU(€3,]') =w. (62)

There exists a subsequence of €3 ; for which the regularised solutions converge to a weak
solution such that (62) evidently holds. Since the open interval (wy,w;) consists of a
continuum of such w, a continuum of weak solutions exist for the initial condition at hand.)
While simple changes in the proofs of Theorems 2 and 3 suffice to specialise them for the
solutions obtained by the hyperdiffusive regularisation of the problem (4), our proof cannot
be modified straightforwardly to justify the bounds of Theorem 4 for time derivatives of
these weak solutions.
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