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Abstract: In this article, two new families of distributions are proposed: the generalized log-Lindley-
G (GLL-G) and its counterpart, the GLL*-G. These families can be justified by their relation to the
log-Lindley model, an important assumption for describing social and economic phenomena. Specific
GLL models are introduced and studied. We show that the GLL density is rewritten as a two-member
linear combination of the exponentiated G-densities and that, consequently, many of its mathematical
properties arise directly, such as moment-based expressions. A maximum likelihood estimation
procedure for the GLL parameters is provided and the behavior of the resulting estimates is evaluated
by Monte Carlo experiments. An application to repairable data is made. The results argue for the use
of the exponential law as the basis for the GLL-G family.

Keywords: log-Lindley law; new families; hazard rate function; entropy

JEL Classification: 62N01

1. Introduction

Providing flexible and accurate distributions is sought in a variety of contexts, in-
cluding public health, biomedical studies, and reliability (for a fuller discussion, see [1]).
Lindley [2] pioneered the one-parameter Lindley distribution, to which several extensions
have been developed [3]. Abouammoh and Kayid [4] developed a general form for Lindey-
based extended models. Al-Babtain et al. [5] proposed a new version for a discrete analog
of the continuous Lindley law. Beyond extensions of the Lindley distribution, improved
statistical inference tools have been derived from it [6–9].

Recently, Gómez-Déniz et al. [10] have proposed the log-Lindley (LL) distribution
with probability density function (pdf)

f (x; λ, σ) =
σ2

1 + λσ
(λ− log x) xσ−1, 0 < x < 1, λ ≥ 0, σ > 0. (1)

According to Zakerzadeh and Dolati [11], this distribution may be also developed
from the generalized Lindley law and has simple moment-based expressions and important
reliability properties. The new model has been successfully applied in the current context on
which the LL cdf is often used to misinterpret the prime principle (Gómez-Déniz et al. [10]).
Our proposal is an alternative to the family proposed by Jones [12], who furnished a
flexible family of models from Beta random variables. This family of distributions is able
to model symmetric and skewed data sets with varying tail weights. Further, Zografos and
Balakrishnan [13], Ristic and Balakrishnan [14] and Amini et al. [15] suggested a family of
distributions spawned from the gamma random variables. In a similar vein, we present
two new families of distributions generated from log-Lindley random variables through
the following definition.
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Recently, Alzaatreh et al. [16] introduced the T-X family—constructed from a ran-
dom variable T ∈ [a, b] for a < b with density r(t)—having cumulative distribution
function (cdf)

F(x) =
∫ L[G(x)]

a
r(t)dt, (2)

and its associated pdf is

f (x) =

{
d

dx
L[G(x)]

}
r(L[G(x)]), (3)

where L[G(x)] satisfies the following conditions: i. L[G(x)] ∈ [a, b]; ii. L[G(x)] is dif-
ferentiable and non-descending monotonous; and iii. L[G(x)] → a when x → −∞ and
L[G(x)]→ b when x → ∞.

Based on the T-X generator defined by Equation (2), we introduce two new families of
continuous distributions termed generalized log-Lindley-G distributions by integrating the
LL density function.

Definition 1. Denote F(·) and F̄(·) as the cdf and the survival function of a random variable with
the pdf f (·). We announce two new families of distributions having pdfs

gF̄(x; λ, σ) =
σ2

1 + λσ
(λ− log F̄(x))F̄(x)σ−1 f (x) (4)

and

gF(x; λ, σ) =
σ2

1 + λσ
(λ− log F(x))F(x)σ−1 f (x). (5)

The proposed family can actually be obtained from the log-Lindley family of Gómez-
Déniz et al. [10] and the T-X generator, taking into account the integrals

ḠF̄(x; λ, σ) =
σ2

1 + λσ

∫ F̄(x)

0
(λ− log t) tσ−1 dt (6)

and

GF(x; λ, σ) =
σ2

1 + λσ

∫ F(x)

0
(λ− log t) tσ−1 dt, (7)

respectively.
First, we define the density functions of r(t) in (2) as

rF̄(t; λ, σ) =
σ2

1 + λσ
[λ− log(1− t)](1− t)σ−1, 0 < t < 1, (8)

and

rF(t; λ, σ) =
σ2

1 + λσ
[λ− log(t)]tσ−1, 0 < t < 1, (9)

and replacing L[G(x)] by Gα(x) in (2), we have the two cdf of the generalized log-Lindley-G
family, respectively, as

F∗(x; α, λ, σ, ζ) =
σ2

1 + λσ

∫ Gα(x;ζ)

0
(λ− log[1− t])(1− t)σ−1 dt

= 1− 1
1 + λσ

[1− Gα(x; ζ)]σ{1 + σ[λ− log(1− Gα(x; ζ))]}
(10)
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and

F(x; α, λ, σ, ζ) =
σ2

1 + λσ

∫ Gα(x;ζ)

0
(λ− log[t]) tσ−1 dt

=
1

1 + λσ
Gασ(x; ζ){1 + σ[λ− log(Gα(x; ζ))]},

(11)

where G(x; ζ) and g(x; ζ) depend on a parameter vector ζ and α, λ, σ are three additional
parameters. Henceforth, we will refer to these families as GLL-G, F(·), and GLL∗-G,
F∗(·) families.

