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Abstract: With the evolution of modern digital pathology, examining cancer cell tissues has paved
the way to quantify subtle symptoms, for example, by means of image staining procedures using
Eosin and Hematoxylin. Cancer tissues in the case of breast and lung cancer are quite challenging
to examine by manual expert analysis of patients suffering from cancer. Merely relying on the
observable characteristics by histopathologists for cell profiling may under-constrain the scale and
diagnostic quality due to tedious repetition with constant concentration. Thus, automatic analysis of
cancer cells has been proposed with algorithmic and soft-computing techniques to leverage speed
and reliability. The paper’s novelty lies in the utility of Zernike image moments to extract complex
features from cancer cell images and using simple neural networks for classification, followed by
explainability on the test results using the Local Interpretable Model-Agnostic Explanations (LIME)
technique and Explainable Artificial Intelligence (XAI). The general workflow of the proposed high
throughput strategy involves acquiring the BreakHis public dataset, which consists of microscopic
images, followed by the application of image processing and machine learning techniques. The
recommended technique has been mathematically substantiated and compared with the state-of-the-
art to justify the empirical basis in the pursuit of our algorithmic discovery. The proposed system is
able to classify malignant and benign cancer cell images of 40 x resolution with 100% recognition
rate. XAl interprets and reasons the test results obtained from the machine learning model, making it
reliable and transparent for analysis and parameter tuning.

Keywords: microscopic images; image processing; machine learning; neural networks; Zernike
moments; PCA; explainable artificial intelligence

1. Introduction

Cancer is a generic word used to describe those diseases which are caused due to the
abnormal growth of cells in any part of the body. The transformation of cancer cells is a
multi-phase process that starts from pre-cancerous lesions to malignant tumors. The factors
that contribute to cancer incidence are the use of alcohol, tobacco, physical inactivity, age,
pollution, and some other diseases such as Hepatitis C, Hepatitis B, and HIV. According to
the World Health Organization (WHO), there were an estimated 19.3 million new cases
and 10 million deaths across the world in the year 2020 [1] caused due to cancer. The
GLOBOCAN conjectured that half of the total cases and 58.3% of mortality due to cancer
occurs in Asia, followed by Europe and the American regions [2]. The most common cancer

Mathematics 2021, 9, 2616. https:/ /doi.org/10.3390/math9202616

https://www.mdpi.com/journal /mathematics


https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-2765-4509
https://doi.org/10.3390/math9202616
https://doi.org/10.3390/math9202616
https://doi.org/10.3390/math9202616
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9202616
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9202616?type=check_update&version=2

Mathematics 2021, 9, 2616

2 of 20

is related to the breast, followed by lung, colorectal, prostate, and stomach. Lung cancer
tops the list for causing deaths, followed by colorectal, liver, stomach and breast cancer.
According to the International Agency for Research on Cancer (IARC), the incidence of
cancer for males is higher in comparison to females. The statistics on new cancer cases
in [3] during the year 2020 for females is shown in Figure 1.

= Other cancers (37.8%)

= Breast (24.5%)

= Colorectum (9.4%)
Lung (8.4%)

m Cervix uteri (6.5%)

= Thyroid (4.9%)

= Corpus uteri (4.5%)

m Stomach (4%)

Figure 1. Cancer statistics of new cases for females in year 2020.

Breast cancer is one of the commonly occurring cancers in females, leading to the
creation of a lump in the breast, discharge of blood from nipples, and change in the
shape/texture of the nipples/breast. There is an abnormal growth of cells from the breast
to lymph nodes or even to other adjoining parts of the body. Treatment for breast cancer
depends on the stage of cancer. To diagnose breast cancer, a biopsy is one of the most
reliable sources compared to other sources such as X-ray, MRI, ultrasound. Biopsy is
the process of collecting a sample of the suspicious tissue using fine-needle aspiration,
surgical incision or core needles that are later sent to the laboratory for analysis. The
collected tissue is implanted into a block of paraffin from where tissue sections of 3-5 mm
are cut and placed on a glass slide to observe under a microscope. To make the nucleus
and cytoplasm visible, the slide is stained with H&E (hematoxylin and eosin) or IHC
(immunohistochemical), leading to the formation of cancer cell images. On the analysis
of these images, experts classify the tumors as benign and malignant, for which experts
need years of medical education. Therefore, in order to make this tedious job easier for the
experts, we have taken a small progressive step in the automatic classification of tumors. In
this paper, cancer cell images are analyzed using image moments and neural nets to classify
the benign and malignant tumors, with an explainability feature added to provide the
justification for the decisions on the test data. Contributions of the paper are summarized
below:

e  Breast cancer histopathology (BreakHis) images for automatic cancer prediction are
studied, which is a challenging task even for trained pathologists and trainees. The
proposed system will assist in reducing manual repetitive tasks and increase accuracy
using the power of machine learning.

e Zernike moments are used for feature extraction and vectorization, which are rotation
invariant and can be made scale and translation invariant. It is an ideal choice for
shape detectors where color does not matter and can be ignored for H&E (hematoxylin
and eosin) staining.

e  Artificial Neural Networks (ANN) are used for binary classification, and Explainable
Artificial Intelligence (XAI) Local Interpretable Model-Agnostic Explanations (LIME)
is used to justify test results visually.
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This paper is organized into six sections. Section 1 is the introduction, Section 2
represents the related work, Section 3 presents the background on feature extraction,
classifiers and XAI Section 4 documents the methodology used to classify the cancer
images. In Section 5, the experiments and performance analysis are discussed, and finally
Section 6 presents the conclusions.

