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Abstract: We propose a new multi-moment numerical solver for hyperbolic conservation laws by
using the alternating polynomial reconstruction approach. Unlike existing multi-moment schemes,
our approach updates model variables by implementing two polynomial reconstructions alternately.
First, Hermite interpolation reconstructs the solution within the cell by matching the point-based
variables containing both physical values and their spatial derivatives. Then the reconstructed
solution is updated by the Euler method. Second, we solve a constrained least-squares problem to
correct the updated solution to preserve the conservation laws. Our method enjoys the advantages of
a compact numerical stencil and high-order accuracy. Fourier analysis also indicates that our method
allows a larger CFL number compared with many other high-order schemes. By adding a proper
amount of artificial viscosity, shock waves and other discontinuities can also be computed accurately
and sharply without solving an approximated Riemann problem.

Keywords: hyperbolic conservation laws; multi-moment; high-order accuracy; local reconstruction

1. Introduction

In this paper, we aim to solve the hyperbolic conservation law

∂u
∂t

+
∂ f (u)

∂x
= 0, (1)

where u and f (u) can be either scalars or vectors.
The classical higher-order numerical schemes such as the finite difference (FD) and

the finite volume (FV) frameworks usually involve only one degree of freedom (DOF) per
cell. That means to achieve the kth order discretization of the first-order spatial derivative,
a stencil of at least k + 1 cells is required. The compactness of a scheme can help simplify
the polynomial interpolation in unstructured meshes and reduce communication costs
between computational nodes on modern supercomputers. In this paper, the “compact” is
used specifically for numerical schemes with a minimal stencil, which excludes so-called
Padê schemes [1,2] since its approximation of the derivative involves solving a diagonal
system of the full difference stencil.

A natural thought for the design of a compact high-order scheme is involving more
than one DOF per cell so as to construct higher-order polynomials under the same stencil
width. A series of multi-moment schemes is developed based on this idea. The constrained
interpolation profile (CIP) scheme [3,4], which uses the semi-Lagrangian method to advance
in time, individually updates the physical variable and its derivatives on each cell by
the governing equations in different forms. The interpolated differential operator (IDO)
method [5] is similar to CIP but uses an explicit time-advancing approach. For the IDO
method, a stencil containing three adjacent cells suffices to approximate the first-order
spatial derivative with fifth-order accuracy in one dimension, which makes it possible to
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obtain comparably accurate results with spectral methods in direct numerical simulation [6].
For IDO, updating the derivative-value variables induces the problem of computing the
time derivative of ux, which involves fuu. However, for the system of conservation laws,
fuu has a fairly complicated form and can be difficult to compute. Goodrich et al. proposed
a similar Hermite method [7] on staggered grids.

Neither CIP nor IDO are conservative schemes, which means they are not ideal for
shock-capturing problems and long-term simulations. To address the non-conservativeness,
so-called CIP-conservative semi-Lagrangian (CIP-CSL) schemes [8,9] and the IDO scheme
in conservative form (IDO-CF) [10,11] add the cell-averaged value as an extra independent
model variable to evolve. The cell-averaged variable is advanced by the flux-form conser-
vation law and is hence exactly conserved, while other kinds of variables are updated using
the differential form of conservation laws. However, these conservative CIP algorithms
need to find polynomials that match cell-averaged variables across cells, which can be
time-consuming when encountered with non-uniform meshes. A framework termed the
multi-moment finite volume method (MM-FVM) has been proposed on the basis of CIP-
CSL. Compared with CIP-CSL, MM-FVM can construct the high-order interpolation on a
local base and is more flexible when treating unstructured grids, as shown in [12]. Nonethe-
less, MM-FVM uses the semi-Lagrangian method in the time integration of point-based
variables, which is difficult to implement in the multi-dimensional case.

Another class of high-order conservative schemes based on local flux reconstructions
also uses a compact stencil and has become increasingly attractive in recent decades. Exam-
ples include the well-known discontinuous Galerkin (DG) [13–15], spectral volume [16,17],
and spectral difference [18] methods and, more recently, the flux reconstruction/correction
via procedure (FR/CPR) method [19,20]. These methods evolve k DOFs in each cell for a kth
order spatial accuracy (in one dimension) and compute the numerical flux on cell bound-
aries to represent the interaction between adjacent cells. Thus, polynomial interpolation
across cells is not needed, which makes these methods compact and flexible in handling
unstructured meshes. The multi-moment constrained finite volume (MCV) method pro-
posed by Ii and Xiao [21] can be viewed as a combination of CIP and the flux reconstruction
approach. The MCV method introduces high-order spatial derivatives of numerical flux
and reconstructs the local flux function more directly. MCV is generalized as multi-moment
constrained flux reconstruction (MMC-FR) [22]. However, the nonlinear aliasing phe-
nomenon [23,24] in treating nonlinear flux functions, which causes instability and accuracy
loss, is one typical demerit for these methods based on local flux reconstruction.

This paper presents a novel conservative multi-moment approach termed the AltPoly
method, which uses the alternating polynomial reconstruction as the time integration
method. AltPoly divides the computational domain into cells and adopts point-based
and cell-averaged values as model variables. The point-based variables including the
physical variable and its spatial derivatives are updated together, which is different from
the conventional multi-moment methods that update different types of model variables
according to governing equations in different forms. AltPoly then solves a constrained
least-squares problem to reconstruct the solution within the cell and update the model
variables, which preserves conservativeness exactly. Solving Riemann problems on cell
boundaries is not needed. Furthermore, AltPoly can also handle non-uniform meshes in
one dimension efficiently with the aid of the coordinate transform.

The remainder of this paper is organized as follows: Section 2 describes the formu-
lation of AltPoly and constructs artificial viscosity for discontinuous problems. Section 3
studies the accuracy and stability of AltPoly by Fourier analysis. Section 4 validates the nu-
merical convergence rate and capability of solving some widely used benchmark problems
involving both the scalar equation and Euler systems in 1D. Finally, a short summary in
Section 5 ends this paper.
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2. Formulation of AltPoly Method

This section gives the formulation of the AltPoly method for a one-dimensional
conservation law. For concreteness and ease of comprehension, we only present the
detailed formulation for AltPoly with 2 point-value variables and one extra cell-averaged
variable per cell, which is termed AltPoly-3. As for the general AltPoly-r with r model
variables within a cell, the formulation is similar to AltPoly-3 and is hence briefly illustrated
in Appendix A.

To begin with, we first introduce some notation. The bold font lower-case letter
denotes a column vector, e.g., a, u. The transpose a is denoted by aT. ek denotes the kth
standard unit vector in a space in proper dimensions. [ak]

m
k=1 denotes a column vector

in the form of [a1, . . . , am]
T. Bold font capital letters such as A denote matrices. The

submatrix of A constructed from rows {r1, r2, . . . , rk} and columns {c1, c2, . . . , cl} is denoted
as A[r1, r2, . . . , rk; c1, c2, . . . , cl ]. ‖a‖ denotes the 2-norm of the vector a, while ‖A‖ for a
matrix A is defined by ‖A‖ = supx 6=0

‖Ax‖
‖x‖ .

2.1. Spatial Discretization and Model Variables

Suppose the spatial domain [xmin, xmax] is divided into N non-overlapping cells,
among which the j-th cell is Ij := [xj−1/2, xj+1/2], j = 1, . . . , N. It should be noted that the
cells do not necessarily have a uniform length. In the j-th element, we consider computing
the time integration of three model variables: u, ux at the middle point of the element,
and additionally the element-integrated value ūj =

1
∆xj

∫ xj+1/2
xj−1/2

u dx.

2.2. Updating Model Variables

Denote the model variables at time level t = t0 as
{

u(t0)
j , (ux)

(t0)
j , ū(t0)

j
}

. This part

illustrates the procedure to obtain
{

u(t1)
j , (ux)

(t1)
j , ū(t1)

j
}

with t1 = t0 + ∆t, where ∆t is the
time step length. In a nutshell, this procedure consists of 3 steps:

1. Hermite interpolation across cells using point-based variables;
2. Computing solution values on selected solution points based on reconstructed poly-

nomials and updating solution values and cell-averaged variables via the Euler
forward method;

3. Reconstructing the solution polynomial that matches updated solution values under
the constraint of cell-averaged variables to preserve conservativeness.

