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Abstract: The enhanced Craig–Bampton (ECB) method is a novel extension of the original Craig–
Bampton (CB) method, which has been widely used for component mode synthesis (CMS). The ECB
method, using residual modal compensation that is neglected in the CB method, provides dramatic
accuracy improvement of reduced matrices without an increasing number of eigenbasis. However,
it also needs additional computational requirements to treat the residual flexibility. In this paper,
an efficient parallelization of the ECB method is presented to handle this issue and accelerate the
applicability for large-scale structural vibration problems. A new ECB formulation within a sub-
structuring strategy is derived to achieve better scalability. The parallel implementation is based on
OpenMP parallel architecture. METIS graph partitioning and Linear Algebra Package (LAPACK) are
used to automated algebraic partitioning and computational linear algebra, respectively. Numerical
examples are presented to evaluate the accuracy, scalability, and capability of the proposed parallel
ECB method. Consequently, based on this work, one can expect effective computation of the ECB
method as well as accuracy improvement.

Keywords: structural dynamics; model reduction; parallel computation; component mode synthesis;
primal assembly

1. Introduction

The Craig–Bampton (CB) method is one of the most successful component mode
synthesis (CMS) techniques [1]. It has been implemented in various commercial software
packages. The CB method was originally developed for structural vibration analysis in
aerospace engineering, but it has been used in various engineering fields. The CB method is
a standard coordinate reduction technique of elastic bodies (finite element model in general)
in flexible multibody dynamics (FMBD) [2–5]. Recently, the CB method has been extended
to structural vibration with uncertainties [6–8], and employed to multiphysics coupled
problems, such as thermomechanical models [9] and vibro-acoustic interactions [10,11].

The CB method starts from substructuring (mathematically matrix partitioning). The
original model is partitioned into substructures and the interface boundary. In the mode
superposition manner, the substructural DOFs are presented by using few dominant modes
that are substructural eigenvectors, and the constraint modes at the interface boundary
are additionally employed to reassemble the substructural modes. Most eigenvectors of
substructures, which are over 95% of the total DOFs in general, are neglected in the reduced
matrix. It means that the accuracies of the CB-reduced matrices depend on the dominant
and constraint modes. Thus, many researchers have sought to develop selection criteria
of the important modes that well describe the substructural response [12–14]. Kim et al.
investigated the performance of the various mode selection methods [15].

Conventionally, varying the numbers of retained dominant modes is one way to ac-
curacy control of the reduced matrices. Using more modes provides better accuracy, but
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causes larger sizes of reduced matrices. Computational efficiency is then compromised
in the desired accuracy level of the reduced matrices. The mode correction (or updating)
techniques are alternatives of the mode selection methods. Considering residual flexibil-
ity to the dominant mode correction may be the most popular technique. The residual
flexibility is natural in free interface CMS methods, which are the CMS methods with sub-
structural interfaces, with classical and/or localized Lagrange multipliers [16–18]. However,
the first trial using the residual flexibility of the CB method was proposed by Kim et al. [19],
known as the enhanced CB (ECB) method. The ECB method considers the first order term
of the residual flexibility in an infinite series expansion for dominant modal correction;
nevertheless, it shows dramatic accuracy improvement, over (around) three or four digits,
of the CB-reduced matrices, without increasing the number of the dominant modes. The
ECB method has provided motives to many following works, such as iterative algorithms,
considering higher order residual terms [20–22], precise stochastic model reduction [23],
multiscale model reduction [24,25], eigenvalue problem solvers [26], etc. Kim et al. [27]
generalized the model reduction with the residual flexibility, and summarized the relation-
ship between the CMS and dynamic condensation methods. The accuracy improvement of
the ECB families is clear, but treatments of the residual flexibility for the modal correction
require additional computational costs. In particular, the ill-conditioned problems are se-
vere through the higher iteration steps. Regularization may be considered to handle this
problem. Go et al. [22] proposed a high fidelity iterative ECB method within a standard 16
digit computation, and compared the results with the other iterative techniques required
over 32 digits to get stable numerical solutions. However, effective computation has been
less investigated and, thus, the ECB family has been limited when applied into large-scale
structural problems.

