
mathematics

Article

A Divide and Conquer Approach to Eventual Model Checking

Moe Nandi Aung 1,†, Yati Phyo 2,†, Canh Minh Do 2,† and Kazuhiro Ogata 2,*,†

����������
�������

Citation: Aung, M.N.; Phyo, Y.;

Do, C.M.; Ogata, K.

A Divide and Conquer Approach to

Eventual Model Checking.

Mathematics 2021, 9, 368.

https://doi.org/10.3390/math9040368

Academic Editor: Tadashi Dohi

Received: 17 January 2021

Accepted: 8 February 2021

Published: 12 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Information Science, University of Information Technology (UIT), Hlaing Township,
Yangon PO 11052, Myanmar; moenandiaung@uit.edu.mm

2 School of Information Science, Japan Advanced Institite of Science and Technology (JAIST), Nomi,
Ishikawa 923-1292, Japan; yatiphyo@jaist.ac.jp (Y.P.); canhdominh@jaist.ac.jp (C.M.D.)

* Correspondence: ogata@jaist.ac.jp
† These authors contributed equally to this work.

Abstract: The paper proposes a new technique to mitigate the state of explosion in model checking.
The technique is called a divide and conquer approach to eventual model checking. As indicated
by the name, the technique is dedicated to eventual properties. The technique divides an original
eventual model checking problem into multiple smaller model checking problems and tackles each
smaller one. We prove a theorem that the multiple smaller model checking problems are equivalent
to the original eventual model checking problem. We conducted a case study that demonstrates the
power of the proposed technique.

Keywords: eventual property; model checking; Maude

1. Introduction

Model checking is an attractive and promising formal verification technique because it
is possible to automatically conduct model checking experiments once good concise formal
models are made. It has also been used in industries, especially hardware industries. There
are still some challenges to tackle in model checking, one of which is the state explosion,
the most annoying one. Many techniques to mitigate the state explosion have been devised,
such as symbolic model checking [1] and SAT-based bounded model checking (BMC) [2],
where SAT stands for Boolean satisfiability problem. As those existing techniques are not
enough to deal with the state explosion, it is still worth tackling the issue.

Moe Nandi Aung et al. [3] tried to check that an autonomous vehicle intersection
control protocol [4] enjoyed some desired properties, where there were 13 vehicles, and
encountered the notorious state space explosion, making it impossible to conduct the
model checking experiments. Note that it was possible to conduct the model checking
experiments for a case wherein there were five vehicles. One property is the starvation
freedom property that can be expressed as an eventual property. An informal description
of the starvation freedom property is that every vehicle will pass the intersection concerned.
The case motivated us to come up with the technique proposed in the present paper.

The present paper proposes a divide and conquer approach to eventual model check-
ing. The technique splits the reachable state space from each initial state into L + 1 layers,
where L ≥ 1, generating multiple smaller sub-state spaces, dividing the original eventual
mode checking problem into multiple smaller model checking problems and tackling
each smaller one. As the name indicates, the technique proposed in the present paper is
dedicated to eventual properties. Many important software requirements can be expressed
as eventual properties. For example, halting is one important requirement many programs
should enjoy. Halting can be expressed as an eventual property. We prove a theorem
that the multiple smaller model checking problems are equivalent to the original eventual
model checking problem. We conducted a case study that demonstrates the power of the
proposed technique. Maude [5] was used as the formal specification language and Maude
LTL (linear temporal logic) model checker was used as the model checker.

Mathematics 2021, 9, 368. https://doi.org/10.3390/math9040368 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-4441-3259
https://doi.org/10.3390/math9040368
https://doi.org/10.3390/math9040368
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9040368
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/9/4/368?type=check_update&version=2