Details are presented in the following and algorithm illustrations are presented in
Figure 1 for convenience of illustration.

2.2.1. Step 1: Hermite Interpolation across Cells

In the first step, we find the interpolation polynomial hj− 1
2
(x) on the interval [xj−1, xj]

that matches u(t0)
j−1, (ux)

(t0)
j−1, u(t0)

j , (ux)
(t0)
j as shown in Figure 1a. This step does not involve

cell-averaged variables ū(t0)
j . This interpolation polynomial is of the third order since there

are 4 conditions in total. Before constructing hj− 1
2
(x), we introduce a local coordinate

s(x) :=
x− 1

2 (xj + xj+1)

xj+1 − xj
∈ [−1, 1] (2)

for x ∈ [xj, xj+1]as is usually done in the finite element method [25]. The local coordinate
can unify the interpolation templates so as to reduce the computational cost. The polyno-
mial hj− 1

2
(x) on the local coordinate s is denoted by h̃j− 1

2
(s) := hj− 1

2
(x(s)). Notice that ∂h̃

∂s

and ∂h
∂x can be connected by the following rule:
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∂h̃(s)
∂s

=
∂h(x(s))

∂s
=

∂h
∂x

∂x
∂s

= (xj − xj−1)
∂h
∂x

. (3)

Then the coefficients of h̃j− 1
2
(s) = ∑3

i=0 aisi can be determined by the following system:

h̃j− 1
2
(−1) =

3

∑
k=0

(−1)kak = u(t0)
j−1,

∂h̃j− 1
2
(−1)

∂s
=

3

∑
k=0

(−1)k−1kak = (xj − xj−1) · (ux)
(t0)
j−1,

h̃j− 1
2
(1) =

3

∑
k=0

ak = u(t0)
j ,

∂h̃j− 1
2
(1)

∂s
=

3

∑
k=0

kak = (xj − xj−1) · (ux)
(t0)
j .

(4)

The matrix form is
Ha = d, (5)

where

H =


1 −1 1 −1
0 1 −2 3
1 1 1 1
0 1 2 3

, a =


a0
a1
a2
a3

, and d =


u(t0)

j−1

(xj − xj−1) · (ux)
(t0)
j−1

u(t0)
j

(xj − xj−1) · (ux)
(t0)
j

. (6)

In practice, the inverse of H is computed and stored in advance so as to reduce the
computation cost in solving (4).

xj−1 xj xj+1xj− 1
2

xj+ 1
2

{
u(t0)

j−1 , (ux)
(t0)
j−1

}
{

u(t0)
j , (ux)

(t0)
j
}

{
u(t0)

j+1 , (ux)
(t0)
j+1

}

(a) Step 1

xjxj− 1
2

xj+ 1
2

u(t1)
j,4

u(t1)
j,3

u(t1)
j,2

u(t1)
j,1

u(t0)
j,1

u(t0)
j,2

u(t0)
j,3

u(t0)
j,4

ū(t1)
j

ū(t0)
j

(b) Step 2

xjxj− 1
2

xj+ 1
2

{u(t1)
j , (ux)

(t1)
j } u(t1)

j,4
u(t1)

j,3

u(t1)
j,2

u(t1)
j,1

ū(t1)
j

(c) Step 3

Figure 1. Algorithm illustration.
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2.2.2. Step 2: Updating Solution Values on Solution Points

Based on Step 1, we can now approximate and update the solution in cell Ij us-
ing polynomials hj− 1

2
(x) and hj+ 1

2
(x). For AltPoly-3, four symmetric solution points

xj,k = xj + ξk∆xj/2, k = 1, . . . , 4 on Ij are needed in this step with ξk ∈ [−1, 1]. In this
paper, we choose ξ1 = −1, ξ2 = −1 + σ, ξ3 = 1− σ and ξ4 = 1 as solution points with
σ = 0.03. To update the solution values on these solution points, we need to compute

uj,k =

hj− 1
2
(xj,k), if xj,k ≤ xj;

hj+ 1
2
(xj,k), if xj,k > xj,

and (ux)j,k =


∂

∂x
hj− 1

2
(xj,k), if xj,k ≤ xj;

∂

∂x
hj+ 1

2
(xj,k), if xj,k > xj,

(7)

to approximate u and ux. For convenience, we transfer the solution points ξk into local
coordinate s(ξk) for k = 1 . . . , 4. Combining the conservative law (1) we can then compute
u(t1)

j,k by the Euler forward method:

u(t1)
j,k = uj,k − fu(uj,k) · (ux)j,k∆t, (8)

where the function fu stands for ∂ f (u)
∂u .

The cell-averaged variable ū(t1)
j is updated by the flux form of the conservation law:

ū(t1)
j = ū(t0)

j −
f (uj+ 1

2
)− f (uj− 1

2
)

∆xj
∆t. (9)

where uj+ 1
2

is the function value at the cell boundary xj+1/2 computed by

uj+1/2 = hj+ 1
2
(xj+ 1

2
) = h̃j+ 1

2
(s(xj+ 1

2
)). (10)

When the computing grid is uniform, (10) is simply uj+1/2 = h̃j+ 1
2
(0).

Figure 1b describes this step.

Remark 1. The Euler time integration used for updating solution values on solution points is
simple and easy to implement. However, the semi-Lagrangian time integration scheme [26] might
be robust with a larger time step.

2.2.3. Step 3: Updating Model Variables

The cell-averaged variable ūj has been updated (9). As for the point-value model vari-
ables, the four updated solution values on Ij suffice to reconstruct a Lagrange interpolation

polynomial lj(x), so as to obtain the updated model variables u(t1)
j and (ux)

(t1)
j . However,

such a direct routine may cause the mismatch of uj and ūj.
Similar to Step 1, we introduce a local coordinate ξ ∈ [−1, 1]:

ξ(x) :=
x− xj

∆xj
, for x ∈ Ij. (11)

Let l̃j(ξ) = ∑3
i=0 biξ

i be lj(x) under the local coordinate ξ. Then all conditions for l̃j(ξ)
are listed as

l̃j(ξk) =
3

∑
i=0

biξ
i = u(t1)

j,k , for k = 1, . . . , 4, (12)

1
2

∫ 1

−1
l̃j(ξ)dξ = b0 +

1
3

b2 = ū(t1)
j . (13)
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This is an over-determined linear system since it contains 5 conditions and 4 unknowns.
However, (13) must hold for ensuring the conservation law. In other words, we need to
find the optimal coefficients {bi}i=1,...,4 to fit (12) under the constraint (13). This is a typical
constrained least-squares problem. To solve this, we rewrite the constraint (13) as

b2 = 3(ū(t1)
j − b0), (14)

and plug it into (12). Then the constrained least-squares problem is cast into the standard
least-squares problem as

Ab = y, (15)

where

A =

 1− ξ2
1 ξ1 ξ3

1
...

...
...

1− ξ2
4 ξ4 ξ3

4

, b =

 b0
b1
b3

, y =


u(t1)

j,1
...

u(t1)
j,4

− 3ū(t1)
j

 ξ2
1
...

ξ2
4

.

Then the solution of (15) is

b = A†y = (AT A)−1 ATy, (16)

where A† is the generalized inverse or the Moore–Penrose inverse [27] of non-square
matrix A.

From the polynomial expression of lj(x), we can now retrieve the point-value model
variables for the next time level:

u(t1)
j = lj(xj) = l̃j(0) = b0, (17)

(ux)
(t1)
j =

∂lj(xj)

∂x
=

∂l̃j(0)
∂ξ

∂ξ

∂x
=

b1

∆xj
. (18)

So far, (9), (17) and (18) together give the updating rule for all model variables.
This polynomial reconstruction of lj(x) based on solving constrained squares prob-

lem (13) can be efficiently implemented if we compute and store A† in advance.

2.3. Runge–Kutta Time Integration

Up to this point, we have only presented AltPoly using the Euler forward method,
which is merely of first-order temporal accuracy. Since the presented AltPoly is not in the
semi-discretization form, the Runge–Kutta algorithm cannot be directly applied for AltPoly.
Therefore, a slight modification of the Runge–Kutta algorithm is adopted here.