To overcome this issue, an efficient parallelization of the ECB method is presented.
The original ECB formulation is then reorganized first for the parallel computation. In this
numerical algorithm, the METIS library [28] is used to partition the structure automatically,
then the reduced matrices are calculated directly by assembling blockwise contributions
from substructures, exploiting the fact that substructures are independent and can be
processed in parallel. The Intel MKL library [29] provides the necessary matrix operations.
The blockwise ECB formulation for the applicability of the parallel computation is presented
in Section 2. The details of the parallel implementation of the ECB method, including the
algorithm, are described in Section 3. The performances of both accuracy and computational
efficiency of the proposed algorithm are investigated in Section 4. Conclusions are presented
in Section 5.

2. The Enhanced Craig–Bampton Method

The enhanced Craig–Bampton method [19] is presented in this section. In the substruc-
turing manner, the original formulations are explicitly presented and modified for parallel
implementation. The equations of the motion of structural dynamics can be written as

Mü + Ku = f, (1a)

M =

[
Ms Mc
MT

c Mb

]
, K =

[
Ks Kc
KT

c Kb

]
, (1b)

u =

[
us
ub

]
, f =

[
fs
fb

]
, (1c)

where M and K are mass and stiffness matrices, respectively; u and f are displacement
and force vectors, respectively. The subscripts s, b, and c denote substructure, interface
boundary, and coupling matrices (or vectors), respectively. Here, the matrices and vectors
with respect to substructures are
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Ms = diag
[

M(1)
s . . . M(i)

s . . . M(Ns)
s

]
, (2a)

Ks = diag
[

K(1)
s . . . K(i)

s . . . K(Ns)
s

]
, (2b)

Mc =



M(1)
c
...

M(i)
c
...

M(Ns)
c


, Kc =



K(1)
c
...

K(i)
c
...

K(Ns)
c


, us =



u(1)
s
...

u(i)
s
...

u(Ns)
s


, fs =



f(1)s
...

f(i)s
...

f(Ns)
s


, (2c)

where Ms and Ks are block diagonal mass and stiffness matrices of substructures, respec-
tively. Ns denotes number of substructures.

In the CB method [1], the original displacement vector u is approximated by combining
the substructural eigenvectors and interface constraint modes as follows:

u ≈ ū =

[
ūs
ub

]
= Tp, T =

[
Φs C
0 Ib

]
, p =

[
qs
ub

]
, C = −K−1

s Kc (3)

where an overbar denotes an approximation. T is a transformation matrix, qs is a general-
ized coordinate vector of substructures, C is a constraint matrix, and Ib is an identity matrix
of interface boundary, respectively. Φs is a substructural eigenvector matrix calculated
from the following eigenvalue problems:

K(k)
s (φ(k))i = λ

(k)
i M(k)

s (φ(k))i, for i = 1, 2, . . . , n(k)
s , k = 1, 2, . . . , Ns, (4)

where n(k)
s is the number of DOFs of the kth substructure. The number of total DOFs is

defined as n = nb + ns (ns = ∑ n(k)
s ), in which nb is the number of interface boundary

DOFs. The ith eigenvalue and its corresponding eigenvector of the kth substructure are
denoted as λ

(k)
i and (φ(k))i, respectively. Then, the component matrices and vectors of

Equation (3) are

Φs = diag
[

Φ
(1)
s . . . Φ

(k)
s . . . Φ

(Ns)
s

]
, (5a)

Φ
(k)
s =

[ (
φ(k)

)
1

. . .
(

φ(k)
)

i
. . .