Mathematics 2021, 9, 368 2 of 16

The model checking algorithm adopted by Maude LTL model checker is the same
as the one used by SPIN [6], which is one of the most popular model checkers for model
checking software systems. It has been reported that Maude LTL model checker is com-
parable with SPIN with respect to model checking running performance. This implies
that whenever Maude LTL model checker encounters the state space explosion problem,
making it impossible to conduct model checking experiments, SPIN does so as well, and so
do most existing model checkers. The proposed technique aims at mitigating the state space
explosion problem and we demonstrate that it can mitigate the problem through a case
study. We are allowed to use Maude as a formal specification language for systems under
model checking. Maude is extremely expressive because it is one direct descendant of and
OBJ language family, such as OBJ3 [7] and CafeOBJ [8]. Inductively-defined data structures,
associative and/or commutative binary operators, etc., can be used in systems’ specifi-
cations under model checking with the Maude LTL model checker. Inductively-defined
data structures and associative and/or commutative binary operators cannot be used in
systems’ specifications under model checking for most existing model checkers, such as
SPIN and NuSMV [9]. This is mainly why we used the Maude LTL model checker. Those
who are more interested in the flavor of the Maude LTL model checker are recommended
to see the paper [10] in which the Maude LTL model checker is intensively compared with
the Symbolic Analysis Laboratory (SAL) [11], a collection of model checkers.

The remaining part of the paper is organized as follows. Section 2 explains some
preliminaries, such as Kripke structures and LTL. Section 3 uses a simple example to outline
the proposed technique. Section 4 describes the theoretical part of the proposed technique.
Section 5 describes the proposed technique. Section 6 reports on a case study. Section 7
mentions some existing related work. Section 8 concludes the paper and suggests some
future directions.

2. Preliminaries

This section describes some preliminaries needed to read the technical contents of the
paper. We give the definitions of Kripke structures, the syntax of LTL formulas and the
semantics of LTL formulas. We need infinite sequences of states (called paths of Kripke
structure) to define the semantics of LTL formulas. We introduce several notations or
symbols for paths, sets of paths and satisfaction relations, where satisfaction relations are
the essence of the semantics of LTL formulas. We prepared tables for those notations or
symbols. We use the symbol , as "if and only if" or "be defined as."

Definition 1 (Kripke structures). A Kripke structure K , 〈S, I, T, A, L〉 consists of a set S of
states, a set I ⊆ S of initial states, a left-total binary relation T ⊆ S× S over states, a set A of
atomic propositions and a labeling function L whose type is S → 2A. An element (s, s′) ∈ T is
called a (state) transition from s to s′ and may be written as s→K s′.

S does not need to be finite. The set R of reachable states is inductively defined as
follows: I ⊆ R and if s ∈ R and (s, s′) ∈ T, then s′ ∈ R. We suppose that R is finite. K in
s→K s′ may be omitted if it is clear from the context.

An infinite sequence of states is a sequence that consists of states infinitely many
times, where infinitely many copies of some states may occur. Let s0, s1, . . . , si, si+1, . . . be
an infinite sequence of states, where s0 is the top element (called 0th element), s1 is the
next element (called 1st element) and si is the ith element. As we suppose that R is finite,
if s0 ∈ R, then s0, s1, . . . , si, si+1, . . . only consists of bounded number of different states,
although infinitely many copies of some states occur. As usual, let ∞ be used to denote
the infinity.

Mathematics 2021, 9, 368 3 of 16

An infinite sequence s0, s1, . . . , si, si+1, . . . of states is called a path of K if and only if
for any natural number i, (si, si+1) ∈ T. Let π be s0, s1, . . . , si, si+1, . . . and some notations
are defined as follows:

π(i) , si
πi , si, si+1, . . .
πi , s0, s1, . . . , si, si, . . .
π∞ , π

π(i,j) ,
{

si, si+1, . . . , sj, sj, . . . if i ≤ j
si, si, . . . otherwise

π(i,∞) , πi

πi
j , π(i,j)

where i and j are any natural numbers. Note that π(0,j) = πj. Note that πi(k) = π(k) if
k = 0, . . . , i and πi(k) = π(i) if k > i. Note that π(i,j)(k) = π(i+ k) if i ≤ j and k = 0, . . . , m,
where j = i + m, π(i,j)(k) = π(j) if i ≤ j and k > j and π(i,j)(k) = π(i) if i > j and k is a
natural number. A path π of K is called a computation of K if and only if π(0) ∈ I.

Let PK be the set of all paths of K. Let P(K,s) be {π | π ∈ PK , π(0) = s}, where s ∈ S.
Let Pb

(K,s) be {πb | π ∈ P(K,s)}, where s ∈ S and b is a natural number. Note that P∞
(K,s) is

P(K,s). If R is finite and s ∈ R, then P(K,s) is finite and so is Pb
(K,s).