To proceed, we introduce the following notation. Let u be a compounded list of all
model variables, and its j-th entry is a vector uj =

{
uj, (ux)j, ūj

}
. Denote the result of

AltPoly upon u after one step with length ∆t of the temporal forward Euler method by
E(u, ∆t) and the corresponding increment part is denoted by

D(u, ∆t) = E(u, ∆t)− u. (19)

Then, one time step of the Runge–Kutta procedure for AltPoly is

R(u(t0)) = u(t0) +
1
6
(k1 + 2k2 + 2k3 + k4), (20)

where
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k1 = D(u(t0), ∆t), (21a)

k2 = D(u(t0) +
1
2

k1,
1
2

∆t), (21b)

k3 = D(u(t0) +
1
2

k2,
1
2

∆t), (21c)

k4 = D(u(t0) + k3, ∆t). (21d)

2.4. Artificial Viscosity

To tackle problems that involve discontinuities such as shocks and contact discontinu-
ities, we add artificial viscosities to the proposed method. The critical step is depicting the
smoothness of a cell and determining whether the discontinuity exists. Our shock sensor
borrows the idea from the sub-cell shock capturing for DG [28].

Within each cell, we define the following truncated cell average based on the moments
for AltPoly-r:

utrun
j =

k̃

∑
k=0

1
2k + 1

(
∂2ku
∂x2k

)
j

(∆xj)
2k, (22)

where 2k̃ is the largest even number smaller than r. It can be seen that ūtrun
j utilizes the

even-order partial differential point-value moments and is an approximation of ūj with

the error of magnitude O
(
∆x2k̃+2

j
)
. Therefore, we expect that the solution is continuous

and then ūtrun
j is close enough to ūj, and hence declaim that a discontinuity exists in Ij if∣∣∣ūj − ūtrun

j

∣∣∣ exceeds some threshold. Based on this, the following smoothness indicator
is defined:

θj =

∣∣∣ūj − ūtrun
j

∣∣∣
urange + ε

, (23)

where urange = umax − umin and the parameter ε = 10−10 is added to avoid dividing
zero. This smoothness indicator has a simple form and can be calculated directly from
the model variables. Then the amount of viscosity at xj+ 1

2
is calculated by the following

smooth function,

νj =


0, if ϑj ∈ (−∞, ϑ);
ν̃
2

(
1 + sin

π(ϑj−ϑ)

κ−ϑ

)
if ϑj ∈ [ϑ, κ];

ν̃ if ϑj ∈ (κ,+∞),

(24)

where ϑj = log10 θj, the parameters ϑ ∼ (∆xj)
2k̃, ν̃ = ∆xj/4, and κ is large enough to

maintain a sharp but smooth shock profile.
So far, we have obtained the viscosity at the middle of each cell. Next we use the linear

interpolation to construct the viscosity function between the middle points of two adjacent
cells. Then, to solve the problem with this viscosity function, one only needs to replace
f (u) with fvis(u, ux) = f (u)− ν(x)ux, and modify (8) and (9), respectively.

3. Fourier (von Neumann) Analysis

This part gives the Fourier analyses of stability and accuracy for AltPoly in solving a
linear advection equation. We only give a detailed analysis for AltPoly-3 for concreteness.
AltPoly-r with other choices of r can be analyzed following a similar routine.

3.1. Formulation of the Amplification Matrix

Consider the linear scalar equation

ut + ux = 0. (25)

Suppose the computational domain is [0, L] with a uniform mesh spacing ∆x. The ini-
tial condition is periodic: uinit(x) = eiwx/∆x where i denotes the imaginary unit, and
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w = 2πk∆x/L ∈ [0, π) is the scaled wavenumber. The initial values of model variables on
the cell Ij = [xj−1/2, xj+1/2] and its neighbor cells are given by

uj = eiwxj/∆x, uj±1 = e±iwuj, (26a)

(ux)j =
iw
∆x

eiwxj/∆x, (ux)j±1 = e±iw(ux)j, (26b)

ūj =
1

iw
(eiw/2 − e−iw/2)eiwxj/∆x, ūj±1 = e±iwūj. (26c)

The discrete Fourier transform of the series
{

uj
}

is{
ûk′
∣∣ûk′ = ∑

j
uje
−2πik′xj/L}.

ûk′ is not 0 only when k′ = k under the given initial condition. Hence, we only need to
consider the Fourier coefficient ûk and denote it as û in the following text for simplicity. ûx
and ˆ̄u are defined similarly for series

{
(ux)j

}
and

{
ūj
}

.
The key procedure in our analysis is rewriting the AltPoly-3 formulation in Section 2

into the matrix form:
û(t1) = Sû(t0), (27)

where û(t0) is defined as û(t0) = [û(t0), ûx
(t0)∆x/2, ˆ̄u(t0)

j ], and S denotes the amplification

matrix connecting û(t1) at the next time level t = t1 = t0 + ∆t.
The coefficient vector aj±1/2 of the reconstructed polynomial h̃(s) in Step 1 of AltPoly-3 is

aj±1/2 = H−1dj±1/2 = H−1Pû(t0)eiwxj/∆x (28)

where dj−1/2 =
[
u(t0)

j−1, (ux)
(t0)
j−1∆x/2, u(t0)

j , (ux)
(t0)
j ∆x/2

]T
,

P =


e−iw 0 0

0 e−iw 0
1 0 0
0 1 0

. (29)

According to (26), we have dj+1/2 = eiwdj−1/2 and aj+1/2 = eiwaj−1/2 according to
the periodicity of the spatial profile. According to (10), the function values at the cell
boundaries xj±1/2 are

uj−1/2(0) = eT
1 aj−1/2, uj+1/2(0) = eiwuj−1/2, (30)

where ek denotes the k-th standard unit vector.
Now we turn to Step 2 of AltPoly-3. As the solution points xj,1 and xj,2 are in the

domain of hj−1/2(x), we transfer them into the local coordinate in [xj−1, xj]. Let s1 =
s(xj,1) = 0 and s2 = s(xj,2) = α. Then we can derive[

uj,1
uj,2

]
=

[
1 s1 s2

1 s3
1

1 s2 s2
2 s3

2

]
aj− 1

2
,
[
(ux)j,1
(ux)j,2

]
=

2
∆x

[
0 1 2s1 3s2

1
0 1 2s2 3s2

2

]
aj− 1

2
. (31)

Similarly, the variable value and first spatial derivatives on solution points xj,3, xj,4
can be computed by[

uj,3
uj,4

]
=

[
1 s3 s2

3 s3
3

1 s4 s2
4 s3

4

]
aj+ 1

2
,
[
(ux)j,3
(ux)j,4

]
=

2
∆x

[
0 1 2s3 3s2

3
0 1 2s4 3s2

4

]
aj+ 1

2
, (32)

where s3 = −α and s4 = 0.
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Combining aj+1/2 = eiwaj−1/2, the updating of solution values on solution points can
be expressed in the following matrix form:

[uj,m]1≤m≤4 = W Baj−1/2, [(ux)j,m]1≤m≤4 =
2

∆x
WCaj−1/2 (33)

where the items of B, C are, respectively:

Bm,n = sn−1
m , Cm,n = (n− 1)sn−2

m for 1 ≤ m, n ≤ 4, (34)

with 00 defined as 1, and W is a diagonal matrix with 1, 1, eiw, eiw on the diagonal line.
Since fu = 1, the updated solution values here are computed by

[u(t1)
j,m ]4m=1 = (W B− 2cWC)aj− 1

2
, (35)

where the CFL number c = |∂u f (u)|∆t/∆x = ∆t/∆x for this linear problem.
As for Step 3, the updated cell average over the jth cell is

ū(t1)
j = ūj − c(uj+1/2 − uj−1/2) = ūj − c(eiw − 1)eT

1 aj−1/2. (36)

Solving a constrained least-squares problem we have

b = A†
(
[u(t1)

j,m ]1≤m≤4 − 3[ξ2
m]1≤m≤4 ū(∆t)

j

)
. (37)

From b we can easily obtain point-value variables of the next time level:

u(t1)
j = eT

1 b, (ux)
(t1)
j =

2
∆x

eT
2 b. (38)

Gathering (28), (30), (35), (37) and (38), we finally obtain the amplification matrix S
in (27):

S =

[eT
1

eT
2

]
A†((W B− 2cWC + 3cξ(eiw − 1)eT

1 )H−1P− 3ξeT
3 )
)

eT
3 − c(eiw − 1)eT

1 H−1P

, (39)

which is the basis for the accuracy and the stability analysis as follows.