(
φ(k)

)
n(k)

s

]
, (5b)

us =



u(1)
s
...

u(k)
s
...

u(Ns)
s


, fs =



f(1)s
...

f(k)s
...

f(Ns)
s


, C =



C(1)

...
C(k)

...
C(Ns)


, (5c)

C(i) = −K(i)
s
−1

K(i)
c , for i = 1, 2, . . . , n(k)

s , k = 1, 2, . . . , Ns. (5d)

Note that the eigenvectors in this paper are defined as mass-orthonormal vectors.
By decomposing dominant and residual eigenvectors, the approximated displacement

vector in Equation (3) can be rewritten as
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ū = Tp, T =

[
Φd Φr C
0 0 Ib

]
, p =

 qd
qr
ub

, (6a)

Φj = diag
[

Φ
(1)
j . . . Φ

(k)
j . . . Φ

(Ns)
j

]
, (6b)

Φ
(k)
j =

[ (
φ(k)

)
1

. . .
(

φ(k)
)

i
. . .

(
φ(k)

)
n(k)

j

]
, (6c)

for i = 1, 2, . . . , n(k)
j , j ∈ [d, r], k = 1, 2, . . . , Ns, (6d)

where Φd and Φr are dominant and residual substructural eigenvector matrices, respec-
tively, and both are block diagonal matrices. qd and qr are the corresponding generalized
coordinate vectors, respectively. The subscripts d and r denote the dominant and residual
terms, respectively. Here, nd and nr denote numbers of the dominant and residual modes,
which are defined as nd = ∑ n(k)

d and nr = ∑ n(k)
r , respectively. The number of the dominant

modes is much less than the number of the residual modes in general structural vibration
(nd � nr < ns = nd + nr).

Using Equations (6a)–(6d) in Equations (1a)–(1c), we obtain the equations of motion
for the partitioned structure

TT
[

d2

dt2 M + K
]
Tp = TTf −→ (7a) Λ̂d 0 d2

dt2 ΦT
d M̂c

0T Λ̂r
d2

dt2 ΦT
r M̂c

d2

dt2 M̂T
c Φd

d2

dt2 M̂T
c Φr K̂b +

d2

dt2 M̂b


 qd

qr
ub

 =

 ΦT
d fs

ΦT
r fs

fb + CTfs

, (7b)

and the component matrices are

Λ̂d = Λd +
d2

dt2 Id, Λd = ΦT
d KsΦd, Id = ΦT

d MsΦd, (8a)

Λ̂r = Λr +
d2

dt2 Ir, Λr = ΦT
r KsΦr, Ir = ΦT

r MsΦr, (8b)

M̂c = Mc + MsC, K̂b = Kb + KT
c C. (8c)

M̂b = Mb + MT
c C + CTMc + CTMsC

−→ M̂b = Mb + MT
c C + CTM̂c. (8d)

From the mass-orthonormal condition, Id and Ir are identity matrices, and Λd and
Λr are diagonal matrices with the dominant and residual eigenvalues computed from
Equation (4), respectively.

The following reduced eigenvalue problem of the original CB method can be obtained
by neglecting the terms of the generalized coordinates with respect to the residual modes
from Equations (7a) and (7b):

KCB

[
qd
ub

]
= ω2MCB

[
qd
ub

]
, (9a)

KCB =

[
Λd 0
0 K̂b

]
, MCB =

[
Id ΦT

d M̂c
M̂T

c Φd M̂b

]
, (9b)

Λd = diag
[

Λ
(1)
d . . . Λ

(k)
d . . . Λ

(Ns)
d

]
, (9c)

in which ω is an angular frequency (λ = ω2). This is also derived by using the CB transfor-
mation matrix T0 from T, neglecting the residual modes (Φr) in Equations (6a)–(6d) as

MCB = TT
0 MT0, KCB = TT

0 KT0, T0 =

[
Φd C
0 Ib

]
. (10)
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Equation (10) means that the residual mode are simply neglected in the original CB
method, but considering the residual mode effect in the model reduction process provides
a change to dramatic improvement. It is a main idea of the enhanced CB method. From
the second row of Equations (7a) and (7b), assuming ΦT

r fs = 0, the generalized coordinate
vector of the residual modes, qr, can be expressed as

qr = −Λ̂−1
r ΦT

r M̂c

[
d2

dt2 ub

]
. (11)

Using Equation (11) in Equations (7a) and (7b), qd and ub are redefined, and then the
displacement vector in Equations (6a)–(6d) is modified as

ū = T1

[
qd
ub

]
, T1 = T0 + TrΞ, (12a)