2. Literature Review

Medical imaging is one of the emerging fields that need critical analysis of images
due to the complex structure of the tissues of different body parts, which has attracted the
researchers to work in this field. The first step in medical imaging is the availability of a
dataset on which the proposed approaches can be implemented, which is the toughest and
most crucial step. Spanhol et al. [4] has provided a publicly available dataset of 7909 breast
cancer histopathological images obtained from 82 patients, named BreaKHis, which con-
tains both benign and malignant images. An accuracy of 80 to 85% is achieved on the
application of traditional classification techniques. Spanhol et al. [5] also implemented the
convolutional neural network on the textural features extracted from BreaKHis dataset
images which outperforms other machine learning approaches. However, the Convolu-
tional Neural Network (CNN) has the drawbacks of longer training time, the requirement
of expertise to fine tune the CNN, and an increase in the complexity of development of the
system. These drawbacks lead Spanhol et al. [6] to the development of DeCAF features,
which are given as input to the previous trained CNN model. This proposed model pro-
vides fast development along with high accuracy, providing better results than traditional
textural features.

In [7], a breast cancer histopathology image classification by assembling multiple
compact CNNs is proposed. Compared to reported breast cancer recognition algorithms
that are evaluated on the publicly available BreaKHis dataset, the proposed hybrid model
achieves comparable or better performance, indicating the potential of combining both
local model and global model branches.

Komura and Ishikawa [8] have discussed the challenges associated with histopatho-
logical images and analyzed the different machine learning techniques applicable to these
images, specifying the solution with the use of deep learning for the problems specific to
this analysis. Koelzer et al. [9] illustrate the application of machine learning and artificial
intelligence in the field of immune-oncology. Robertson et al. [10] has discussed in detail the
image processing techniques, machine learning approaches and deep learning architectures
available for the classification of malignant tumors present in the breast histopathology
images with the advancement in technology. Li et al. [11] discussed the process of image
analysis of cervical histopathology images using various machine vision approaches.

Bychkov et al. [12] combined convolutional and recurrent neural networks and trained
to classify the colorectal cancer from the 420 patient’s tumor images. This proposed
approach directly provides the outcome without any medical classification. Couture
et al. [13] also used deep learning for the classification of 571 breast cancer tumor images
for tumor grade, estrogen receptor (ER) status, histologic subtype and rate of recurrence
rate. The accuracy achieved for tumor grade is 82%, for ER status 84% and risk of recurrence
score (ROR-PT) has 75% accuracy. Klein et al. [14] detected ovarian cancer from MALDI
images of 20 patients using machine learning techniques, giving the highest accuracy of
85% for CNN classifier. Table 1 shows the comparative analysis for the state-of-art in the
literature review.
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Table 1. Comparative analysis table for the state-of-art in the literature review. The proposed technique (ZM + ANN) is
relatively more accurate, uses a larger dataset, is faster in computation and simple in implementation.

Ref. Year Dataset/Type of Images Contribution Pros/Cons
. . BreaKHis dataset collection from Max accuracy is 85% using basic
Breast cancer histopathological . . .
[4] 2016 imaces BreaKHis dataset 7909 breast cancer histopathology  image features and traditional
& images acquired on 82 patients machine learning methods.
. Applied CNN on the collected Accuracy improved slightly than
5] 2016 BreaKHis dataset BreaKHis dataset [4] but still room for enhancement
In between solution of [4,5] i.e., .
[6] 2017 BreaKHis dataset using deep features to input for Better accuracy than [4] and in
the classifiers some cases of [5]
Assembling multiple CNNs and
embedding Squeeze Excitation Time consumine as compared to
[7] 2019 BreaKHis dataset Pruning (SEP) block to remove I sa P
redundant channels and reduce traditional supervised ML models
overfitting
Limitations are color variation,
. Lo Review article about digital artefacts, intensity variations,
[8] 2018 Histopathological images pathology with machine learning ~ multiple magnification levels to
select from
Precision immunoprofiling by Advanced image analysis and Al
[9] 2019 Colorectal cancer image analysis and artificial . 5 Y
intelligence techniques should be explored
AT and deep learning techniques Contribution is to identify patterns
[10] 2018 Breast cancer have been used for diagnostic not v1s1b1.e for the eye Of, a
breast pathology pathologist or so called ‘imaging
biomarkers’ using deep learning
A review of 1988-2020 for cervical Semﬁﬁgziﬁzﬁieb};rgieif;%
[11] 2020 Colorectal adenocarcinoma tissue  histopathology image analysis & > exp )
using machine vision Model performance is based upon
underlying data distribution.
Directly predict patient outcome
[12] 2018 Colorectal cancer TIS'SUG analysis 11’? colorectal cancer Wlth AUC = 0.'69, w1th0u't'an}f'
using deep learning intermediate tissue classification;
samples from 420 patients
Breast cancer grade prediction Ductal vs. Lobular (94% accuracy),
[13] 2018 Breast cancer using image analysis and deep limitation is that dataset size was
learning small
. Tissue microarray (TMA) for CNN apd NN are suitable for
Opvarian cancer from MALDI . : . epithelial ovarian cancer (EOC),
[14] 2019 ovarian cancer histotypes using