3.2. Accuracy Analysis

At the beginning, we assumed AltPoly-3 only had third-order spatial accuracy since all
reconstruction polynomials are of the fourth-order, which has third-order spatial accuracy
for first-order derivatives. Instead, however, we observed fourth-order spatial accuracy in
numerical tests. Analyzing only truncation error is not enough to explain this phenomenon.
We believe that the cell-averaged moment ūj and the constrained polynomial reconstruction
help improve the spatial accuracy.

The amplification matrix S can be divided into two parts,

S = S0 + cS1, (40)

where S0 and S1 are independent from c. Let û = [1, iw/2, 1
iw (e

iw/2 − e−iw/2)]. The
principal eigenvalue of S0 is 1 (see Appendix B for details). We denote the corresponding
eigenvector as ψ, namely

S0ψ = ψ, (41)

and we make the last items of ψ and û equal, namely ψ3 = 1
iw (e

iw/2 − e−iw/2).
With the assistance of Wolfram Mathematicar 12, we decompose the following terms

into Taylor series
ψ = û + ε1w4e1 +O(w5) (42)
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and
S1ψ = −iwψ + ε2w4e2 +O(w5), (43)

where the scalars ε1, ε2, and the vectors v1, v2 are independent with w.
Suppose we choose a proper c that ensures the stability, namely

∥∥Si
∥∥ ≤ M for i ∈ N

and some positive constant M. Divide the time domain [0, T] uniformly with step length
∆t and denote n = T/∆t. It is obvious that the exact solution at t = T for (53) with the
initial condition uinit(x) = eiwx/∆x is uexact = eiw(x−T)/∆x = e−incwuinit(x). Hence the error
of the numerical solution by AltPoly-3 is∥∥Snû− e−incwû

∥∥ =
∥∥Sn(û−ψ + ψ)− e−incw(û−ψ + ψ)

∥∥
≤
∥∥Snψ− e−incwψ

∥∥+ ∥∥Sn(û−ψ)
∥∥+ ∥∥e−incw(û−ψ)

∥∥
=
∥∥Snψ− e−incwψ

∥∥+O(w4). (44)

However,

Snψ = Sn−1((S0 + cS1)ψ) = Sn−1(S0ψ + cS1ψ)

= Sn−1
(

ψ− icwψ + ε2w4ce2 + cO(w5)
)

= Sn−1(e−icwψ +O((cw)2) + ε2w4ce2 + cO(w5))

= e−icwSn−1ψ + Sn−1O(c2w2) + cSn−1(ε2w4e2 +O(w5))

= . . .

= e−incwψ +
n

∑
k=1

e−i(n−k)cwSk−1O
(

c2w2
)
+ c

n

∑
k=1

e−i(n−k)cwSk−1
(

ε2e2w4 +O(w5)
)

(45)

According to the bound result (A16) in Appendix B,
∥∥∥Ske2

∥∥∥ ≤ µk
1 + (k− 1)cµk

2 +O(w)

with some positive constants µ1, µ2 ∈ (0, 1). Then one can deduce that

∥∥Snψ− e−incwψ
∥∥ ≤ n

∑
k=1

∥∥Sk−1∥∥O(c2w2) + c
n

∑
k=1

(
(µk

1 + (k− 1)cµk
2 +O(w))w4 +O(w5)

)
≤ nO(c2w2) + c

( µ1

1− µ1
+

cµ2
2

(1− µ2)2

)
O
(
w4)+ ncO(w5). (46)

Remember that w ∼ ∆x, c = ∆t/∆x, and n = T/∆t, then we have

nO(c2w2) =
T
∆t
O(∆t2) = O(∆t), (47a)

ncO(w5) =
T
∆t

∆t
∆x
O(∆x5) = O(∆x4), (47b)

cO(w4) =
∆t
∆x
O(∆x4) = O(∆t∆x3). (47c)

Combining (44)–(47), we can see that the error order of AltPoly-3 is∥∥Snû− e−incwu
∥∥ = O(∆t + ∆t∆x3 + ∆x4) (48)

To ensure stability, the order of magnitude of ∆t is usually not higher than that of ∆x,
namely c ∼ O(1). Therefore, the truncated error (48) can be simply reduced toO(∆t+∆x4).
That means AltPoly-3 using the Euler time scheme has fourth-order spatial accuracy and
first-order temporal accuracy.

When using RK4 as time integration strategy (20), the amplification matrix SRR4 for
this linear equation can be expressed as

SRK4 = I +
1
6
(K1 + 2K2 + 2K3 + K4), (49)
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where

K1 = (S− I), (50a)

K2 = (S− I)(I + K1/2), (50b)

K3 = (S− I)(I + K2/2), (50c)

K4 = (S− I)(I + K3). (50d)

Expanding SRK4, we have

SRK4 =
1

24
(

I + 8S + 6S2 + S4).
One can easily show that SRK4 has fifth-order truncated temporal accuracy and then

the total error becomes∥∥Sn
RK4u− e−incwu

∥∥ = O(∆t4 + ∆t∆x3 + ∆x4). (51)

3.3. Stability Analysis

To obtain stable time integration, the CFL number c should be carefully chosen such
that the magnitude of the principal eigenvalue of the amplification matrix is not greater
than 1 for all wavenumbers k. The principal eigenvalue of the amplification matrix SRK4
for AltPoly with various moments can be seen in Figure 2. It is remarkable that all schemes
have a fairly large range of c except for AltPoly-5. In particular, AltPoly-3, which has
fourth-order spatial accuracy, is stable even with c > 1, which is better than many other
existing explicit high-order schemes using a compact stencil. As more moments are used,
the stability condition becomes more stringent. For AltPoly-6, the tolerated CFL number
is approximately c ∈ [0.2, 0.4]. However, the maximum principal eigenvalue is around
1 + 10−2 when c ≤ 0.2 for AltPoly-6, which means short-term time integration can still
maintain stability.
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Figure 2. Contour plots of the principal eigenvalues of the amplification matrices of AltPoly schemes using fourth-order RK
time integration for the linear advection equation.

4. Numerical Results

In this part, we solve several types of one-dimensional hyperbolic law to illustrate the
performance of the proposed method. We choose the four-stage Runge–Kutta method (20)
for the time discretization.

For all numerical experiments, AltPoly-r with the moment number r varying from 3 to
6 are tested on uniform meshes. In addition, we check the accuracy of the proposed method
on non-uniform meshes. Non-uniform grids are generated by adding a 40% random
perturbation upon the element boundary of the uniform mesh. Specifically, suppose xj+1/2
and ∆x are separately the cell boundary and cell length for the uniform grid, then the
element boundary generated for the non-uniform grid is

x̃j+ 1
2
= xj+ 1

2
+ βζ j∆x, ζ j ∼ Unif(−1, 1), (52)

where ζ j are independently identically distributed random variables, Unif(−1, 1) denotes
the uniform distribution over [−1, 1], and β is the amount of perturbation, which is set as
0.2 in our experiments.

Special attention might be paid to specify the initial values of model variables. This is
trivial if the initial profile is analytically given. Otherwise, these unknowns can be specified
by implementing high-order interpolations and numerical integration.

Since the temporal accuracy is only fourth-order, we take ∆t ∼ (∆x)(2r−2)/4 for
AltPoly-r in the accuracy tests.

4.1. Linear Scalar Equation

In this subsection, we test the performance of AltPoly schemes on the following scalar
equation [29]:

ut + ux = 0. (53)

We first check the accuracy of the proposed method through grid refinement tests.
The initial condition is given as u(x, 0) = sin(πx) with a periodical boundary condition
on x ∈ [0, 2π). The exact solution is u(x, t) = sin(x − t). We refine the grid and record
numerical errors after one period (t = 2).

Two typical norms for errors are adopted here, i.e., E1 = 1
N ∑N

j=1

∣∣∣uj − utrue
j

∣∣∣, and

E∞ = max1≤j≤N

∣∣∣uj − utrue
j

∣∣∣. The errors and the convergence rates are presented in Table 1.
We can see that the spatial accuracy order is 2r− 2 for the AltPoly-r scheme, which matches
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our theoretical analysis in Section 3. Additionally, the order of accuracy is also maintained
well for non-uniform meshes.