The structure of the paper is as follows. In Section 2 we propose two new families
of distributions arising from the LL model. Section 3 brings some special models in
these families. In Section 4 we derive an extension for the density of the family GLL-G.
In Section 5, we derive several mathematical properties of the GLL-G family, including,
along with ordinary and incomplete moments, mean deviations and the moments of
residual and reversed lifetime. Rényi, Shannon, and Mathai-Haubold entropies and order
statistics are studied in Sections 6 and 7, respectively. An estimation procedure for the
GLL-G parameters is given in Section 8. Sections 9 and 10 deal with the numerical results,
while Section 11 contains the concluding thoughts.

2. The GLL-G Family

Here, we introduce two new families of distributions having cdfs (10) and (11) by
incorporating two additional shape parameters, α > 0 and σ > 0, and one scale parameter,
λ ≥ 0, to yield a more flexible generator. By differentiating (10) and (11), the associated
pdfs are, respectively,

f ∗(x; α, λ, σ, ζ) =
ασ2

1 + λσ
g(x; ζ)Gα−1(x; ζ)(1− Gα(x; ζ))σ−1

× (λ− log[1− Gα(x; ζ)]) (12)

and

f (x; α, λ, σ, ζ) =
ασ2

1 + λσ
g(x; ζ)Gασ−1(x; ζ)(λ− log[Gα(x; ζ)]). (13)

The hazard rate functions (hrfs) of the proposed families defined in (10) and (11) are
given as

h∗(x; α, λ, σ, ζ) =
ασg(x; ζ)Gα−1(x; ζ)(λ− log[1− Gα(x; ζ)])

(1− Gα(x; ζ))[1 + σ(λ− log[1− Gα(x; ζ)])]

and

h(x; α, λ, σ, ζ) =
ασg(x; ζ)(λ− log[Gα(x; ζ)])

G(x; ζ)[σ log[Gα(x; ζ)]− (1 + λσ)(1− G−ασ(x; ζ))]
, (14)

respectively.
Now, we offer expressions for the quantile functions related to (10) and (11). Based on

the work of Jodrá and Jiménez-Gamero [17], it holds from F(X) = U and F∗(X∗) = U that,
respectively,

X = Qbaseline

(
exp1/ασ(1 + λ σ) exp1/ασ

{
W
[
−U (1 + λσ)

exp(1 + λσ)

]})
, (15)

and

X∗ = Qbaseline

([
1− exp1/σ(1 + λ σ) exp1/σ

{
W
[
−(1−U) (1 + λσ)

exp(1 + λσ)

]}]1/α
)

, (16)

where W(·) is the secondary branch Lambert W function. The last identities furnish random
number generators (RNGs) for distributions F∗(·) and F(·).

Some notable existing members of the families (12) and (13) are introduced in Table 1.
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Table 1. Particular and special cases defined from the proposed families. IA(x) means the indicator function in set A.

Family Survival Function (Parameter Restriction) Density Reference

Lindley distribution

f ∗(x) 1− G(x) = exp{−λx} (α = 1 and η = σλ) f ∗(x) = η2

1+η (1 + x) exp{−ηx} I(0,∞)(x) [18]
log-Lindley distribution

f (x) G(x) = x (α = 1 and η = σλ) f (x) = σ2

1+λσ (λ− log x)xσ−1I(0,1)(x) [10]
Power-Lindley distribution

f ∗(x) Ḡ(x) = exp{λxβ} (α = 1) f ∗(x) = βη2

1+η (1 + xβ)xβ−1 exp{−ηxβ}I(0,∞)(x) [19]
Power log-Lindley distribution

f (x) Ḡ(x) = x f (x) = ασ2

1+λσ (λ− log xα)xασ−1I(0,1)(x) [new]
The inverse-Lindley distribution

f (x) G(x) = exp{−λx−1} (α = 1) f (x) = η2

1+η

(
1+x
x3

)
exp{−ηx−1}I(0,∞)(x) [20]

The inverse power Lindley distribution

f (x) G(x) = exp{−λx−γ} (α = 1) f (x) = γη2

1+η

(
1+xγ

x2γ+1

)
exp{−ηx−γ} I(0,∞)(x) [21]

The weighted log-Lindley distribution

f (x) σ = β + γ and G(x) = x (α = 1) f (x) = (β+γ)2

1+(β+γ)λ
(λ− log x)xβ+γ−1 I(0,1)(x) [new]