images

ML

sensitivity (69-100%) and
specificity (90-99%)

3. Background

The following subsections explain the background information, including feature ex-
traction using Zernike moments, classification techniques and explainable artificial intelligence.

3.1. Feature Extraction Techniques

Features are used to describe the image characteristics that distinguish any specific
object in the image from the other. A number of feature extraction techniques are being
defined in the literature and used by other researchers. Some of the feature extraction
approaches are discussed in this section.

Local Binary Patterns (LBP) computes the binary distribution patterns in the neigh-
borhood of each pixel with radius R and neighborhood pixels P. The fundamental idea
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behind the LBP is to assign the pixel value as one if present pixels in the neighborhood
have the value superior or equal to the center pixel, otherwise to assign a zero value,
which computes the binary pattern for each pixel from the corresponding neighborhood.
Completed BLP (CLBP) is the advanced version of the LBP based on the sign, center pixel,
and magnitude parameters that are obtained from the local regions. After performing
the global thresholding with the threshold value set at the average of the gray values of
the whole image, the binary code of the center pixel is coded. The signs and magnitude
parameters are computed and, through a specific operator, are coded to binary format so
that a CLBP histogram can be formed. The gray-level co-occurrence matrix (GLCM) is used
to statistically characterize the texture features of an image by calculating the occurrence of
specific pixel values.

Oriented Features from Accelerated Segment Test (FAST) and rotated Binary Robust
Independent Elementary Features (BRIEF) is an efficient substitute to Scale Invariant
Feature Transform (SIFT) and Speeded up Robust Features (SURF). It is developed in
OpenCV, which uses FAST as a key point detector to detect a large number of key points
and BRIEF descriptors in the image. From these key points, it uses the Harris corner detector
to find the good features from those points. In comparison to SIFT, the computational
cost is very low, but it extracts less features. It is also less sensitive to noise. Local Phase
Quantization (LPQ) uses the information extracted from the local phase of the 2-D discrete
Fourier transform which is calculated for a rectangular size neighborhood. Using binary
coding, the coefficients are represented in the form of integer values in the range of 0 to
255. For the classification of cell phenotype images, there is an introduction of a fast and
simple morphological measure, Threshold Adjacency Statistics (TAS). The Parameter Free
TAS is the parameter-free version of TAS which is based on the concept of calculating the
histogram bins and pixels in reference to the presence of white pixel neighbors for multiple
threshold versions of images.

There are various feature extraction methods to extract the relevant information for
data analysis [15]. Zernike Moments (ZMs) [16] of an image are similar to Discrete Cosine
Transform (DCT) coefficients in their derivation and properties. Essentially, ZMs are
projections of an image function along the real and imaginary axes (x- and y-axis) which is
convolved by an orthogonal function. Thus, they represent an image in various frequency
components which are referred to as the orders (along the radial) and repetitions (along
the angular direction). Thus, Z0,0 represents the average intensity, Z1,1 represents the
first-order moment, and Z2,0 is similar to variance and so on. Zernike polynomials are
orthogonal functions that generate an orthogonal set over the unit circle in a complex plane.
In general, image moments [17] are weighted averages of the intensity values of image
pixels (or a similar image function) to get the scalar quantities for image interpretation.
Moments of different order yield varying information about the image, such as area, the
center of mass, and orientation. Zernike moments are rotation invariant and can be made
translation and scale invariant by a little modification in the formulas [18] and thus are a
very powerful technique for image vectorization for shape detectors on grayscale images.