Tr =

[
0 FrM̂c
0 0

]
, Ξ := M−1

CBKCB =

[
Ξ1 Ξ2
Ξ3 Ξ4

]
, (12b)

Fr = diag
[

F(1)
r . . . F(k)

r . . . F(Ns)
r

]
, (12c)

F(k)
r = Φ

(k)
r Λ

(k)
r
−1

Φ
(k)
r

T
= K(k)

s
−1
− F(k)

d , F(k)
d = Φ

(k)
d Λ

(k)
d

−1
Φ

(k)
d

T
, (12d)

where F(k)
r is the residual flexibility of the kth substructure, which is simply computed by its

full and dominant flexibilities. Ξ defined by using the CB-reduced matrices is an asymmetric
matrix. The new transformation matrix T1 can be obtained by the original CB transformation
matrix T0 and the additional transformation matrix Tr, including the residual modal effect.
The derivation details are well presented in Reference [19].

Using the enhanced transformation matrix T1 in Equation (10) instead of T0, the fol-
lowing enhanced reduced mass and stiffness matrices are defined

MECB = TT
1 MT1 = MCB + ΞTTT

r MT0 + TT
0 MTrΞ + ΞTTT

r MTrΞ, (13a)

KECB = TT
1 KT1 = KCB + ΞTTT

r KT0 + TT
0 KTrΞ + ΞTTT

r KTrΞ. (13b)

It clearly shows that the residual mode correction is additionally considered in the
ECB-reduced matrices. Therefore, the ECB formulation provides more accurate reduced
matrices than the original CB method.

Using the orthogonal condition and investigating the component matrix level in
Equations (13a) and (13b), we obtain

A := TT
r MT0 = TT

r KTr =

[
0 0
0 A22

]
, A22 = M̂T

c FrM̂c, (14a)

B := TT
r MTr =

[
0 0
0 B22

]
, B22 = M̂T

c FrMsFrM̂c, (14b)

TT
r KT0 = 0. (14c)

Using Equations (14a)–(14c), the reduced matrices in Equations (13a) and (13b) are
rewritten as

MECB = MCB + ΞTA + [ΞTA]T + ΞTBΞ, (15a)

KECB = KCB + [ΞTA]Ξ, ΞTA =

[
0 ΞT

3 A22
0 ΞT

4 A22

]
, (15b)

and then its eigenvalue problem is

KECB

[
qd
ub

]
= ω2MECB

[
qd
ub

]
. (16)
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It clearly shows that the sizes of the ECB-reduced matrices are exactly the same as the
sizes of the CB-reduced matrices.

After solving Equation (16), the original displacement vector can be obtained by
back-transformation from the reduced unknown vector as

u ≈ ū =

[
ūs
ub

]
= T1

[
qd
ub

]
, (17)

This is known as the modal-displacement method [30], which is a standard domain recov-
ery technique. It also clearly shows that the substructural displacement vector ūs is only
approximated and needs to recover.

Considering Equations (12a)–(12d), the ECB transformation matrix is explicitly written as

T1 = T0 + TrΞ =

[
Φd + FrM̂cΞ3 C + FrM̂cΞ4

0 Ib

]
, (18)

and ūs is then computed by

ūs =
[
Φd + FrM̂cΞ3

]
qd +

[
C + FrM̂cΞ4

]
ub. (19)

3. Parallel Implementation of the ECB Method

The implementation of the enhanced Craig–Bampton method is coded in Fortran,
using OpenMP [31] for parallelization. The computation of matrix inversion and eigen-
problem solution is done using the Intel Math Kernel Library [29], and the partitioning is
done using the METIS library [28].

There are principally three levels of parallelization in the reduction algorithm:

1. All independent parts of the algorithm are executed in parallel (e.g., component
matrices computation).

2. All ‘inner’ matrix operations (e.g., matrix-matrix multiplication) are explicitly paral-
lelized and/or vectorized over matrix rows or columns.

3. At the lowest level, the code is optimized and auto-parallelized by the compiler. Library
functions provided by METIS and Intel MKL are also optimized and parallelized.