Generalized inverse-Lindley distribution

f (x) G(x) = exp{−λx−β} (α = 1) f (x) = βη2

1+η (1 + x−β)x−β−1 exp{−ηx−β}I(0,∞)(x) [22]
Generalized weighted Lindley distribution

f ∗(x) G(x) = exp{−(λx)β} (α = σ = 1) f ∗(x) = βλβ

1+λ

(
λ + (λx)β

)
xβ−1 exp{−(λx)β}I(0,∞)(x) [23]

Lindley-exponential distribution

f (x) G(x) = (1− exp{−θx})λ (α = 1) f (x) = θη2

1+η e−θx
(

1− e−θx
)η−1

(1− log[1− exp{−θx}])I(0,∞)(x) [24]
Transformed gamma distribution

f (x) G(x) = x (α = 1 and λ = 0) f (x) = σ2 (1− x)σ−1 [− log(1− x)] I(0,1)(x) [25]
log-gamma generated family

f (x) (α = 1 and λ = 0) f (x) = σ2 xσ−1 (− log x) I(0,1)(x) [15]

3. Special GLL Generalized Laws

Some particular models from the GLL-G family (12) are given as functions of three
known distributions. In particular, these are the exponential, the Maxwell-Boltzmann (MB),
and the Lévy distributions, each of which has densities of

g(x; β) = β e−β x I(0,∞)(x),

g(x; β) =

√
2
π

x2 e−x2/(2 β2)

β
I(0,∞)(x)

and

g(x; β) =

√
β

2 π

e−
β

2 x

x3/2 I[0,∞)(x).

3.1. The GLL-Exp Distribution

Taking the exponential pdf and cdf as input for (13) and (14), one has

fGLL−Exp(x) =

(
α β σ2

1 + λσ

)
e−β x [1− e−β x]ασ−1

{
1 + σ

[
λ− α log

(
1− e−β x

)]}
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and

hGLL−Exp(x) =
α β σ2 e−β x [λ− α log

(
1− e−β x)](

1− e−β x
){

σ α log
(
1− e−β x

)
− (1 + λσ)

[
1−

(
1− e−β x

)−ασ
]} .

This case is denoted by X ∼ GLL-Exp(α, λ, σ, β).

3.2. The GLL-MB Distribution

Setting the MB pdf and cdf as input for (13) and (14), the following functions hold:

fGLL−MB(x) =

α
√

2
π β−1 σ2

1 + λσ

 x2 e−x2/(2β2)

[
Erf

(
−x√

2β

)
−
√

2
π

x e−x2/(2 β2)

β

]ασ−1

×
{

1 + σ

[
λ− α log

(
Erf

(
−x√

2β

)
−
√

2
π

x e−x2/(2 β2)

β

)]}

and

hGLL−MB(x) =

α
√

2
π β−1 σ2 x2 e−x2/(2β2)

[
λ− α log

(
Erf
(
−x√

2β

)
−
√

2
π

x e−x2/(2 β2)

β

)]
[

Erf
(
−x√

2β

)
−
√

2
π

x e−x2/(2 β2)

β

]
σ α log

[
Erf

(
−x√

2β

)
−
√

2
π

x e−x2/(2 β2)

β

]
− (1 + λσ)

1−
[

Erf

(
−x√

2β

)
−
√

2
π

x e−x2/(2 β2)

β

]−ασ


−1

,

where Erf(·) is the error function. This case is typified by X ∼ GLL-MB(α, λ, σ, β).

3.3. The GLL-L Distribution

Taking the Lévy pdf and cdf as input for (13) and (14), one follows

fGLL−L(x) =

α
√

β
2π σ2

1 + λσ

 e−β/ (2 x)

x3/2 Erfcασ−1

(√
β

2 x

)

×
{

1 + σ

[
λ− α log Erfc

(√
β

2 x

)]}

and

hGLL−L(x) =

α
√

β
2π σ2 e−β/ (2 x)

x3/2

[
λ− α log Erfcασ−1

(√
β

2 x

)]
Erfc

(√
β

2 x

){
σ α log Erfc

(√
β

2 x

)
− (1 + λσ)

[
1− Erfc−ασ

(√
β

2 x

)]} ,

where Erfc(·) is the complementary error function. This case is addressed by X ∼
GLL-L(α, λ, σ, β).

4. Expansion for the Density Function

Considerable mathematical developments of the proposed families can be derived by
means of linear combinations of pdfs of the exponentiated-G (“Exp-G” for short) family. In
this section, we find a helpful expansion for the pdf (12) as a double linear combination of
Exp-G densities. Then, we find an expansion for f ∗(x; α, λ, σ, ζ).