Zernike Polynomials can be defined by Vi (x,y) = Rum(p)e/™®. Here n,m are whole
numbers such thatn — |m| is even and m < n. (p, 0) are the radius and angle of the pixel
from origin which implies polar coordinate of (x,y) pixel location. The formula for radial
polynomial R, (p) is defined as follows:

_(—lmh/2, ok (n—k)! n—2k
an—n+1z Zj 1fxanm(P)ejm9 )

Znm(0,0) = Rym(p)cos(mb) and Z,, i (p,0) = Ry (0)sin(m0). Zy, (o, 6) is known as even
Zernike polynomials and Z,, —;(p, 0) as odd Zernike polynomials, p is radial distance and
its value lies in [0,1]. Also Zernike polynomials have the property that | Z, ,,(p,0) | < 1.
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3.2. Classification Techniques

For classification, different classifiers are used. Support Vector Machine (SVM) is the
one of the most commonly used classifiers. It is a supervised learning technique used for
regression and classification for mainly 2-class classification problems. The main goal of
SVM is to find a hyperplane in an N-space which categorizes the data points distinctly. k-
Nearest Neighbor (k-NN) classifies the testing data based on similarity measures such as
Euclidean distance and Hamilton distance. Quadratic Discriminant Analysis (QDA) is a
model which is based on the assumption that each class follows Gaussian distribution. It is
a statistical classifier that distinguishes the data points on the basis of a quadratic decision
surface. Random Forest (RF) is an ensemble classifier that constructs multiple decision
trees based on different conditions at training time. The classification is done on the basis
of the output decision taken by the majority trees.

In ANN [19,20] the atomic unit neuron is an information processing and fundamental
component of the operation of the network as shown in Figure 2. Let xi be input signals,
wij be the respective weights from xi to xj, f(.) is the activation function, Jj is an input signal
to a neuron. For example, the signal from xj from the j-th layer to the k-th neuron (x;) and
the weight is written as wy. Second is the adder component which is a linear combinar
using a sigma function:

o (hj) =Y ™ o1 wixi ®)
[j = f(o (hj))), 4)
where f is an activation function.
Input Layer Hidden Layer
Whl 1 W°11
X1 / /
/ /

Bias Neurons

J

Figure 2. Architecture of the 2-layer feed forward neural network having sigmoid hidden layer and
softmax output neurons as output layer applied for the proposed approach.

Figure 3 shows a simple numerical example using three inputs for the sake of simplic-
ity, as our experiments have used 12 ZMs for input features into the ANN.
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input hidden output
b=-2.0
Sum: (2.0)(0.1) + (3.0)(0.5) + (4.0)(0.9) + (-2.0)
= +3.3
ih_w[0,0] = 0.1 Apply activation: 1.0/ (1.0 +e"33) =0.96
Ny
w=0.5 w=13

[ =20 |> (] 2.00

e, EDB

) L as
V-QrOn=—
o (Y "f@

Q
04 O

[e=40]> (| 4.00 > ﬁ

‘ ho_w(2,3] = 2.0 d(X(x*w) +b)

Figure 3. Mathematical model of a simple ANN example with 3 inputs to demonstrate the imple-

ih_w(2,3] = 1.2

mentation (Our technique has 12 inputs from ZMs but only 3 inputs have been rendered for the sake
of simplicity of representation).

Third is the activation function which is also known as the limiting function for a
particular amplitude range, e.g., [—1,1]. Hidden neural network weights at layer h are
expressed as a matrix W',,,. The generic form of hidden layer at layer h can be expressed as:

ol =[oM]fi=1tonjWhyy, (5)

I=f(c™=[l{k=1ton} (6)

Similarly, the output layer can be expressed as
O =1£(0°) =[Okl{k =1 to n} (7)

3.3. Explainable Artificial Intelligence (XAI) LIME Model

The LIME model provides explanations which are interpretable by humans and are
different in representation from the intrinsic actual features used by the model. As an
example, in case of text classification, XAI uses a binary vector containing the probabilities
of the important words responsible for the underlying decision made by the classifier. This
probability-based representation is easier for humans to analyse as compared to actual
complex features, which are relevant only to the machine level and incomprehensible
for humans, such as word embeddings. In the case of images, we can obtain pixels
x(i,j) € Rd where R is the region enclosed by the closed contours in yellow color by the XAI
LIME model.

Let m € M be the set of models which can provide interpretations and m can be
represented through a domain highlighted with yellow contours. There are two model
interpretations for decision explanations (a) local interpretation works at a single point to
explain the decision (b) global interpretation works over the whole dataset in entirety for
explanation. LIME calculates the contribution of features on the individual test predictions
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and renders them in a faithful and easy to understand manner. The general equation of
LIME and other general explainability techniques [21,22] is defined as follows:

E(x) = argmin Loss(p,m, P(x)) + Q(m) (8)

where x is the primitive vector for the feature, p is the original predictor, m is the model for
the explanation which is linear for LIME, P(x) is the proximity function which covers the
local region around the original feature vector x. Further the loss function is defined as:

Loss(p,m, P(x)) = Y,y (p(y) —m(y))*P(y) )

where Y covers the locality of x, i.e., neighborhood. Let b(x) be a biased classifier and C be
a classifier which is unbiased and makes decisions based upon the underlying sensitive
attributes and correlated features. Therefore, the classifier which is agnostic and adversarial
is defined as A(x) follows. To create A(x) the deciding factor is if x belongs to X or not
where X is the distribution where the X is the distribution where the predictions of B(x)
are sampled.