Table 1. Accuracy test for linear hyperbolic law with initial condition u(x, 0) = sin(x) at t = 2π.

r N L1 Error Order L∞ Error Order L1 Error Order L∞ Error Order

Uniform Grid Non-Uniform Grid

3

10 1.79 × 10−3 − 2.76 × 10−3 − 2.10 × 10−3 − 3.33 × 10−3 −

20 1.15 × 10−4 3.95 1.82 × 10−4 3.93 1.32 × 10−4 4.00 2.09 × 10−4 3.99

30 2.31 × 10−5 3.96 3.63 × 10−5 3.97 2.68 × 10−5 3.93 4.25 × 10−5 3.93

40 7.35 × 10−6 3.98 1.16 × 10−5 3.97 8.46 × 10−6 4.00 1.35 × 10−5 3.99

60 1.46 × 10−6 3.99 2.29 × 10−6 3.99 1.68 × 10−6 3.98 2.67 × 10−6 3.99

4

10 1.32 × 10−4 − 2.05 × 10−4 − 1.33 × 10−4 − 2.06 × 10−4 −

20 2.06 × 10−6 6.01 3.22 × 10−6 5.99 2.06 × 10−6 6.01 3.23 × 10−6 5.99

30 1.81 × 10−7 5.99 2.84 × 10−7 5.98 1.82 × 10−7 5.99 2.86 × 10−7 5.98

40 3.23 × 10−8 6.00 5.06 × 10−8 6.00 3.24 × 10−8 6.00 5.08 × 10−8 6.00

60 2.84 × 10−9 6.00 4.45 × 10−9 5.99 2.85 × 10−9 5.99 4.48 × 10−9 5.99

5

10 1.92 × 10−4 − 2.97 × 10−4 − 1.92 × 10−4 − 2.98 × 10−4 −

20 7.60 × 10−7 7.98 1.18 × 10−6 7.97 7.60 × 10−7 7.98 1.18 × 10−6 7.98

30 2.95 × 10−8 8.01 4.63 × 10−8 8.00 2.95 × 10−8 8.01 4.63 × 10−8 7.99

40 2.97 × 10−9 7.99 4.64 × 10−9 7.99 2.96 × 10−9 7.99 4.65 × 10−9 7.99

60 1.16 × 10−10 8.00 1.81 × 10−10 8.00 1.16 × 10−10 8.00 1.82 × 10−10 8.00

6

20 1.57 × 10−6 − 2.46 × 10−6 − 1.57 × 10−6 − 2.46 × 10−6 −

30 2.73 × 10−8 10.00 4.28 × 10−8 9.99 2.73 × 10−8 9.99 4.28 × 10−8 9.99

40 1.54 × 10−9 9.99 2.41 × 10−9 9.99 1.54 × 10−9 9.99 2.41 × 10−9 9.99

60 2.49 × 10−11 10.17 3.96 × 10−11 10.14 2.28 × 10−11 10.39 3.82 × 10−11 10.22

Next, we use a complicated initial condition from [30] to evaluate the ability of the
proposed method in handling both continuous and discontinuous profiles. This initial
condition contains four piece-wise functions:

u(x, 0) =



1
6 (G(x, β, z− δ) + G(x, β, z + δ) + 4G(x, β, z)) for x ∈ [−0.8,−0.6],
1 for x ∈ [−0.4,−0.2],
1− |10(x− 0.1)|, for x ∈ [0, 0.2],
1
6 (F(x, α, α− δ) + F(x, α, α + δ) + 4F(x, α, a)) for x ∈ [0.4, 0.6],
0, otherwise,

(54)

where the involved functions are

G(x, β, z) = exp(−β(x− z)2))

and
F(x, α, a) =

√
max(1− α2(x− a)2, 0),

with the constants set as α = 10, a = 0.5, z = −0.7, δ = 0.005, and β = log 2/(36δ2). As for
the initial profile, we suggest using the routine used in the discontinuous Galerkin method.

A smaller time step can help reduce the oscillations around discontinuities. We take
∆t = 0.3∆x, 0.1∆x, 0.075∆x, and 0.01∆x, respectively, for AltPoly-3, AltPoly-4, AltPoly-5,
and AltPoly-6.

The computational domain is divided into 200 elements. We first compute this problem
without adding artificial viscosity, for which higher-order methods can produce better
results in both continuous and discontinuous regions. The results at t = 2 are illustrated
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in Figures 3 and 4 separately. Specifically, AltPoly-3 and AltPoly-4 generate significant
oscillations around x = −0.4 and x = −0.2. These oscillations are reasonable as our method
is based on the smoothness assumption and the polynomial does have its limitations
on presenting discontinuities. However, it is interesting that spurious oscillations are
significantly reduced and the transitions around strong discontinuities are quite sharp for
AltPoly-5 and AltPoly-6. After adding a proper amount of artificial viscosity, the proposed
method is able to smooth the artificial oscillations for AltPoly method of various orders
while not losing high accuracy in the smooth regions.

x

u

numerical

true

(a) AltPoly-3

x

u

numerical

true

(b) AltPoly-4

x

u

numerical

true

(c) AltPoly-5

x

u

numerical

true

(d) AltPoly-6

Figure 3. Numerical results of the advection of a complicated profile at t = 2 via AltPoly without artificial viscosity using
N = 200 cells.
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(d) AltPoly-6

Figure 4. Numerical results of the advection of a complicated profile at t = 2 via AltPoly with artificial viscosity using
N = 200 cells.

4.2. Nonlinear Burgers Equation

This subsection considers the 1D inviscid Burgers equation

ut +
(u2

2

)
x
= 0, (55)

The initial condition is u(x, 0) = 0.5 + sin(x) for x ∈ [0, 2π) with the periodical
boundary condition.

Although the initial profile is smooth, shock waves exist when t is large enough
since the flux function is nonlinear. To evaluate the order of accuracy, we calculate the
numerical solution before the shock wave occurs and compute the errors in respect of
grid refinement. Table 2 lists the errors at t = 0.5 when the solution is still smooth. The
numerical convergence rate results are consistent with our theoretical analysis.

The numerical results for the Burgers equation at t = 1.5 are shown in Figure 5
when a shock has already emerged. To handle the shock discontinuity, we add a proper
amount of artificial viscosity according to Section 2.4. We can see that our schemes sup-
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press the oscillations well around the discontinuity while still maintaining a sharp and
accurate profile.

Table 2. Accuracy test for Burgers equation with u(x, 0) = 0.5 + sin(x) at t = 0.5.