For a σ > 0 real non-integer, we have the power series expansion

[1− Gα(x; ζ)]σ−1 =
∞

∑
i=0

(−1)i
(

σ− 1
i

)
Gαi(x; ζ), (17)
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where, for any real number, the binomial cofficient is defined. Applying the expansion (17)
to (12), we have

f ∗(x; α, λ, σ, ζ) =
ασ2

1 + λσ
g(x; ζ){λ− log[1− Gα(x; ζ)]}

×
∞

∑
i=0

(−1)i
(

σ− 1
i

)
Gα(i+1)−1(x; ζ). (18)

If σ is an integer, the indicator i in the preceding sum stops at σ− 1. Further, the fol-
lowing expansion holds for |z| < 1:

log(1− z) = −
∞

∑
j=0

zj+1

j + 1
. (19)

By inserting (19) in (18),

f ∗(x; α, λ, σ, ζ)

=
∞

∑
i=0

vig(x; ζ) Gα(i+1)−1(x; ζ) +
∞

∑
i,j=0

ηi,j g(x; ζ) Gα(i+j+2)−1(x; ζ) (20)

where vi =
αλσ2

1+λσ (−1)i(σ−1
i ) and ηi,j =

ασ2

1+λσ (−1)i(σ−1
i ) 1

j+1 .

Finally, the pdf (20) can be represented as a double mixture of infinite linear combina-
tions of the Exp-G densities

f ∗(x; α, λ, σ, ζ) =
∞

∑
i=0

ωihα(i+1)(x) +
∞

∑
i,j=0

ηi,jhα(i+j+2)(x), (21)

where ωi =
vi

α(i+1) , ωi,j = ηi,j/α(i + j + 2) and Hb(x) = Gb(x) and hb(x) = bg(x)G(x)b−1

denote the Exp-G cdf and pdf with power parameter b, respectively. Therefore, various
mathematical tools of the novel distribution family can be obtained from the Exp-G model,
such as different kinds of moments.

5. Mathematical Properties

We will develop a number of mathematical features of the GLL-G distribution family
(12) in this section: moments, moment generating function (mgf), mean deviations and
(reversed) residual lifetime moments.

These measures have several applications in practice. For instance, in economics, the
total proportion of a company’s accumulated revenue can be defined in terms of including
ordinary and incomplete moments. Lorenz and Bonferroni curves also involve these
moments and are of great applicability in social and political phenomena.

5.1. Moments

Let Yα(i+1) and Yα(i+j+2) be two distributed exp-G random variables having densities
hα(i+1)(x) and hα(i+j+2)(x), respectively. Then, the nth moment of X, say µ′n, follows from
(21) as

µ′n = E[Xn] =
∞

∑
i=0

ωiE
[
Yn

α(i+1)

]
+

∞

∑
i,j=0

ηi,jE
[
Yn

α(i+j+2)

]
. (22)

Nadarajah and Kotz [26] presented expressions for the moments of various exp-G
distributions, which can be utilized to achieve µ′n. Setting n = 1 in (22) gives the mean of X.
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Other expressions for E[Xn] can be derived from (22) in terms of the G quantile function
for ρ > 0. Note that for Yρ following the Exp-G law,

E(Yn
ρ ) = ρ

∫ ∞

∞
xn g(x; ζ) G(x; ζ)ρ−1 dx = ρ

∫ 1

0
QG(u; ζ)n uρ−1 du,

where QG(u; ζ) = G−1(x; ζ) is the baseline quantile function.

5.2. Incomplete Moments

The nth incomplete moment of X is given by

mn(y) = E[Xn|X < y] =
∞

∑
i=0

ωimn,α(i+1)(y) +
∞

∑
i,j=0

ηi,jmn,α(i+j+2)(y), (23)

where

mn,ρ(y) =
∫ G(y;ζ)

0
QG(u; ζ)nuρ−1du.

This integral can be evaluated for the majority of the G-distributions.

5.3. Generating Function

Then, we contribute with two formulations for the mgf Mx(t). The early one may be
obtained from (21) as

MX(t) =
∞

∑
i=0

ωi Mα(i+1)(t) +
∞

∑
i,j=0

ηi,j Mα(i+j+2)(t), (24)

where Mα(i+1)(t) and Mα(i+j+2)(t) are the mgfs of Yα(i+1) and Yα(i+j+2), respectively.
Hence, MX(t) can be derived from the Exp-G generating function. in terms of the G
quantile function, another expression for MX(t) can be found from (24) as: for ρ > 0,

Mρ(t) = ρ
∫ ∞

∞
etxg(x; ζ)G(x; ζ)ρ−1dx = ρ

∫ 1

0
etQG(u;ρ)uρ−1du, (25)

where Mρ(t) is the mgf of Yρ. This integral can be numerically evaluated for many of the
similar distributions.

5.4. Mean Deviations

The mean deviations around the mean (δ1) and for the median (δ2) of X can be
revealed as

δ1 = 2 µ′1 F(µ′1) − 2 m1(µ
′
1) and δ2 = µ′1 − 2 m1(M), (26)

respectively, where M is the median of X (obtained defining U = 1/2 in (15) and (16)) and
m1(z) is the first incomplete moment achieved from (23) at n = 1.