Definition 2 (Syntax of LTL). The syntax of linear temporal logic (LTL) is as follows:

ϕ ::= a | > | ¬ϕ | ϕ ∨ ϕ | © ϕ | ϕ U ϕ

where a ∈ A.

Definition 3 (Semantics of LTL). For any Kripke structure K, any path π of K and any LTL
formula ϕ, K, π |= ϕ is inductively defined as follows:

• K, π |= a if and only if a ∈ π(0)
• K, π |= >
• K, π |= ¬ϕ1 if and only if K, π 6|= ϕ1
• K, π |= ϕ1 ∨ ϕ2 if and only if K, π |= ϕ1 and/or K, π |= ϕ2

• K, π |=© ϕ1 if and only if K, π1 |= ϕ1

• K, π |= ϕ1 U ϕ2 if and only if there exists a natural number i such that K, πi |= ϕ2 and for
each natural number j < i, K, π j |= ϕ1

where ϕ1 and ϕ2 are LTL formulas. Then, K |= ϕ if and only if K, π |= ϕ for all computations π
of K.

⊥ , ¬> and some other connectives are defined as follows: ϕ1 ∧ ϕ2 , ¬((¬ϕ1) ∨
(¬ϕ2)), ϕ1 ⇒ ϕ2 , (¬ϕ1) ∨ ϕ2, ϕ1 ⇔ ϕ2 , (ϕ1 ⇒ ϕ2) ∧ (ϕ2 ⇒ ϕ1), ♦ϕ1 , > U ϕ1,
�ϕ1 , ¬(♦¬ϕ1) and ϕ1 ϕ2 , �(ϕ1 ⇒ ♦ϕ2). ©, U , ♦, � and are called next,
until, eventually, always and leads-to temporal connectives, respectively. Although it is
unnecessary to directly define the semantics for ♦, � and , we can define it as follows:

• K, π |= ♦ϕ1 if and only if there exists a natural number i such that K, πi |= ϕ1

• K, π |= �ϕ1 if and only if for all natural numbers i, K, πi |= ϕ1

• K, π |= ϕ1 ϕ2 if and only if for each natural number i such that K, πi |= ϕ1, there
exists a natural number j ≥ i such that K, π j |= ϕ2.

Definition 4 (State propositions). State propositions are LTL formulas such that they do not
have any temporal connectives.

Mathematics 2021, 9, 368 4 of 16

Proposition 1. Let K be any Kripke structure. If ϕ is any state proposition,
then (K, π |= ϕ)⇔ (K, π′ |= ϕ) for any paths π and π′ of K such that π(0) = π′(0).

Proof. The first state π(0) decides if K, π |= ϕ holds.

Eventual properties are those that are expressed in the form of ♦ ϕ, where ϕ is an LTL
formula. In this paper, furthermore, we give the constraint to ϕ: ϕ is a state proposition.

Let K, s |= ϕ, where s ∈ S, be K, π |= ϕ for all π ∈ P(K,s). Note that K, s |= ϕ for all
s ∈ I is equivalent to K |= ϕ. Let K, s, b |= ϕ, where s ∈ S and b is a natural number or ∞,
be K, π |= ϕ for all π ∈ Pb

(K,s). Note that K, s, ∞ |= ϕ is K, s |= ϕ.
Some logical connectives are abused for K, π |= ϕ as follows:

• (K, π |= ϕ) ∧ (K′, π′ |= ϕ′) , K, π |= ϕ and K′, π′ |= ϕ′

• (K, π |= ϕ) ∨ (K′, π′ |= ϕ′) , K, π |= ϕ and/or K′, π′ |= ϕ′

• (K, π |= ϕ)⇒ (K′, π′ |= ϕ′) , if K, π |= ϕ, then K′, π′ |= ϕ′

• (K, π |= ϕ)⇔ (K′, π′ |= ϕ′) , K, π |= ϕ if and only if K′, π′ |= ϕ′

We summarize some notations or symbols used in the paper in the three tables:
Tables 1–3. Table 1 describes notations or symbols for paths. Table 2 describes notations or
symbols for sets of paths. Table 3 describes notations or symbols for satisfaction relations.