A(x) ={B(x), if x € X C(x), otherwise (10)

Algorithm 1 Algorithm of XAI LIME is summarized as below [23]

Input: data feature vector X, classifier f, number of features m and super-pixels n for granularity
to highlight

Output: coefficients of the explainable linear model

STEP 1: y: = f(x) i.e., prediction by f(.) on x

STEP 2: if i > n goto Step 6

STEP 3: p: = randomPickSuperpixel(x) %permute function
STEP 4: observation: = f(p) i.e., predict p on f

STEP 5: distance: = abs(y-observation)

STEP 6: SimilarityScore: = ComputeSimScore(distance)
STEP 7: x: = xPick(SimilarityScore,m,p)

STEP 8: L: = LinearModelFitting (SimilarityScore,m,p)
STEP 9: Return weights obtained by L

4. Methodology

The general flow of the methodology includes image acquisition through the public
BreakHis dataset for cancer cells [4]. The dataset contains four resolution options for
the cancer cell images, 40x, 100x, 200x, 400x, and four types for each of the malig-
nant and benign classes. For simplicity of illustration, we only considered 40x images
from both classes. Afterwards, image moments were extracted from all the images using
Zernike moments.

Zernike moments are applied to the given set of images and fed into (i) PCA (Principal
Component Analysis) for visualisation as explained in Section 5.3 and (ii) into neural net-
works for classification and performance analysis as shown in Figure 4. Zernike moments
help to generate vectors from the given set of images which are then input into the neural
network classification system for training, validation and testing.

The XAI LIME as discussed in Algorithm 1 is applied on the classified images to
highlight the appropriate regions which are contributing to the classification decision.
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Figure 4. Graphical representation of the framework of proposed technique for cancer cell segmentation.

5. Results and Discussion
5.1. Dataset

The cancer cell image samples are obtained through breast tissue upon surgical
open biopsy (SOB) procedure stained using eosin and hematoxylin dyes. They belong
to the BreakHis [4] dataset. Image acquisition was performed using the Olympus BX-50
microscope system with various magnifications, such as 40, 100, 200 <, 400 x as depicted
in Figure 5, but for simplification of the study, we have considered only 40x images
from the benign and malign categories for binary classification. The image format was
RGB in PNG format. The nomenclature of the image file names is well organised into
the following format: <BIOPSY_PROCEDURE> <TUMOR_CLASS> <TUMOR_TYPE>
<YEAR> <SLIDE_ID>-<MAGNIFICATION>-<SEQ>. The ratio of benign:malign images
for experiments is 625:1370 and the ratio of training:validation:testing for the experiments
is 70:15:15. Standard parameters of the neural networks through the MATLAB R2020b
have been used.

(a) 40x zoom (c) 200x (d) 400x
Figure 5. Sample images of the public BreakHis dataset at different available levels of magnification (40, 100x, 200 x, 400x).

5.2. Feature Extraction Using Zernike Moments

Setting the order parameter to 5, a total of 12 ZMs were calculated for each of the
625 + 1370 = 1995 images. Zernike moments are shape extractors and only work on
grayscale images. Thus, if the given image is colored, then it automatically gets converted
into grayscale prior to the moments’ calculation. Zernike moments are able to capture
the efficient set of feature vectors which can be observed through PCA application and
visualization as shown in Figure 4.
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5.3. Data Visualization Using PCA

Principal components (PCs) are orthogonal unit vectors such that ith vector is per-
pendicular to all existing i-1 vectors and the variance is maximum for the projected data
distribution. Figure 6 depicts the orthogonal principal components in the direction of
maximum variance.

)
Figure 6. The arrows signify eigenvectors (of covariance matrix) scaled by the square root of
eigenvalues and their origin is at the mean.

Let 1 be the size of vectors with dimensions n and their coefficient weights are defined
by V as follows.

V ={vy,02,...04} (11)

It maps each original vector x; into t;, which is known as the principal component
scores which are given by t; = {t1,...t;}i and ty; is given by

tki = {xi.wk}, i=1: n,k =1:1 (12)
The first weight will be optimally computed for maximum variance

wT XT Xw

wl = argmax
3 wTw

(13)

Thus k-th component can be found as follows and further details are available in [24]:

k—1

Ye=X-Y,

Swjw] (14)

Machine learning is dependent upon the underlying data distribution. Therefore,
the application of variance-based feature transformation Principal Component Analysis
(PCA) [25] was applied on the 1995 x 12 to reduce it to two dimensions for plotting
as shown in Figure 7. It is evident from the figure that data is non-overlapping and
thus separable through non-linear classifiers. Moreover, Figure 8 renders the relative
information gain through latent parameters of PCA which means the relative importance
of each of the sorted and transformed newly formed PCA features. We can observe that
only the first two PCs contain 0.82 + 0.15 = 0.97 of the total information to define the
data distribution. Thus, Zernike moments have happened to the quite effective feature
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extractor in the underlying case. Relative information gain upon application of PCA on
1995 x 12 data obtained through 12 ZMs for each of 1995 images is shown in Figure 7.