5.5. Moments of Residual and Reversed Lifetimes

The residual and reversed residual lifetime random variables play an important role
in reliability theory. The moments of such variables are extensively used in actuarial
sciences and analysis of risks. The moments of residual and reversed lifetimes of X can be
formulated as (for t ≥ 0)

Kn(t) =
1

1− F∗(t)

[
E(Xn)−

∫ t

0
xn f ∗(x)dx

]
− t

=
1

1− F∗(t)
[E(Xn)−mn(t)]− t

(27)
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and

Ln(t) = t− 1
F∗(t)

∫ t

0
xn f ∗(x)dx = t− 1

F∗(t)
mn(t), (28)

respectively, where F∗(·), f ∗(·) and E(Xn) are given by (10), (12) and (22), respectively, and
mn(t) is the nth incomplete moment which can be calculated from (23).

6. Entropy

Information theory is a branch of mathematics concerned with the quantification of
information between communication channels [27]. One of its most important measures
is entropy, which describes the degree of disorder in a stochastic system. Now, we tackle
three common entropy measures, developed by Shannon [28], Rényi [29] and Mathai and
Haubold [30], defined as

ηx = E(− log[ f (x)]), (29)

IR(γ) =
1

1− γ
log
[∫
R

f (x)γdx
]

(30)

and

JMH(δ) =

∫
R[ f (x)2−δ]dx− 1

δ− 1
, (31)

respectively, where γ > 0, γ 6= 1, δ 6= 1 and δ < 2. The following relation is satisfied:

lim
γ→1

IR(γ) = lim
δ→1

JMR(δ) = ηx.

Several works have focused on the derivation of these measures for specific distribu-
tions [31–33]. These measures are derived for one of the proposed families in what follows.

6.1. Rényi Entropy

From Equation (12), we can write

f ∗(x)γ =

(
λσ2

1 + λσ

)γ

hα(x)γ(1− Gα(x))γ(σ−1)
(

1− 1
λ

log[1− Gα(x)]
)γ

. (32)

Applying the power series (17) to (32), we have

f ∗(x)γ =

(
λσ2

1 + λσ

)γ

hα(x)γ
∞

∑
i,m=0

(−1)i(1/λ)m
(

γ

m

)(
γ(σ− 1)

i

)
× Gαi(x)(− log[1− Gα(x)])m. (33)

Expanding the power of (− log[1− Gα(x)]) as:

(− log[1− Gα(x)])m

=
∞

∑
k,l=0

k

∑
j=0

(−1)j+k+lm
(m− j)

(
k−m

k

)(
k
j

)(
m + k

l

)
pj,k(1− Gα(x))l .

where (for j ≥ 0), pj,0 = 1 and (for k = 1, 2, . . .), pj,k = k−1 ∑k
s=1

(−1)s [s(j+1)−k]
s+1 pj,k−s,

Additionally, if we use the binomial expansion of the last equation and insert it
in the equation above related to the expansion of power series in (33), we have the
follow expression:

f ∗(x)γ =
∞

∑
r=0
Drhα(x)γGα(i+r)(x),
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where

Dr =

(
λσ2

1 + λσ

)γ ∞

∑
i,m=0

∞

∑
k,l=0

k

∑
j=0

(−1)i+j+k+lm(1/λ)m

(m− j)

×
(

k−m
k

)(
k
j

)(
m + k

l

)(
γ

m

)(
γ(σ− 1)

i

)
pj,k.

Then, the entropy reduces to the following:

IR(γ) =
1

1− γ
log

[
∞

∑
r=0
Dr

∫ ∞

∞
hα(x)γG(x)α(i+r)dx

]
. (34)

The Rényi entropy can be used to characterize symmetric distributions [34].

6.2. Mathai–Haubold Entropy
Since

f ∗(x)2−δ =

(
λσ2

1 + λσ

)2−δ

hα(x)2−δ(1− Gα(x))(2−δ)(σ−1)
(

1− 1
λ

log[1− Gα(x)]
)2−δ

, (35)

after some algebraic manipulations, (35) reduces to

f ∗(x)2−δ =
∞

∑
r=0

ϕrhα(x)2−δGα(i+r)(x)),

where

ϕr =

(
λσ2

1 + λσ

)2−δ ∞

∑
i,m=0

∞

∑
k,l=0

k

∑
j=0

(−1)i+j+k+l(1/λ)m

(m− j)

×
(

k−m
k

)(
k
j

)(
m + k

l

)(
2− δ

m

)(
2− δ(σ− 1)

i

)
pj,k.

Applying all the above results, we get

JMH(δ) =
1

δ− 1

[
∞

∑
r=0

ϕr

∫ ∞

∞
hα(x)2−δG(x)α(i+r)dx− 1

]
. (36)

Among other things, Mathai–Haubold entropy can be strongly associated with the
theory of record values [35].