Table 1. Descriptions of path notations (or symbols), where i and j are natural numbers.

Symbol Description

π a path; an infinite sequence s0, s1, . . . , si, si+1, . . . of states such that si →K si+1 for each i;
if so is an initial state, it is called a computation

π(i) the ith state si in π

πi the postfix si, si+1, . . . obtained by deleting the first i states s0, s1, . . . , si−1 from π

πi
s0, s1, . . . , si, si, . . . constructed by first extracting the prefix s0, s1, . . . , si, the first i + 1 states from π
and then adding si, the final state of the prefix, to the prefix at the end infinitely many times

π∞ s0, s1, . . . , si, si+1, . . ., the same as π

π(i,j) if i ≤ j, then si, . . . , sj, sj, . . ., the same as (πi)j−i;
otherwise, si, si, . . ., the infinite sequence in which only si occurs infinitely many times

π(i,∞) si, si+1, . . ., the same as πi

πi
j the same as π(i,j)

Table 2. Descriptions of path-set notations (or symbols), where b is a natural number.

Symbol Description

PK the set of all paths of K
P(K,s) the set of all paths π of K such that π(0), the 0th state of the path π, is s
Pb
(K,s) the set of all paths πb such that π ∈ P(K,s)

P∞
(K,s) the same as P(K,s)

Table 3. Descriptions of satisfaction relation |= notations (or symbols), where b is a natural number.

Symbol Description

K, π |= ϕ an LTL formula ϕ holds for a path π of K
K |= ϕ an LTL formula ϕ holds for all computations of K

K, s |= ϕ an LTL formula ϕ holds for all paths in P(K,s)
K, s, b |= ϕ an LTL formula ϕ holds for all paths in Pb

(K,s)
K, s, ∞ |= ϕ the same as K, s |= ϕ

Mathematics 2021, 9, 368 5 of 16

3. Outline of the Proposed Technique

Let us outline the proposed technique with a simple system (or Kripke structure)
called SimpSys as depicted in Figure 1 so that you can intuitively comprehend the tech-
nique. SimpSys has four states s0, s1, s2 and s3, where s0 is the only initial state. There
are seven transitions depicted as arrows in Figure 1. Let us consider three atomic proposi-
tions init, middle and final. The labeling function is defined as depicted in Figure 1. For
example, middle holds in s1 and s2 and does not in s0 and s3. Let us take ♦final as a
property concerned. We can straightforwardly check that SimpSys satisfies ♦final, namely
SimpSys |= ♦final, and then do not need to use the proposed technique for this model
checking experiment. We, however, use this simple model checking experiment to sketch
the technique.

Figure 1. A simple system called SimpSys.

The left part of Figure 2 shows the computation tree made from the reachable states
such that its root is the initial state s0. Let us split the computation tree into two layers such
that the first layer depth is 1. Note that it is unnecessary to specify the second (or the final)
layer depth. The first layer has one sub-state space such that its initial state is s0 as shown
in the right part of Figure 2. The second layer has three sub-state spaces such that their
initial states are s1, s2 and s3, respectively. We first conduct the model checking experiment
that ♦final holds for the sub-state space in the first layer. There are two counterexamples:
(1) s0, s1, s1, . . . and (2) s0, s2, s2, . . ., where s1 and s2 are called counterexample states. As
♦final holds for s1, s3, s3, . . ., we do not need to conduct the model checking experiment
that ♦final holds for the sub-state space whose initial state is s3 in the second layer. It
suffices to conduct the model checking experiments that ♦final holds for the two sub-state
spaces whose initial states are s1 and s2, respectively. There are no counterexamples for the
two model checking experiments and then we can conclude that SimpSys satisfies ♦final.

Figure 2. Two-layer division of the SimpSys reachable state space.

Mathematics 2021, 9, 368 6 of 16

This is how the proposed technique works. For this simple example, the number of
different states in each sub-state space is the same as or almost the same as the number of
different states in the original state space. If the number of each sub-state space is much
smaller than the number of the original state space, then even though it is impossible to
conduct a model checking experiment for the original reachable state space because of
the state space explosion, it may be possible to conduct the model checking experiment
for each sub-state space. This is how the proposed technique mitigates the state space
explosion problem.