3.1. Reduction Algorithm

Computing the reduced model matrices by multiplication with the transformation
matrices

KCB = TT
0 KT0, MCB = TT

0 MT0 (20)

and subsequently

KECB = TT
1 KT1, MECB = TT

1 MT1 (21)

is not efficient in case of large structures. Therefore, our reduction algorithm closely follows
the derivation given in Section 2. The properties of the involved matrices are carefully
examined and exploited to calculate the reduced matrices directly and efficiently.

Our reduction algorithm, outlined in Figure 1, is described in the following subsections.
The original model, represented by the sparse global stiffness matrix K̃ and sparse global
mass matrix M̃, is supplied by the user, who also chooses the number of substructures
N and the cutoff frequency fmax. The global matrices are not expected to contain any
prescribed (fixed) DOFs.
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START
Load input data

K̃, M̃, N, fmax

Partition global matrices
into the N substruc-
tures and the interface

Reorder global matrices

K̃ → K, M̃ → M

Calculate component ma-
trices for each substructure
(reduce DOFs using fmax)

Assemble KCB

Assemble MCB

Calculate M−1
CB

Calculate Ξ3,Ξ4

Assemble A22,B22

Calculate KECB

Calculate MECB

END

Figure 1. Parallel reduction algorithm.

3.1.1. Partitioning

The original model (structure) is partitioned into N partitions (substructures) using the
METIS library routines. The obtained partitions, however, cannot be readily used, because
they may contain interface DOFs. Therefore, an extra post-processing step is necessary to
identify the interface DOFs, remove them from the substructures, and put them into the
additional (N + 1)-th ‘interface’ partition.

Finally, the original global stiffness and mass matrix are reordered so that their rows
and columns correspond to the ordering of partitions

K = PK̃P, M = PM̃P, (22)

where P represents the associated permutation matrix. Once again, it would not be efficient
to form the permutation matrix explicitly and perform the double matrix multiplication.
Consequently, the elements in the stiffness and mass matrices are widely distributed in the
whole domain and, thus, those are inadequate for the sparse solver. To handle this issue,
the matrices are reordered directly during a matrix copy operation. The reordering elimi-
nates the need for complicated index-keeping and results in a significant simplification and
speed-up of all subsequent matrix operations. The original global matrices are discarded
after the reordering as they are no longer required.

3.1.2. Reduction

After the reordering, the substructural matrices K(i)
s , K(i)

c , M(i)
s and M(i)

c can be easily
extracted for any i-th substructure, see Equations (2a)–(2c).

Each substructure i = 1, . . . , N is independent and, therefore, can be processed in
parallel to obtain the following ‘substructural’ component matrices using Equations (8a)–(8d):

Λ
(i)
d , (23)

D̂(i)
K = (K(i)

c )TC(i), (24)

Ĉ(i) = (Φ
(i)
d )TM̂(i)

c , (25)

D̂(i)
M = (M(i)

c )TC(i) + (C(i))TM̂(i)
c (26)

and the following ‘interface’ component matrices using Equations (14a)–(14c):
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Â(i) = (M̂(i)
c )TF(i)

r M̂(i)
c , (27)

B̂(i) = (M̂(i)
c )TF(i)

r M(i)
s F(i)

r M̂(i)
c . (28)

Although the interface component matrices will not be required until later, it is more ef-
ficient to include them here as their calculations are also independent for each substructure.

The number of reduced DOFs (i.e., dominant modes) of each substructure is deter-
mined automatically by examining the eigenvalues obtained from the eigenproblem

K(i)
s q(i) = Λ

(i)
s M(i)

s q(i)

and considering only the eigenmodes that correspond to the eigenfrequencies that are
lower than the user-chosen cutoff frequency fmax.

Finally, the substructural component matrices are assembled to directly obtain the
reduced matrices as per Equation (9b):

KCB =

[
∑ Λ

(i)
d 0

0 Kb + ∑ D̂(i)
K

]
, (29)

MCB =

[
Id ∑ Ĉ(i)

sym. Mb + ∑ D̂(i)
M

]
. (30)

3.1.3. Enhanced Reduction

To compute the enhanced reduced order matrices, we need the standard reduced
order matrices and interface component matrices calculated earlier.