r N L1 Error Order L∞ Error Order L1 Error Order L∞ Error Order

Uniform Grid Non-Uniform Grid

3

20 8.41 × 10−6 − 1.32 × 10−5 − 2.01 × 10−5 − 5.46 × 10−5 −

30 1.59 × 10−6 4.10 2.50 × 10−6 4.11 2.99 × 10−6 4.70 9.14 × 10−6 4.41

40 4.93 × 10−7 4.08 7.71 × 10−7 4.08 8.52 × 10−7 4.37 2.54 × 10−6 4.45

60 9.52 × 10−8 4.05 1.50 × 10−7 4.04 1.90 × 10−7 3.70 5.71 × 10−7 3.68

80 2.98 × 10−8 4.03 4.69 × 10−8 4.03 5.39 × 10−8 4.38 1.74 × 10−7 4.12

4

20 1.98 × 10−5 − 1.21 × 10−4 − 2.11 × 10−5 − 1.29 × 10−4 −

30 2.18 × 10−6 5.43 1.83 × 10−5 4.66 2.13 × 10−6 5.65 1.73 × 10−5 4.96

40 4.24 × 10−7 5.70 3.60 × 10−6 5.65 4.16 × 10−7 5.68 3.53 × 10−6 5.52

60 3.58 × 10−8 6.09 2.94 × 10−7 6.17 3.65 × 10−8 6.00 2.99 × 10−7 6.09

80 6.38 × 10−9 5.99 5.41 × 10−8 5.89 6.54 × 10−9 5.97 5.28 × 10−8 6.03

5

20 8.48 × 10−5 − 5.80 × 10−4 − 9.04 × 10−5 − 5.55 × 10−4 −

30 4.07 × 10−6 7.49 3.04 × 10−5 7.28 3.90 × 10−6 7.75 3.01 × 10−5 7.19

40 4.41 × 10−7 7.73 3.40 × 10−6 7.61 4.39 × 10−7 7.60 3.38 × 10−6 7.60

60 1.83 × 10−8 7.84 1.42 × 10−7 7.83 1.84 × 10−8 7.82 1.43 × 10−7 7.80

80 1.81 × 10−9 8.04 1.49 × 10−8 7.85 1.81 × 10−9 8.06 1.48 × 10−8 7.87

6

20 4.54 × 10−4 − 2.74 × 10−3 − 4.68 × 10−4 − 2.73 × 10−3 −

30 1.30 × 10−5 8.77 1.00 × 10−4 8.15 1.29 × 10−5 8.86 1.00 × 10−4 8.15

40 7.54 × 10−7 9.89 5.87 × 10−6 9.87 7.62 × 10−7 9.83 5.85 × 10−6 9.87

60 1.32 × 10−8 9.98 1.02 × 10−7 9.99 1.32 × 10−8 10.00 1.03 × 10−7 9.97

80 7.38 × 10−10 10.03 6.09 × 10−9 9.81 7.67 × 10−10 9.90 6.09 × 10−9 9.82
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Figure 5. Cont.
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Figure 5. Numerical results of the Burgers equation at t = 1.5 with N = 80 cells and ∆t = 0.15∆x.

4.3. Euler Equations

We then use our scheme to solve the one-dimensional Euler system:

∂

∂t

 ρ
m
e

+
∂

∂x

 m
ρu2 + p
eu + pu

 = 0, (56)

where ρ refers to the density, u the velocity, m = ρu the momentum, e the total energy, and
p the pressure:

p = (γ− 1)
(

e− 1
2

ρu2
)

(57)

with γ = 1.4 for a perfect dry gas. Just like in the scalar case, we introduce point-valued
and cell-averaged moments for each variable. The cell-averaged moments are updated by
the flux-form Equation (56). In Step 2 of AltPoly, solution values on auxiliary points are
updated using the following non-conservative form equations:

ρt = −mx, (58)

mt = −(mxu + mux + px), (59)

et = −(exu + eux + pxu + pux), (60)

where

ux =
∂

∂x

(
m
ρ

)
=

mx

ρ
− mρx

ρ2 ,

px = (γ− 1)
(
ex −

1
2
(mxu + mux)

)
.

Neither characteristic decomposition nor Riemann solver are needed here.
We first check the order of accuracy for this nonlinear system by simulating advection

of the density perturbation. The initial conditions are ρ(x0) = 1 + 0.2 sin x, v(x, 0) = 1, and
p(x, 0) = 1 for x ∈ [0, 2π) with the periodic boundary condition. The exact solution is a
traveling wave: ρ(x, t) = 1 + 0.2 sin(x− t), v(x, t) = 1 and p(x, t) = 1. The error results of
the density are listed in Table 3 and a satisfactory convergence rate is obtained.



Mathematics 2021, 9, 1885 18 of 24

Table 3. Accuracy test for the one-dimensional Euler equation with u(x, 0) = 0.5 + sin(x) at t = 2π.

r N L1 Error Order L∞ Error Order L1 Error Order L∞ Error Order

Uniform Grid Non-Uniform Grid

3

10 3.26 × 10−4 − 5.03 × 10−4 − 3.88 × 10−4 − 6.22 × 10−4 −

15 6.09 × 10−5 4.13 9.55 × 10−5 4.10 7.22 × 10−5 4.15 1.16 × 10−4 4.15

20 1.84 × 10−5 4.16 2.85 × 10−5 4.21 2.21 × 10−5 4.12 3.50 × 10−5 4.16

30 3.45 × 10−6 4.13 5.41 × 10−6 4.09 4.32 × 10−6 4.03 6.93 × 10−6 3.99

40 1.07 × 10−6 4.09 1.67 × 10−6 4.09 1.30 × 10−6 4.18 2.09 × 10−6 4.17

4

10 1.12 × 10−5 − 1.72 × 10−5 − 1.20 × 10−5 − 2.40 × 10−5 −

15 9.81 × 10−7 6.00 1.54 × 10−6 5.96 9.91 × 10−7 6.16 1.55 × 10−6 6.75

20 1.76 × 10−7 5.97 2.76 × 10−7 5.98 1.78 × 10−7 5.97 2.79 × 10−7 5.97

30 1.55 × 10−8 5.99 2.43 × 10−8 5.99 1.57 × 10−8 5.99 2.47 × 10−8 5.98

40 2.77 × 10−9 5.99 4.35 × 10−9 5.98 2.81 × 10−9 5.98 4.42 × 10−9 5.98

5

10 2.55 × 10−7 − 3.94 × 10−7 − 2.55 × 10−7 − 3.96 × 10−7 −

15 1.02 × 10−8 7.95 1.59 × 10−8 7.91 1.02 × 10−8 7.95 1.59 × 10−8 7.92

20 1.02 × 10−9 7.99 1.58 × 10−9 8.03 1.02 × 10−9 7.98 1.58 × 10−9 8.03

30 3.96 × 10−11 8.01 6.22 × 10−11 7.98 3.97 × 10−11 8.01 6.24 × 10−11 7.98

40 3.98 × 10−12 7.98 6.49 × 10−12 7.85 3.99 × 10−12 7.99 6.47 × 10−12 7.88

6

10 5.08 × 10−7 − 7.85 × 10−7 − 5.08 × 10−7 − 7.85 × 10−7 −

12 8.35 × 10−8 9.90 1.27 × 10−7 9.98 8.35 × 10−8 9.90 1.27 × 10−7 9.98

15 8.90 × 10−9 10.03 1.40 × 10−8 9.91 8.91 × 10−9 10.03 1.40 × 10−8 9.90

20 5.03 × 10−10 9.99 7.90 × 10−10 9.98 1.44 × 10−9 10.01 2.25 × 10−9 10.02

24 8.34 × 10−11 9.86 1.33 × 10−10 9.77 5.02 × 10−10 9.97 7.92 × 10−10 9.90

We then consider the classical shock tube problem, which is described by Euler
equations with the following Riemann-type initial distribution:

(ρ, v, p) =
{

(ρL, vL, pL), 0 ≤ x ≤ 0.5;
(ρR, vR, pR), 0.5 < x ≤ 1,

x ∈ [0, 1]. (61)

Two initial conditions are tested here. The first one is known as Sod’s problem and
the initial condition is defined as

(ρL, vL, pL) = (1, 0, 1), (ρR, vR, pR) = (0.125, 0, 0.1). (62)

The second one is Lax’s problem, which starts from the following initial condition:

(ρL, vL, pL) = (0.445, 0.698, 3.258), (ρR, vR, pR) = (0.5, 0, 0.571). (63)

We compute these shock tube problems with 100 cells using the AltPoly schemes
equipped with the artificial viscosity. Generally, a certain degree of spurious oscillation
still exists but is in a tolerant range. As shown in Figure 6 and 7, all AltPoly schemes can
depict shocks sharply using only one or two cells. The higher-order schemes (AltPoly-5
and AltPoly-6) capture the contact discontinuities with only one or two cells, while more
cells are needed for the lower-order AltPoly schemes.

To show the accuracy of our smoothness indicator (23), Figure 8 illustrates the cells
where the artificial viscosity takes effect on the x-t plane. Generally, the number of cells
recognized as discontinuous for lower-order schemes is significantly smaller than that
for higher-order schemes. This might be because lower-order schemes have a larger
dissipation and the smoothness indicator is less accurate than that of high-order schemes.
It is remarkable that the artificial viscosity vanishes in most areas and is in effect only
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around the shock wave. The contact discontinuity does not trigger the smoothness indicator
as it can be smoothed by the artificial viscosity in the first few time steps.
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Figure 6. Numerical results of Sod’s problem at t = 0.13 with N = 100 cells. ∆t = 0.2∆x, 0.15∆x, 0.1∆x, and 0.05∆x,
respectively.
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Figure 7. Numerical results of Lax’s problem at t = 0.13 with N = 100 cells. ∆t = 0.1∆x, 0.1∆x, 0.08∆x, and 0.05∆x,
respectively.
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Figure 8. The cells where artificial viscosity takes effect in Lax’s problem.