4. Multiple Layer Division of Eventual Model Checking

This section describes the theoretical contribution of the paper. An overview of the
proposed technique is as follows: an eventual model checking problem is divided into
multiple smaller model checking problems and each smaller model checking problem
is tackled so as to tackle the original eventual model checking experiment. We need to
guarantee that tackling each smaller model checking problem is equivalent to tackling the
original eventual model checking problem. We prove a theorem for it.

We prove that an eventual model checking problem for a Kripke structure K and a
path π of K is equivalent to L + 1 eventual model checking problems for K and L + 1 paths
of K, where L ≥ 1 and the L + 1 paths are obtained by splitting π into L + 1 parts. The
L + 1 paths are π(d(0),d(1)) (= πd(0)), . . . , π(d(l),d(l+1)), . . . , π(d(L),d(L+1)) (= πd(L)). Please
see Figure 3.

We first tackle the case in which L is 1.

Lemma 1 (Two-layer division of ♦). Let ϕ be any state proposition of K. For any natural number
k, (K, π |= ♦ϕ) ⇔ ((K, πk |= ♦ϕ) ∨ ((K, πk 6|= ♦ϕ) ⇒ (K, πk |= ♦ϕ))). (We could use
(K, πk |= ♦ϕ) ∨ (K, πk |= ♦ϕ) instead of (K, πk |= ♦ϕ) ∨ ((K, πk 6|= ♦ϕ)⇒ (K, πk |= ♦ϕ))
because they are equivalent).

Proof. (1) Case "only if" (⇒): There must be i such that K, πi |= ϕ. If i ≤ k, K, πi
k |= ϕ from

Proposition 1 because ϕ is a state proposition. Thus, K, πk |= ♦ϕ. Otherwise, K, πk 6|= ♦ϕ.
However, i > k and K, πi |= ϕ. Hence, K, πk |= ♦ϕ. (2) Case “if” (⇐): If K, πk |= ♦ϕ,
there must be i such that i ≤ k and K, πi

k |= ϕ. As ϕ is a state proposition, K, πi |= ϕ from
Proposition 1 and then K, π |= ♦ϕ. If K, πk 6|= ♦ϕ, then there must be j such that j > k and
K, π j |= ϕ. Thus, K, π |= ♦ϕ.

Lemma 1 makes it possible to divide the original model checking problem K, π |= ♦ϕ
into two model checking problems K, πk |= ♦ϕ and K, πk |= ♦ϕ. We only need to tackle
K, πk |= ♦ϕ unless K, πk |= ♦ϕ holds.

Definition 5 (EventuallyL). Let L be any non-zero natural number, k be any natural number
and d be any function such that d(0) is 0, d(x) is a natural number for x = 1, . . . , L and d(L + 1)
is ∞.

1. 0 ≤ k < L− 1

EventuallyL(K, π, ϕ, k)
, (K, π(d(k),d(k+1)) |= ♦ϕ) ∨ [(K, π(d(k),d(k+1)) 6|= ♦ϕ)⇒ EventuallyL(K, π, ϕ, k + 1)].

2. k = L− 1

EventuallyL(K, π, ϕ, k)
, (K, π(d(k),d(k+1)) |= ♦ϕ) ∨ [(K, π(d(k),d(k+1)) 6|= ♦ϕ)⇒ (K, π(d(k+1),d(k+2)) |= ♦ϕ)]

.

Mathematics 2021, 9, 368 7 of 16

Figure 3. L + 1 layer division of the reachable state space.

Theorem 1 (L + 1 layer division of ♦). Let L be any non-zero natural number. Let d(0) be 0,
d(x) be any natural number for x = 1, . . . , L and d(L + 1) be ∞. Let ϕ be any state proposition of
K. Then,

(K, π |= ♦ϕ)⇔ EventuallyL(K, π, ϕ, 0)

Proof. By induction on L.