2 T T T T T

‘ #*  Benign
15 F \ *  Malign | |

|
$
0.5 \\ ‘\ “ ‘ :
4

Second Principal Component
o

A5 ¢ ¢ ]

2 \ . . . .
-4 -3 2 -1 0 1 2

First Principal Component

Figure 7. First two principal components of 12 Zernike moments (image features). The data clusters
are quite separable (nonlinearly) which explains the good accuracy reached by 2-layer feed forward
ANN on the given data distribution.

0.9 T T T T T

Relative Information Gain
o o o o o
N w S (6, D

©
—_

1 2 3 4 5
Principal Components

Figure 8. Relative information gain for principal components. Since 5-12 are quite small, they are
not shown in the figure. Values of PCs are 0.82, 0.15, 0.03, 0.01 and approximately 0, respectively.

5.4. Classification

To classify the malign and benign classes of the given BreakHis [4] public dataset, we
applied the Neural Network Pattern Recognition app using MATLAB R2020b software
with standard settings. The architecture of the 2-layer feed forward neural network is
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applied in the proposed methodology, as shown in Figure 2. Training:validation:testing
ratios were 70:15:15. This means that the model is not trained on all the data, and only
70% is used for training. Afterward, 15% of the data which is new to the trained model
is used for testing. The total data is split into three mutually exclusive parts: (i) training,
(ii) validation and (iii) testing, with ratios 70:15:15. Only 70% of the data is used for training
and not all. After training is done on 70% of the data, the next 15% is used to validate, until
a good validation is found, and the model is well generalized. Then finally, a fresh and
untouched 15% data partition is used for testing. This 70:15:15 ratio is totally random, and
the data used training vs testing data is not the same.

The total dataset size used was benign: malign as 625:1375 for 40x images only. For
training, 10 hidden neurons were used and scaled conjugate back propagation. Hidden
layer selection (one hidden layer) is automatically completed using the Pattern Recognition
toolbox in MATLAB [26,27].

The MATLAB toolbox automatically generated weight and bias values of the trained
neural network model, along with the code, is available in the Appendix A. Figures 9-13
show the ROC curves, confusion matrix, error histogram, cross-entropy, gradient and
validation checks for training, validation, testing and overall performance which is perfect
under the given experimental conditions. It is observed that the potential of the technique
overpowers the simple data distribution and thus yields 100% accuracy, which is specified
by the ratio of correct predictions to the total number of predictions (total amount of
test data).

1 Training ROC 1 Validation ROC
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2 2
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Figure 9. ROC curves of the training, validation, test and all data images in the BreakHis dataset
using 40x images for malignant and benign classes.

The ROC curves are used to graphically represent the performance of the classification
model being used to classify the input data at different threshold values in terms of true
positive and false positive rate. Figure 9 represents the ROC curves for the training,
validation, test and all dataset images present in the BreakHis dataset. The ROC curves for
training, validation, test and all dataset images represent the 100% sensitivity and 100%
specificity leading for the best classification model.



Mathematics 2021, 9, 2616 13 of 20
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Figure 10. Confusion matrix for training, validation, testing and overall test data.
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Figure 11. Error histogram for training, validation and testing showing no error on the given data

distribution using proposed technique.

The confusion matrix is the representation of the correctly and falsely classified data by
the classification model. Figure 10 represents the confusion matrix for training, validation,
testing and overall test data, showing no false positive and false negative classification in
any case by the classification model, which indicates an ideal performance.

After training the neural network, an error histogram is plotted that defines the
graphical representation of the values obtained from the difference of the predicted values
and the target values. Figure 11 shows that the error value for the proposed model is
—7.4 x 1078, illustrating that the ouput values are marginally higher than the targeted
value. In classification problems, it is possible to get 100% accuracy when the classifier is
able to separate two classes (benign and malignant). However, the error term measures
how far the decision boundary is relative from all (or most) of the points, for example, using

the Euclidean distance norm. The error is actually zero, but shows very small negative
numbers due to digital representation error out of the calculations consistently with the
same value —7.4 x 1078 for all 1995 samples (errors = targets-outputs). It is similar to the
IEEE754 standard to represent floating points in the digital memory.
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Figure 12. Cross-entropy versus epochs for validation performance analysis.
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Figure 13. Graphs for gradient and validation failure versus epochs. Most of the time there was no
validation failure during all 55 epoch trials.

Figure 12 represents the number of iterations for the best validation performance of
the proposed model on the basis of the cross-entropy parameter. For the proposed neural
network model, the best performance is achieved at 55 epochs, illustrated by a green circle
with the minimum cross entropy value. It can be seen from the graph that for training,
validation and testing data, as the epochs increase, there is a decrease in the cross entropy.