5. Conclusions

We have presented a high-order conservative solver termed AltPoly for 1D hyperbolic
conservation laws. This method can be categorized as a multi-moment scheme since it
adopts both point-values at the middle of the cell and cell-averaged values as the model
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variables. AltPoly updates the model variables via alternately implementing two poly-
nomial reconstructions. The point-based variables are used to reconstruct a high-order
accurate approximation of the solution via Hermite interpolation. The cell-averaged vari-
ables updated by the flux-form equations serve as the constraint to guarantee numerical
conservation. The solution within a cell is corrected by polynomial reconstruction via solv-
ing a constrained least-squares problem. In other words, our method directly reconstructs
the solution to maintain the conservation, which is different from existing schemes based on
the local flux reconstruction. Fourier analysis shows the accuracy and the admissible range
of the CFL number for the linear scalar equation. Further, our scheme can be extended
to other kinds of PDEs such as parabolic equations, advection–diffusion equations, etc.,
which will be our future work.
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Appendix A. Outline of AltPoly-r

Steps 1 and 2 of AltPoly-r are almost the same as those of AltPoly-3 and are hence omit-
ted here. In this part, we focus on introducing the constrained polynomial reconstruction
in Step 3 of AltPoly-r for r ≥ 3.

Following the notations in Section 2.2.3, the core of Step 3 is reconstructing the poly-
nomial l̃i(ξ) = ∑2r−3

i=0 biξ
i from the following conditions:

l̃j(ξk) =
2r−3

∑
i=0

biξ
i
k = u(t1)

j,k , for k = 1, . . . , 2r− 2, (A1)

1
2

∫ 1

−1
l̃j(ξ)dξ = b0 +

1
3

b2 + . . . +
1

2r− 3
b2r−4 = ū(t1)

j , (A2)

where u(t1)
j,k and ū(t1)

j are obtained in Step 2. Since the hyperbolic conservation law must be
obeyed, we rewrite the constraint condition (A2) into the expression of b2r−4,

b2r−4 = (2r− 3)
(
ū(t1)

j − b0 −
1
3

b2 − . . .− 1
2r− 5

b2r−6
)
, (A3)

and plug it into (A1) to arrive at

b0 + b1ξk + . . . + b2r−5ξ2r−5
k +

(2r− 3)(ū(t1)
j − b0 −

1
3

b2 − . . .− 1
2r− 5

b2r−6)ξ
2r−4
k + b2r−3ξ2r−3

k = u(t1)
j,k . (A4)

We rewrite it in matrix form:
Ab = y, (A5)

where

A = A1 − A2,
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A1 =


1 ξ1 ξ2

1 . . . ξ2r−4
1 ξ2r−3

1
1 ξ2 ξ2

2 . . . ξ2r−4
2 ξ2r−3

2
...

...
...

. . .
...

...
1 ξ2r−2 ξ2

2r−2 . . . ξ2r−4
2r−2 ξ2r−3

2r−2

,

A2 = (2r− 3)


ξ2r−4

1 0 1
3 ξ2r−4

1 0 1
5 ξ2r−4

1 . . . 0 1
2r−5 ξ2r−4

1 0 0
ξ2r−4

2 0 1
3 ξ2r−4

2 0 1
5 ξ2r−4

2 . . . 0 1
2r−5 ξ2r−4

2 0 0
...

...
...

...
...

. . .
...

...
...

...
ξ2r−4

2r−2 0 1
3 ξ2r−4

2r−2 0 1
5 ξ2r−4

2r−2 . . . 0 1
2r−5 ξ2r−4

2r−2 0 0

,

b =


b0
b1
...

b2r−5
b2r−3

, y =


u(t1)

j,1

u(t1)
j,2
...

u(t1)
j,2r−2

− (2r− 3)


ξ2r−4

1
ξ2r−4

2
...

ξ2r−4
2r−2

.

This linear system is overdetermined since it has 2r− 3 unknowns and 2r− 2 equations.
The least-squares solution is

b = A†y = (AT A)−1 ATy, (A6)

where A† denotes the generalized inverse or Moore–Penrose inverse [27] of A. From b we
can obtain the updated point-based model variables.

In practice, we find that A† has a large condition number when r ≥ 5 and we calculate
it via symbolic computation using mathematical software to reduce the error. Throughout
this paper, we used the symmetrical solution points

{
− 1,−1 + σ1,−1 + σ2, . . . ,−1 +

σr−2, 1 − σr−2, 1 − σr−1, . . . , 1 − σ1, 1
}

, for AltPoly-r with the choices of {σi} shown in
Table A1. Through numerical experiments, we found that smaller {σi} can generally
induce a more stable numerical scheme, which allows for a larger CFL number. However,
when {σi} approaches 0, the condition number of A tends to infinity, which will cause a loss
of accuracy. Based on numerical trials, the choices of {σi} are determined as a compromise
between stability and accuracy.

Table A1. Choice of {σi} for solution points.

r Solution Points

3 σ1 = 0.03

4 σ1 = 0.05, σ2 = 0.1

5 σ1 = 1
34 , σ2 = 2

11 , σ3 = 1
4

6 σ1 = 0.02, σ2 = 0.05, σ3 = 0.1, σ4 = 0.12

Appendix B. Some Technical Results Used in Section 3

Via symbolic computation by Mathematica, we have the following Taylor expansions
in decimal form:

S0e1 = −(0.267 + 0.256 cos w)e1 + 0.379 sin we2

= −0.523e1 + wv1 +O(w2) (A7)
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S0e2 = 0.129 sin we1 + (0.508− 0.246 cos w)e2+

= 0.129we1 + 0.262e2 +O(w2) (A8)

S1e1 = −0.739i sin we1 + 4.523 sin2(
w
2
)e1 − i sin we3

= wv2 +O(w2) (A9)

S1e2 = −0.521e1 + 1.261iwe2 +O(w2) (A10)

where the vectors v3 and v4 are independent with w.
We can see that the magnitudes of all entries in S0[1 : 2; 1 : 2] are smaller than 1 when

w is small enough. In addition, from (39) we know that

S0e3 = e3. (A11)

Therefore the principal eigenvalue of S0 is 1 as long as w is small enough.
Now we try to bound ‖Sne1‖ and ‖Sne2‖. We first assume that

∥∥Si
∥∥ ≤ M for any

i ≥ 1, which naturally holds as long as the scheme is stable. Then we have∥∥∥Sie1

∥∥∥ =
∥∥∥Si−1((S0 + cS1)e1)

∥∥∥
=
∥∥∥Si−1(−0.523e1 + wv +O(w2))

∥∥∥
= . . .

=
∥∥(−0.523)ne1 +

i

∑
k=1

(−0.523)n−iSk−1(wv1 +O(w2))
∥∥

≤ 0.523i + M(w‖v1‖+O(w2)) = 0.523i +O(w). (A12)

Hence,

Sie2 = Si−1(0.262e2 +O(w) + c
(
(−0.521)e1 +O(w)

))
= Si−2(0.2622e2 + (0.262 + S)(O(w) + c(−0.521e1 +O(w)))

)
= . . .

= 0.262ie2 +
n

∑
k=1

(0.262k−1Si−k)
(
O(w) + cO(w)

)
︸ ︷︷ ︸

A1

−0.521c
i

∑
k=1

0.262k−1Si−ke1︸ ︷︷ ︸
A2

(A13)

Since the magnitude of c = ∆t/∆x is not greater than O(1) and ‖Si‖ ≤ M, then ‖A1‖
can be estimated by

‖A1‖ ≤
i−1

∑
k=0

0.262k−1MO(w) ≤ MO(w)

1− 0.262
= O(w). (A14)

As for ‖A2‖, the following bound can be deduced based on (A12),

‖A2‖ ≤
i−1

∑
k=1

0.262k−1‖Si−ke1‖ ≤
i−1

∑
k=1

0.262k−1(0.523i−k +O(w))

≤ (i− 1)0.523i−1 +O(w). (A15)

Combining (A14) and (A15), ‖Sie2‖ can be bounded by∥∥∥Sie2

∥∥∥ ≤ 0.262i + (i− 1)0.523ic +O(w). (A16)



Mathematics 2021, 9, 1885 24 of 24

References
1. Lele, S.K. Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 1992, 103, 16–42. [CrossRef]
2. Mohebbi, A.; Dehghan, M. High order compact solution of the one-space-dimensional linear hyperbolic equation. Numer.