7. Order Statistics

Order statistics has been used for a variety of applied (reliability analysis, censored
sample analysis, . . . ) and theoretical (including characterization of probability distributions
and goodness-of-fit tests, robust statistical estimation, entropy estimation, . . . ) contexts.
In the following, we derive expressions for the cdf and the density of the GLL family.

The pdf of the ith order statistic, say, Xi:n, for a random sample from GLL-G (12),
is expressed by

fi:n(x) =
n!

(i− 1)!(n− i)!

n−i

∑
j=0

(−1)i
(

n− i
j

)
f ∗(x)F∗(x)i+j−1. (37)

Based on (10), we have

F∗(x)i+j−1 =
∞

∑
m,k,r,h=0

ω̄m,k,r,hGam(x)

(
∞

∑
s=0

asGα(s+1)(x)

)h

, (38)
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where

ω̄m,k,r,h = (−1)k+m+h
(

i + j− 1
h

)(
αk
m

)(
k
r

)
σrλr−h

(1 + λσ)k

and as = (s + 1)−1.

We use the identity
(

∑∞
l=0 al xl

)n
= ∑∞

l=0 dl,nxl (see Gradshteyn and Ryzhik [36]),

where d0,n = an
0 and dl,n = (la0)

−1 ∑l
z=0[z(n + 1) − l]azdl− n, (for l = 1, 2, . . . ) in (38)

to obtain

F∗(x)i+j−1 =
∞

∑
m,k,r,h=0

∞

∑
s=0

ω̄m,k,r,hds,hGα(s+1)+αm(x). (39)

Inserting (21) and (39) into (37), the pdf of Xi:n becomes

fi:n(x) =
∞

∑
s,m,k,r,h=0

n−i

∑
j=0

ω̄∗s,m,k,r,h

[
∞

∑
i=0

ϕhα(i+s+m+2)(x) +
∞

∑
i=0
Dhα(i+j+s+m+3)(x)

]
, (40)

where

ω̄∗s,m,k,r,h =(−1)k+m+h+i
(

i + j− 1
h

)(
n− i

j

)(
αk
m

)(
k
r

)
n!

(i− 1)!(n− i)!
σrλr−h

(1 + λσ)k ds,h,

ϕ = ϕ(i, s, m) =
(i + 1)ωi

i + s + m + 2
and D = D(i, j, s, m) =

(i + j + 2)ηi,j

(i + j + s + m + 3)
.

It is noticeable that the density of the GLL-G order statistics consists in an Exp-G
density mixture. As a result, for Exp-G distributions, the mgf and moments of GLL-G order
statistics derive instantly from linear combinations of those values.

8. Estimation of the Parameters

The maximum likelihood estimates (MLEs) for GLL-G parameters are discussed here.
Let x1, x2, . . . , xn be observed values from the GLL-G distributions given by (12) with
parameter vector θ = (α, λ, σ, ζT)T , where ζ = [ζ1, . . . , ζp]T is the p-dimensional parameter
vector. Then, the log-likelihood function l = l(θ) for θ is constructed by

l = l(θ) = n log(α) + 2n log(σ)− n log(1 + λσ) +
n

∑
i=1

log[g(xi; ζ)]

+ (α− 1)
n

∑
i=1

log[G(xi; ζ)] + (σ− 1)
n

∑
i=1

log[1− Gα(xi; ζ)]

+
n

∑
i=1

log[λ− log[1− Gα(xi; ζ)]].

(41)

The score vector members are determined by

∂l
∂α

=
n
α
+

n

∑
i=1

log[G(xi; ζ)]− (σ− 1)
n

∑
i=1

Gα(xi; ζ) log[G(xi; ζ)]

1− Gα(xi; ζ)

+
n

∑
i=1

Gα(xi; ζ) log[G(xi; ζ)]

(1− Gα(xi; ζ))(λ− log[1− Gα(xi; ζ)])
,

∂l
∂λ

= − nσ

1 + λσ
+

n

∑
i=1

1
λ− log[1− Gα(xi; ζ)]

,
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∂l
∂σ

=
2n
σ
− nλ

1 + λσ
+

n

∑
i=1

log[1− Gα(xi; ζ)]

and

∂l
∂ζk

=
n

∑
i=1

g′k(xi; ζ)

g(xi; ζ)
+ (α− 1)

n

∑
i=1

G′k(xi; ζ)

G(xi; ζ)
− α(σ− 1)

n

∑
i=1

Gα−1(xi; ζ)G′k(xi; ζ)

1− Gα(xi; ζ)

+ α
n

∑
i=1

Gα−1(xi; ζ)G′k(xi; ζ)