Figure 13 represents the gradient and validation checks as the training state parameters
against the number of iterations. The gradient value achieved at 55 epochs is 9.1623 x 10~7.
It has been observed from the graph that there is negligible validation failure during the
span of 55 epochs.
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5.5. Discussion

A summary of the results comparison has been rendered in Figure 14, in which the
proposed setup outperforms the techniques studied in [4] by the owners of the BreakHis
dataset. This does not mean that the proposed setup is perfect, but only implies that
Zernike moments are precise and concise shape feature extractors followed by a simple and
powerful neural network pattern recognition system. The complete training, validation and
testing of the system does not take more than a few seconds of time and thus also suggests
that hand crafted features and image moments must be explored before employing deep
learning techniques which are computationally expensive, and an intensive hardware setup
is needed for GPU.

Recognition rates

ZM+ANN (proposed) I 100
PFTAS+QDA I 33.3
LPQ+RF I 744
ORB+QDA I 73.8
LBP+1-NN . 75.6
GLCM+1-NN I 74.7
CLBP+SVM . 77.4

0 20 40 60 80 100 120

Figure 14. Comparison of cancer recognition rates among the state-of-art and the proposed technique.

Figure 14 states the recognition rates by various machine learning techniques consist-
ing of features such as LBP, CLBP, GLCM, ORB, LPQ, PFTAS and classifiers SVM, 1-Nearest
Neighbor (1-NN), QDA, RF [4]. PFTAS + QDA [4] has the recognition rate of 83.3 & 4.1
and in [7] the best recognition rate on the BreakHis dataset for the technique based on
assembling multiple compact CNNSs is 85.7 £1.9. The proposed technique, which is a
combination of Zernike moments and Artificial Neural Network, is superior with 100%
recognition for this dataset.

Machine learning models work like black boxes. Understanding the reasons for the
test result is a basic requirement to rely on, perform analysis, and retrain or even deploy
modifications in the model. XAI provides this trust in a machine learning model, and
LIME [21] is one of the models which is easy to understand and simple to implement.
Model agnostic means that LIME can be applied to any model to obtain explanations by
perturbing the input data (images, in our case). To explain the image classification, the
LIME model draws a mask of yellow pixels to highlight the image segment that a model
focuses on the most to make the decision, as shown in Figure 15. These yellow regions
contribute the most to explain the semantic visual analysis for the users and performance
analysis. In Figure 15, the number of input features has been set to 150 for the LIME
model to pick the most significant features. After increasing features to more than 150, the
yellow-marked explanations become more granular or sandy. This value (150) has been
found through repetitive empirical analysis.
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Figure 15. Input malignant image in 40x zoom and its explanation through XAI LIME model for
the proposed model. The yellow highlighted segments in the image (on the right) mark the most
relevant regions or features which are responsible for the decision made by machine learning model.

6. Conclusions

Cancer tissues in the case of breast and lung cancer datasets are quite challenging
to examine for manual expert analysis of patients suffering from cancer. The proposed
automatic breast cancer cell image analysis system has been studied on the public BreakHis
dataset [4]. It has been observed that manual examinations performed by histopathologists
for cell profiling are time-consuming and require continuous concentration by the experts,
which is expensive and requires years of study. In this paper, automatic analysis of
cancer cell analysis was proposed with algorithmic and soft-computing techniques to
leverage speed and reliability. Only 40x image categories from the BreakHis dataset with
binary classes (malignant and benign) were considered, and it was found that by using
Zernike moments and neural networking classification, the data distribution is perfectly
separable. The underlying assumptions involve clear and preprocessed labeled data with a
clear distinction between malignant and benign cell images, as with the BreakHis dataset.
Moreover, the total data size was moderate, with 625:1370 for benign:malign classes,
making the problem simpler for classification. The model agnostic technique (XAI-LIME)
has been used to justify the test results of input images by highlighting the major regions
due to which the machine learning algorithm has come up with the test decision.

The future plan is to consider original datasets with a larger size, more image moment
techniques and other classification algorithms to explore the problem dimensions. We
also plan to set up an image with expert linguistic cues to assist image features, using an
additional modality to propose a multimodal learning system with image and text features.
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Appendix A. Neural Network Weights and Bias Values
weight and bias values:

IW: {2x1 cell} containing 1 input weight matrix
LW: {2x2 cell} containing 1 layer weight matrix
b: {2x1 cell} containing 2 bias vectors

W

-2.30449 -1.31502 -0.33249 -2.1858 0.001261 0.014085 -1.23084 -0.90393 -1.6431 1.254404 1.371979 1.497881
-2.2617 -1.55796 -0.05537 -1.25332 0.430521 -0.27874 -0.82772 0.357906 -2.50034 2.054831 1.101902 3.650058
0.0455 0.2305 0.1163  -0.2063 0.5157 -0.78783 -1.22663 -0.38194 -0.38696 -0.14751 -0.58046 -0.87669
-0.2561 1.0277 0.3021 0.6143 0.7824 1.250728 -0.0528 0.73676 0.633574 0.412 -0.49569 -0.25053
-1.7257  -1.6350 0.6487 -2.1591 -0.8204 -0.06281 -1.14336 -1.17512 -2.17429 2.216714 1.511811 2.679549