From the reduced model, the component matrices Ξ3 and Ξ4 are computed using
Equation (12b):

Ξ = M−1
CBKCB =

[
Ξ1 Ξ2
Ξ3 Ξ4

]
. (31)

However, the full matrix multiplication is not necessary, because the component
matrices Ξ1 and Ξ2 are never used.

Independently, the component matrices A22 and B22 are assembled using
Equations (14a)–(14c):

A22 = ∑ Â(i), B22 = ∑ B̂(i). (32)

Finally, using the component matrices, the enhanced reduced matrices are computed
directly using Equations (15a) and (15b):

KECB = KCB +

[
ΞT

3 A22Ξ3 ΞT
3 A22Ξ4

sym. ΞT
4 A22Ξ4

]
, (33)

MECB = MCB +

[
0 ΞT

3 A22
sym. ΞT

4 A22 + A22Ξ4

]
+

[
ΞT

3 B22Ξ3 ΞT
3 B22Ξ4

sym. ΞT
4 B22Ξ4

]
. (34)

Equations (33) and (34) are independent and, therefore, computed in parallel.

4. Numerical Examples

To test the parallel reduction algorithm implementation, we used several example
problems. The numerical tests were carried out on the ‘Kraken’ computing cluster at the
Institute of Thermomechanics ASCR, Prague, Czechia. The used cluster nodes had the
following basic hardware and software configuration: 2× Intel Xeon E5-2637 v4 processor
at 3.5 GHz with 16 logical cores, 256 GiB local memory, 740 GiB local SSD disk, CentOS
Linux 7, and Intel Fortran compiler 18.0.2.
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The following sections present the obtained results. The example problems were par-
titioned to different numbers of substructures. The reduction was performed on each par-
titioned model to test the parallel algorithm, then performed again, restricted only to one
processor core to simulate a serial algorithm.

To verify the parallel algorithm, and compare the accuracy of CB and ECB methods,
the relative error for the first 100 eigenvalues is also shown for both the CB reduction and the
ECB reduction. The relative eigenvalue errors are considered here:

ξi =
λ̄i − λi

λi
, (35)

where ξi denotes the relative eigenvalue error for the i-th mode, and λi and λ̄i are the exact
and approximated eigenvalues, respectively.

It should be noted that the interface size significantly impacts the computational time;
therefore, if an interface reduction technique could be devised and employed, it could have
a considerable effect on the computational costs.

The used processor had 16 relatively powerful cores; thus, the obtained results show
about 20% to 70% difference in computational times between the serial and the parallel
algorithms. We expect that the superiority of the parallel algorithm will be more apparent
on a processor with a large number of less-powerful cores (64, 128, etc.).

4.1. Cylindrical Shell

First, we implemented a cantilever cylinder problem, shown in Figure 2. The length
L, thickness t, and radius d of the cantilever cylinder are 12, 0.06, and 0.5 m, respectively.
Young’s modulus, Poisson’s ratio, and density are 69 GPa, 0.35, and 2700 kg/m3, respec-
tively. The finite element model was implemented by four-node quad elements. The model
had 2880 DOFs and was partitioned to 2, 4, 8, 16, and 32 substructures. The used cutoff
frequency was fmax = 3400 Hz.

To compare the accuracy for both the CB and the ECB methods, the relative error is
also shown in Figure 3. The operation time at each step of the algorithm in Figure 1 is
listed in Table 1. The obtained reduction times listed in Table 2 are small and the difference
between the serial and the parallel algorithm is negligible, as expected. The quantities listed
in Table 2 are the number of substructures N, minimum and maximum substructure sizes
ns, interface size nint, reduced model size nred, computational time for serial reduction ts,
and computational time for parallel reduction tp.

Table 1. Operation time at each step of the algorithm in the cylindrical shell problem.