(1− Gα(xi; ζ))(λ− log[1− Gα(xi; ζ)])

for k = 1, 2, . . . , p. Setting ∂l
∂α , ∂l

∂λ , ∂l
∂σ and ∂l

∂ζ equal to zero and solving these equations

numerically leads to the MLEs θ̂ =
(

α̂, λ̂, σ̂, ζ̂T
)T

for θ. Clearly, these equations cannot
be determined analytically, so that any statistical software package like Mathematica and
R can be used to solve them numerically. For interval estimation and testing hypotheses,
the observed information matrix, I(θ), is required. It is defined as

I(θ) =


Iαα Iαλ Iασ | IT

αζ

Iλα Iλλ Iλσ | IT
λζ

Iσα Iσλ Iσσ | IT
σζ

−− −− −− −− −−
Iζα Iζλ Iζσ | IζζT

,

whose elements are

Iαα = − n
α2 − (σ− 1)

n

∑
i=1

log[G(xi; ζ)]2
{

G2α(xi; ζ)

[1− Gα(xi; ζ)]2
+

Gα(xi; ζ)

1− Gα(xi; ζ)

}
+

n

∑
i=1

log[G(xi; ζ)]2
{

G2α(xi; ζ)

[1− Gα(xi; ζ)]2[λ− log[1− Gα(xi; ζ)]]2

+
G2α(xi; ζ)

[1− Gα(xi; ζ)]2[λ− log[1− Gα(xi; ζ)]]
+

Gα(xi; ζ)

[1− Gα(xi; ζ)][λ− log[1− Gα(xi; ζ)]

}
,

Iαλ = −
n

∑
i=1

{
Gα(xi; ζ) log[G(xi; ζ)]

[1− Gα(xi; ζ)][λ− log[1− Gα(xi; ζ)]]2

}
,

Iασ = −
n

∑
i=1

{
Gα(xi; ζ) log[G(xi; ζ)]

1− Gα(xi; ζ)

}
,

Iαζk =
n

∑
i=1

G′k(xi; ζ)

G(xi; ζ)
− (σ− 1)

n

∑
i=1

G′k(xi; ζ)

{
Gα−1(xi; ζ)

1− Gα(xi; ζ)
+ α

G2α−1(xi; ζ) log[G(xi; ζ)]

[1− Gα(xi; ζ)]2

+α
Gα−1(xi; ζ) log[G(xi; ζ)]

1− Gα(xi; ζ)

}
+

n

∑
i=1

G′k(xi; ζ)

{
Gα−1(xi; ζ)(α + log[G(xi; ζ)])

[1− Gα(xi; ζ)][λ− log[1− Gα(xi; ζ)]]

+α
G2α−1 log[G(xi; ζ)][λ− log[1− Gα(xi; ζ)]− 1]

[1− Gα(xi; ζ)]2[λ− log[1− Gα(xi; ζ)]]2

}
,

Iλλ =
nσ2

(1 + λσ)2 −
n

∑
i=1

1
[λ− log[1− Gα(xi; ζ)]]2

,

Iλσ =
nλσ

(1 + λσ)2 −
n

1 + λσ
,

Iλζk = −α
n

∑
i=1

Gα−1(xi; ζ)G′k(xi; ζ)

[1− Gα(xi; ζ)][λ− log[1− Gα(xi; ζ)]]2
,
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Iσσ = −2n
σ2 +

nλ2

(1 + λσ)2 ,

Iσζk = −α
n

∑
i=1

Gα−1(xi; ζ)G′k(xi; ζ)

1− Gα(xi; ζ)

and

Iζkζr =
n

∑
i=1

g′′kr(xi; ζ)

g(xi; ζ)
−

n

∑
i=1

g′k(xi; ζ)g′r(xi; ζ)

g(xi; ζ)2 + (α− 1)
n

∑
i=1

G′′kr(xi; ζ)

G(xi; ζ)

− (α− 1)
n

∑
i=1

G′k(xi; ζ)G′r(xi; ζ)

G(xi; ζ)2 − α(σ− 1)
n

∑
i=1

G2α−2(xi; ζ)G′k(xi; ζ)G′r(xi; ζ)

[1− Gα(xi; ζ)]2

− α2(σ− 1)
n

∑
i=1

Gα−1(xi; ζ)G′′kr(xi; ζ) + (α− 1)Gα−2(xi; ζ)G′k(xi; ζ)G′r(xi; ζ)

[1− Gα(xi; ζ)][λ− log[1− Gα(xi; ζ)]]

+ α2
n

∑
i=1

G2α−2(xi; ζ)(1− [λ− log[1− Gα(xi; ζ)]])G′k(xi; ζ)G′r(xi; ζ)

[1− Gα(xi; ζ)]2[λ− log[1− Gα(xi; ζ)]]2
.

9. Simulation Study

Now we are able to perform some simulation studies to confirm the asymptotic
properties of the MLEs. The simulation study was made following the Monte Carlo
approach. For this purpose, we use the RNG developed in Section 2. We use bias (difference
between the average of the MLEs and the true parameter value) and mean squared error
(MSE) as performance measures. The best performances are associated with the smallest
values of bias and MSE.