1.525977 1.008437 -0.0498 2.186237 -0.5984 -0.61089 0.561443 1.090787 1.104944 -0.87251 -0.84106 -1.88745
-0.12986 -0.29741 0.575105 -0.49191 0.224444 0.348719 -0.65892 0.579183 -0.73751 -0.60981 -0.39936 0.35394

1.550512 1.884196 0.064698 0.307778 0.765116 0.657767 -0.33722 -0.93907 0.735844 -0.96015 -0.13641 -0.42715

3.757121 3.29533 0.441888 5.428858 1.634396 0.312036 0.879145 0.85568 4.22827 -3.28873 -2.0907 -5.21671
-1.5571 -2.10368 0.231849 -1.80978 -0.60777 -0.39155 0.157972 -0.46012 -2.26183 2.1134 0.882304 2.857023

Lw
-4.52722 -5.71918 -0.20954 2.206233  -5.5593 3.172608 -0.43975 2.359681 11.29792 -5.19191

bl b2
0.835358 -1.33182
-1.85953
-1.00318
-1.70368
0.656457
0.043912
-0.42914
0.730521
-1.24695
-0.17041

Figure A1l. The automatically generated weight and bias values of the trained neural network model.

MATLAB code:

% Solve a Pattern Recognition Problem with a Neural Network

% Script generated by Neural Pattern Recognition app

% Created 20 September 2021 15:40:17

%

% This script assumes these variables are defined:

%

%  ZMs-input data. (Zernike moments 625x12 sick and 1370x12 healthy vectors)
%  Y-target data.  (625x1 zeros, 1370x1 ones)


https://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological-database-breakhis/
https://web.inf.ufpr.br/vri/databases/breast-cancer-histopathological-database-breakhis/
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x = ZMs’;
t=Y’;

% Choose a Training Function

% For a list of all training functions type: help nntrain

% ‘trainlm’ is usually fastest.

% ‘trainbr’ takes longer but may be better for challenging problems.
% ‘trainscg’ uses less memory. Suitable in low memory situations.

trainFcn = ‘trainscg’; % Scaled conjugate gradient backpropagation.

% Create a Pattern Recognition Network
hiddenLayerSize = 10;
net = patternnet(hiddenLayerSize, trainFcn);

% Choose Input and Output Pre/Post-Processing Functions

% For a list of all processing functions type: help nnprocess
net.input.processFcns = {‘removeconstantrows’,/mapminmax’};
% Setup Division of Data for Training, Validation, Testing

% For a list of all data division functions type: help nndivision
net.divideFcn = ‘dividerand’; % Divide data randomly
net.divideMode = ‘sample’; % Divide up every sample
net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;

net.divideParam.testRatio = 15/100;

% Choose a Performance Function
% For a list of all performance functions type: help nnperformance
net.performFcn = ‘crossentropy’; % Cross-Entropy

% Choose Plot Functions
% For a list of all plot functions type: help nnplot
net.plotFcns = {“plotperform’,’plottrainstate’, ploterrhist’, ...

‘plotconfusion’, ‘plotroc’};

% Train the Network
[net,tr] = train(net,x,t);

% Test the Network

y = net(x);

e = gsubtract(t,y);

performance = perform(net,t,y)

tind = vec2ind(t);

yind = vec2ind(y);

percentErrors = sum(tind ~= yind)/numel(tind);

% Recalculate Training, Validation and Test Performance
trainTargets = t .* tr.trainMask{1};

valTargets = t .* tr.valMask{1};

testTargets = t .* tr.testMask{1};

trainPerformance = perform(net,trainTargets,y)
valPerformance = perform(net,valTargets,y)
testPerformance = perform(net,testlargets,y)
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% View the Network
view(net)

% Plots

% Uncomment these lines to enable various plots.
%figure, plotperform(tr)

%figure, plottrainstate(tr)

%figure, ploterrhist(e)

%figure, plotconfusion(t,y)

%figure, plotroc(t,y)

% Deployment
% Change the (false) values to (true) to enable the following code blocks.
% See the help for each generation function for more information.
if (false)
% Generate MATLAB function for neural network for application
% deployment in MATLAB scripts or with MATLAB Compiler and Builder
% tools, or simply to examine the calculations your trained neural
% network performs.
genFunction(net,’'myNeuralNetworkFunction’);
y = myNeuralNetworkFunction(x);

end

if (false)
% Generate a matrix-only MATLAB function for neural network code
% generation with MATLAB Coder tools.
genFunction(net,’'myNeuralNetworkFunction’,’/MatrixOnly’, yes’);
y = myNeuralNetworkFunction(x);

end

if (false)
% Generate a Simulink diagram for simulation or deployment with.
% Simulink Coder tools.
gensim(net);

end
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