Step of Algorithm
Operation Time [s]

N = 2 N = 4 N = 8 N = 16 N = 32

Load input data 0.2 0.2 0.2 0.2 0.2
Partition global matrices 0.0 0.0 0.0 0.0 0.0
Reoder global matrices 0.0 0.0 0.0 0.0 0.0
Calculate component matrices 2.5 0.9 0.5 0.4 0.6
Assemble MCB, KCB 0.0 0.0 0.0 0.0 0.0
Calculate M−1

CB, Ξ3, Ξ4, A22, B22 0.2 0.6 1.8 2.9 8.4
Calculate MECB, KECB 0.0 0.6 2.2 4.1 12.6
Write output data 1.1 2.2 3.7 5.3 9.2



Mathematics 2021, 9, 3278 10 of 15

Figure 2. Example mesh, Cylindrical Shell.

Table 2. Reduction time [minute], Cylindrical Shell.

N min(ns) max(ns) nint nred ts tp

2 1320 1440 120 613 0.1 0.1
4 550 610 550 920 0.1 0.1
8 185 295 925 1195 0.2 0.1

16 60 135 1190 1397 0.3 0.2
32 10 65 1684 1795 0.6 0.5
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Parallel ECB reduction

Cylindrical Shell, 2880 DOFs

32 substructures, 1795 DOFs

16 substructures, 1397 DOFs

8 substructures, 1195 DOFs

4 substructures, 920 DOFs

2 substructures, 613 DOFs

(b)
Figure 3. Comparison of reduced model accuracy, cylindrical shell. The results are obtained by (a) the
CB method and (b) the ECB method, respectively.

4.2. Solid Ring

A solid ring problem was considered with a fixed boundary condition, which is
illustrated in Figure 4. The height h, the inner radii din, and outer radii dout are 0.2, 0.8,
and 1.0 m, respectively. Young’s modulus, Poisson’s ratio, and density are 76 GPa, 0.3,
and 2796 kg/m3, respectively. The finite element model was implemented by eight-node
hexahedral elements. The model has 34,062 DOFs and was partitioned to 2, 4, 8, 16, 32, 64,
and 128 substructures. The used cutoff frequency was fmax = 25,000 Hz.

To compare the accuracy for both the CB and the ECB methods, the relative error is
also shown in Figure 5. The operation time at each step of the algorithm in Figure 1 is listed
in Table 3, and the obtained results listed in Table 4 indicate that the optimal partitioning
for this problem is somewhere between 5 and 15 substructures. It can be seen that a higher
number of substructures increases the interface size and, subsequently, the computational
time, significantly. However, a lower number of substructures, while having a smaller
interface, results in large substructures, which themselves take longer to analyze and, thus,
negatively affect the overall computational time.

The parallel algorithm is about 70% faster than the serial algorithm in the most favorable
case tested.
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Figure 4. Example mesh, Solid Ring.

Table 3. Operation time at each step of the algorithm in the solid ring problem.

Step of Algorithm
Operation Time [s]

N = 2 N = 4 N = 8 N = 16 N = 32

Load input data 1.6 1.6 1.6 1.6 1.6
Partition global matrices 0.1 0.1 0.1 0.2 0.2
Reoder global matrices 0.0 0.0 0.0 0.0 0.0
Calculate component matrices 7148.2 1377.7 474.2 412.6 645.0
Assemble MCB, KCB 0.0 0.1 0.1 0.2 0.4
Calculate M−1

CB, Ξ3, Ξ4, A22, B22 35.3 104.5 316.4 782.2 5299.4
Calculate MECB, KECB 3.5 22.6 234.1 1255.4 8414.1
Write output data 56.8 74.9 105.8 176.8 388.3

Table 4. Reduction time [minute], Solid Ring.

N min(ns) max(ns) nint nred ts tp

2 16,785 16,785 492 4696 217.1 120.8
4 8223 8247 1137 5228 86.3 26.4
8 3924 3990 2367 6240 65.0 18.9

16 1803 1962 4644 8088 82.1 43.8
32 720 883 9425 11,994 365.1 245.8
64 180 364 17,982 19,113 1698.0 1288.2

128 18 198 22,030 22,721 2989.0 2382.0
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(b)
Figure 5. Comparison of reduced model accuracy, solid ring. The results are obtained by (a) the CB
method and (b) the ECB method, respectively.
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4.3. Shaft Assembly

We considered a shaft problem with a free boundary condition. The shaft model
consisted of five components, and the detailed features are described in Figure 6. Young’s
modulus, Poisson’s ratio, and density are 210 MPa, 0.3, and 7850 kg/m3, respectively. The
finite element model was implemented by four-node tetrahedral elements. The model
had 64,086 DOFs and was partitioned to 2, 4, 8, 16, and 32 substructures. The used cutoff
frequency was fmax = 100,000 Hz.