In terms of simulation configuration, we assumed:

• Sample sizes: n ∈ {25, 50, 100, 200};
• Additional parameters: α ∈ {1.2, 2}, λ ∈ {0.3, 2, 3} and σ ∈ {1.3, 2};
• Baseline parameter (exponential distribution): β ∈ {0.3, 2};
• Figures of merit: bias and MSE.

Figure 1 displays two simulated GLL-Exp cases. It is possible to note the Lambert-
based RNG (15) works well. It should be emphasized that the acceptance-rejection simula-
tion method is a good alternative when the latter (derived from the inversion method) fails.
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Figure 1. Estimated and empirical density from simulated data.
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Table 2 shows the result of the simulation study. In general, estimating λ and σ was
more difficult than estimating α and β. However, when the sample size was increased, both
the MSE and the bias decreased.

Table 2. Simulation study for quantifying bias and MSE of MLEs in several parametric points.

Points n
Bias (MSE)

α̂ λ̂ σ̂ β̂

(2, 2, 2, 2)

25 1.5367 (10.54) 1.239 (16.13) 5.1049 (116.94) 0.5967 (3.24)
50 0.7668 (2.84) 1.0606 (12.66) 3.6457 (77.04) 0.3628 (0.47)

100 0.3838 (1.00) 0.8153 (10.07) 1.8592 (30.74) 0.2577 (0.28)
200 0.2186 (0.45) 0.6925 (7.65) 0.4983 (6.83) 0.1904 (0.17)

(2, 0.3, 2, 0.3)

25 1.3201 (8.26) 0.7664 (4.65) 8.7398 (237.00) 0.3545 (0.71)
50 0.5266 (1.87) 0.4327 (1.94) 7.51 (191.22) 0.1726 (0.34)

100 0.2541 (0.67) 0.2858 (0.69) 5.3906 (117.71) 0.0512 (0.14)
200 0.0342 (0.19) 0.1274 (0.25) 3.1959 (45.99) −0.021 (0.04)

(1.2, 3, 1.3, 2)

25 0.2989 (0.63) 3.9986 (77.26) 2.9847 (52.37) 3.5303 (36.28)
50 0.1096 (0.20) 4.4243 (82.09) 1.4924 (23.35) 3.1313 (25.91)

100 0.0443 (0.09) 4.4327 (80.18) 0.6669 (9.39) 2.5906 (17.67)
200 0.0154 (0.05) 4.032 (67.12) 0.2413 (4.20) 2.0593 (11.93)

10. Applications

We compare the performance of the generalized log-Lindley-G family having three
different baselines as input: exponential, Lévy and Maxwell distributions. The database
we used can be found in Hamedani et al (2017) [37], and it represents the time between
failures for repairable items. Figure 2 provides both fits of cdfs and pdfs to the data for the
considered models. It is possible to note by visual inspection that the GLL-Exp distribution
outperformed the remaining models. Table 3 exhibits MLEs and their associated standard
errors (SEs). It is noticeable that these values were well defined in all cases; i.e., asymptotic
confidence intervals did not include zero. Table 4 exhibits the results of four goodness-of-fit
(GoF) measurements that were employed in this comparison study: Akaike information cri-
terion (AIC), corrected AIC (AICc), Kolmogorov–Smirnov (K-S) and Bayesian information
criterion (BIC) statistics. Confirming previous qualitative discussions, the values indicate
that the GLL-Exp distribution had the greatest performance.
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Figure 2. Estimated and empirical density and cdf of the selected baselines for repairable data.
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Table 3. Estimates (their standard error) of GLL-G parameters for the repairable data.

GLL-G Estimates (SEs)

Models α̂ λ̂ σ̂ θ̂

GLL-Exp 2.18 (0.37) 2.01 (0.71) 1.15 (0.45) 1.12 (0.4)
GLL-L 2.70 (0.27) 3.13 (1.55) 4.49 (0.29) 0.50 (0.24)

GLL-MB 0.41 (0.19) 2.77 (0.41) 3.32 (0.49) 2.99 (0.01)

Table 4. Goodness-of-fit for the selected baselines.

GLL-G GoF Measures

Models AIC AICc BIC K-S

GLL-Exp 87.24 88.84 92.84 0.63
GLL-MB 88.67 90.27 94.28 0.97
GLL-L 94.86 96.46 100.46 0.67

11. Conclusions

We have established two new families of distributions in this paper named generalized
log-Lindley families, which stem from the log-Lindley family. We have obtained several of
their mathematical properties, such as expansions for density and cumulative distribution
functions, entropies, moment generating functions, entropies and stochastic ordering.
Maximum likelihood (ML) estimation procedures have been proposed as well. We have
seen through simulation that the ML estimators had behavior aligned with it as expected
asymptotically. Finally an application was made in order to illustrate the new family.
Results favored the GLL-Exp law relative to the GLL-MB and -L distributions.
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