Methods Part. Differ. Equ. Int. J. 2008, 24, 1222–1235. [CrossRef]
3. Yabe, T.; Ishikawa, T.; Wang, P.; Aoki, T.; Kadota, Y.k.; Ikeda, F. A universal solver for hyperbolic equations by cubic-polynomial

interpolation II. Two-and three-dimensional solvers. Comput. Phys. Commun. 1991, 66, 233–242. [CrossRef]
4. Yabe, T.; Xiao, F.; Utsumi, T. The constrained interpolation profile method for multiphase analysis. J. Comput. Phys. 2001,

169, 556–593. [CrossRef]
5. Aoki, T. Interpolated differential operator (IDO) scheme for solving partial differential equations. Comput. Phys. Commun. 1997,

102, 132–146. [CrossRef]
6. Imai, Y.; Aoki, T. Stable coupling between vector and scalar variables for the IDO scheme on collocated grids. J. Comput. Phys.

2006, 215, 81–97. [CrossRef]
7. Goodrich, J.; Hagstrom, T.; Lorenz, J. Hermite methods for hyperbolic initial-boundary value problems. Math. Comput. 2006,

75, 595–630. [CrossRef]
8. Tanaka, R.; Nakamura, T.; Yabe, T. Constructing exactly conservative scheme in a non-conservative form. Comput. Phys. Commun.

2000, 126, 232–243. [CrossRef]
9. Yabe, T.; Tanaka, R.; Nakamura, T.; Xiao, F. An exactly conservative semi-Lagrangian scheme (CIP–CSL) in one dimension. Mon.

Weather Rev. 2001, 129, 332–344. [CrossRef]
10. Imai, Y.; Aoki, T.; Takizawa, K. Conservative form of interpolated differential operator scheme for compressible and incompress-

ible fluid dynamics. J. Comput. Phys. 2008, 227, 2263–2285. [CrossRef]
11. Onodera, N.; Aoki, T.; Kobayashi, H. Large-eddy simulation of turbulent channel flows with conservative IDO scheme. J. Comput.

Phys. 2011, 230, 5787–5805. [CrossRef]
12. Ii, S.; Shimuta, M.; Xiao, F. A 4th-order and single-cell-based advection scheme on unstructured grids using multi-moments.

Comput. Phys. Commun. 2005, 173, 17–33. [CrossRef]
13. Cockburn, B.; Shu, C.W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws.

II. General framework. Math. Comput. 1989, 52, 411–435.
14. Cockburn, B.; Lin, S.Y.; Shu, C.W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation

laws III: One-dimensional systems. J. Comput. Phys. 1989, 84, 90–113. [CrossRef]
15. Qiu, J.; Shu, C.W. Runge–Kutta discontinuous Galerkin method using WENO limiters. SIAM J. Sci. Comput. 2005, 26, 907–929.

[CrossRef]
16. Wang, Z.J. Spectral (finite) volume method for conservation laws on unstructured grids. basic formulation: Basic formulation. J.

Comput. Phys. 2002, 178, 210–251. [CrossRef]
17. Wang, Z.J.; Zhang, L.; Liu, Y. Spectral (finite) volume method for conservation laws on unstructured grids IV: Extension to

two-dimensional systems. J. Comput. Phys. 2004, 194, 716–741. [CrossRef]
18. Liu, Y.; Vinokur, M.; Wang, Z.J. Spectral difference method for unstructured grids I: Basic formulation. J. Comput. Phys. 2006,

216, 780–801. [CrossRef]
19. Huynh, H.T. A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods. In Proceedings

of the 18th AIAA Computational Fluid Dynamics Conference, Miami, FL, USA, 25–28 June 2007; p. 4079.
20. Wang, Z.J.; Gao, H. A unifying lifting collocation penalty formulation including the discontinuous Galerkin, spectral vol-

ume/difference methods for conservation laws on mixed grids. J. Comput. Phys. 2009, 228, 8161–8186. [CrossRef]
21. Ii, S.; Xiao, F. High order multi-moment constrained finite volume method. Part I: Basic formulation. J. Comput. Phys. 2009,

228, 3669–3707. [CrossRef]
22. Xiao, F.; Ii, S.; Chen, C.; Li, X. A note on the general multi-moment constrained flux reconstruction formulation for high order

schemes. Appl. Math. Model. 2013, 37, 5092–5108. [CrossRef]
23. Kirby, R.M.; Karniadakis, G.E. De-aliasing on non-uniform grids: Algorithms and applications. J. Comput. Phys. 2003, 191, 249–264.

[CrossRef]
24. Kanevsky, A.; Carpenter, M.H.; Hesthaven, J.S. Idempotent filtering in spectral and spectral element methods. J. Comput. Phys.

2006, 220, 41–58. [CrossRef]
25. Zienkiewicz, O.C.; Taylor, R.L.; Zhu, J.Z. The Finite Element Method: Its Basis and Fundamentals; Elsevier: Amsterdam, The

Netherlands, 2005.
26. Staniforth, A.; Côté, J. Semi-Lagrangian integration schemes for atmospheric models—A review. Mon. Weather Rev. 1991,

119, 2206–2223. [CrossRef]
27. Ben-Israel, A.; Greville, T.N. Generalized Inverses: Theory and Applications; Springer Science & Business Media: Berlin/Heidelberg,

Germany, 2003; Volume 15.
28. Persson, P.O.; Peraire, J. Sub-cell shock capturing for discontinuous Galerkin methods. In Proceedings of the 44th AIAA

Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 9–12 January 2006; p. 112.
29. Dehghan, M.; Shokri, A. A meshless method for numerical solution of a linear hyperbolic equation with variable coefficients in

two space dimensions. Numer. Methods Part. Differ. Equ. Int. J. 2009, 25, 494–506. [CrossRef]
30. Jiang, G.S.; Shu, C.W. Efficient implementation of weighted ENO schemes. J. Comput. Phys. 1996, 126, 202–228. [CrossRef]

http://doi.org/10.1016/0021-9991(92)90324-R
http://dx.doi.org/10.1002/num.20313
http://dx.doi.org/10.1016/0010-4655(91)90072-S
http://dx.doi.org/10.1006/jcph.2000.6625
http://dx.doi.org/10.1016/S0010-4655(97)00020-9
http://dx.doi.org/10.1016/j.jcp.2005.10.015
http://dx.doi.org/10.1090/S0025-5718-05-01808-9
http://dx.doi.org/10.1016/S0010-4655(99)00473-7
http://dx.doi.org/10.1175/1520-0493(2001)129<0332:AECSLS>2.0.CO;2
http://dx.doi.org/10.1016/j.jcp.2007.11.031
http://dx.doi.org/10.1016/j.jcp.2011.04.004
http://dx.doi.org/10.1016/j.cpc.2005.07.003
http://dx.doi.org/10.1016/0021-9991(89)90183-6
http://dx.doi.org/10.1137/S1064827503425298
http://dx.doi.org/10.1006/jcph.2002.7041
http://dx.doi.org/10.1016/j.jcp.2003.09.012
http://dx.doi.org/10.1016/j.jcp.2006.01.024
http://dx.doi.org/10.1016/j.jcp.2009.07.036
http://dx.doi.org/10.1016/j.jcp.2009.02.009
http://dx.doi.org/10.1016/j.apm.2012.10.050
http://dx.doi.org/10.1016/S0021-9991(03)00314-0
http://dx.doi.org/10.1016/j.jcp.2006.05.014
http://dx.doi.org/10.1175/1520-0493(1991)119<2206:SLISFA>2.0.CO;2
http://dx.doi.org/10.1002/num.20357
http://dx.doi.org/10.1006/jcph.1996.0130

	Introduction
	Formulation of AltPoly Method
	Spatial Discretization and Model Variables
	Updating Model Variables
	Step 1: Hermite Interpolation across Cells
	Step 2: Updating Solution Values on Solution Points
	Step 3: Updating Model Variables

	Runge–Kutta Time Integration
	Artificial Viscosity

	Fourier (von Neumann) Analysis
	Formulation of the Amplification Matrix
	Accuracy Analysis
	Stability Analysis

	Numerical Results
	Linear Scalar Equation
	Nonlinear Burgers Equation
	Euler Equations

	Conclusions
	Outline of AltPoly-r
	Some Technical Results Used in Section 3
	References