Figure 7 shows the conceptual reduction process. The first one on the left is a sparse
matrix modeled by the general finite element method, and a compact reduced matrix can
be obtained after the reduction process.

To compare the accuracy for both the CB and the ECB methods, the relative error is
also shown in Figure 8. The operation time at each step of the algorithm in Figure 1 is listed
in Table 5, and the obtained results listed in Table 6 indicate that the optimal partitioning for
this problem is somewhere between three and seven substructures. In the most favorable
case tested, the parallel algorithm is about 65% faster than the serial algorithm.

Note that the model is unconstrained, therefore, there is a gap in Figure 8 in place of
the first six eigenvalues representing the free degrees of freedom.

Figure 6. Example mesh, shaft assembly.

Table 5. Operation time at each step of the algorithm in the shaft problem.

Step of Algorithm
Operation Time [s]

N = 2 N = 4 N = 8 N = 16 N = 32

Load input data 3.1 3.0 3.2 3.1 3.1
Partition global matrices 0.1 0.2 0.3 0.3 0.5
Reoder global matrices 0.1 0.1 0.1 0.1 0.1
Calculate component matrices 56,310.5 17,074.7 8282.5 6210.4 6494.7
Assemble MCB, KCB 0.1 0.2 0.4 0.9 1.5
Calculate M−1

CB, Ξ3, Ξ4, A22, B22 174.7 1108.5 8680.3 26,534.1 61,743.2
Calculate MECB, KECB 92.8 1893.8 14,163.9 43,361.5 104,813.5
Write output data 72.4 195.2 483.8 936.4 1539.2
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Table 6. Reduction time [minute], Shaft Assembly.

N min(ns) max(ns) nint nred ts tp

2 30,894 31,212 1980 5330 2556.3 944.2
4 14,052 15,201 5586 8573 1018.3 337.9
8 5964 7416 11,412 13,723 1204.1 526.9

16 2517 3618 16,998 18,746 2017.0 1284.1
32 1071 1677 22,912 24,186 3835.1 2909.9

Figure 7. Illustration of reduction process of the shaft assembly.
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Parallel ECB reduction

Shaft Assembly, 64086 DOFs
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Figure 8. Comparison of reduced model accuracy, shaft assembly. The results are obtained by (a) the
CB method and (b) the ECB method, respectively.

5. Conclusions

The advanced residual modal compensation could offer dramatic accuracy improve-
ments of the reduced matrices of the original CMS methods. However, the final reduced
mass and stiffness matrices become fully populated and connected; thus, employing the
parallel algorithm in the recent CMS methods with residual flexibility is difficult. To handle
this issue, we introduce a component level parallel algorithm of the enhanced CB method.
The reduced mass and stiffness matrices are obtained by assembling the blockwise compo-
nent computation without direct transformation of the system level matrices. Automatic
matrix partitioning and assembling procedures are achieved by the METIS library. Decou-
pling the original CB substructuring components and the ECB added matrices is essential
in the proposed parallel algorithm.

The main idea of the proposed method can be extended to other iterative CMS methods
with higher order residual flexibility, both primal and dual assemblies [22,32,33]. It should
be noted that blockwise and decoupled formulations are prerequisites to achieve the



Mathematics 2021, 9, 3278 14 of 15

parallel computations of iterative methods. In addition, many substructures are commonly
adequate for parallel computations, but more substructures lead to larger interface DOFs
in the proposed ECB formulation. Therefore, the interface reduction technique of the ECB
method will be studied and considered for the high fidelity parallel ECB algorithm in the
near future.
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