• Base case (L = 1): It follows from Lemma 1.
• Induction case (L = l + 1): We prove the following:

(K, π |= ♦ϕ)⇔ Eventuallyl+1(K, π, ϕ, 0)

Let dl+1 be d used in Eventuallyl+1(K, π, ϕ, 0) such that dl+1(0) = 0, dl+1(i) is an
arbitrary natural number for i = 1, . . . , l + 1 and dl+1(l + 2) = ∞. The induction
hypothesis is as follows:

(K, π |= ♦ϕ)⇔ Eventuallyl(K, π, ϕ, 0)

Let dl be d used in Eventuallyl(K, π, ϕ, 0) such that dl(0) = 0, dl(i) is an arbi-
trary natural number for i = 1, . . . , l and dl(l + 1) = ∞. As dl+1(i) is an arbi-
trary natural number for i = 1, . . . , l + 1, we suppose that dl+1(1) = dl(1) and
dl+1(i + 1) = dl(i) for i = 1, . . . , l. As π is any path of K, π can be replaced with πdl(1).
If so, we have the following as an instance of the induction hypothesis:

(K, πdl(1) |= ♦ϕ)⇔ Eventuallyl(K, πdl(1), ϕ, 0)

From Definition 5, Eventuallyl(K, πdl(1), ϕ, 0) is Eventuallyl+1(K, π, ϕ, 1) because
dl(0) = dl+1(0) = 0, dl(1) = dl+1(1) and dl(i) = dl+1(i + 1) for i = 1, . . . , l and
dl(l + 1) = dl+1(l + 2) = ∞. Therefore, the induction hypothesis instance can be
rephrased as follows:

(K, πdl+1(1) |= ♦ϕ)⇔ Eventuallyl+1(K, π, ϕ, 1)

From Definition 5, Eventuallyl+1(K, π, ϕ, 0) is

(K, π(dl+1(0),dl+1(1)) |= ♦ϕ) ∨ [(K, π(dl+1(0),dl+1(1)) 6|= ♦ϕ)⇒ Eventuallyl+1(K, π, ϕ, 1)]

Mathematics 2021, 9, 368 8 of 16

which is

(K, π(dl+1(0),dl+1(1)) |= ♦ϕ) ∨ [(K, π(dl+1(0),dl+1(1)) 6|= ♦ϕ)⇒ (K, πdl+1(1) |= ♦ϕ)]

because of the induction hypothesis instance. From Lemma 1, this is equivalent to
K, π |= ♦ϕ.

Theorem 1 makes it possible to divide the original model checking problem K, π |=
♦ϕ into L + 1 model checking problems K, π(d(0),d(1)) |= ♦ϕ, . . . , K, π(d(i−1),d(i)) |= ♦ϕ,
K, π(d(i),d(i+1)) |= ♦ϕ, . . . , K, π(d(L),d(L+1)) |= ♦ϕ. We only need to tackle K, π(d(i),d(i+1)) |=
♦ϕ if all of K, π(d(0),d(1)) |= ♦ϕ, . . . , K, π(d(i−1),d(i)) |= ♦ϕ do not hold.

5. A Divide and Conquer Approach to an Eventual Model Checking Algorithm

This section describes an algorithm that carries out the proposed technique. The
algorithm takes as inputs a Kripke structure K, a state proposition ϕ, a non-zero natural
number L and a function d such that d(x) is a natural number for x = 1, . . . , L, where
d(x) is the depth of layer x; and returns as an output success if K |= ♦ϕ holds and
failure otherwise.

An algorithm can be constructed based on Theorem 1, which is shown as
Algorithm 1. For each initial state s0 ∈ K, unfolding s0 by using T such that each node
except for s0 has exactly one incoming edge, an infinite tree whose root is s0 is made. The
infinite tree may have multiple copies of some states. Such an infinite tree can be divided
into L + 1 layers, as shown in Figure 3, where L is a non-zero natural number. Although
there does not actually exist layer 0, it is convenient to just suppose that we have layer 0.
Therefore, let us suppose that there is virtually layer 0 and so is located at the bottom of
layer 0. Let nl be the number of states located at the bottom of layer l = 0, 1, . . . , L and then
there are nl sub-state spaces in layer l + 1. In this way, the reachable state space from s0
is divided into multiple smaller sub-state spaces. As R is finite, the number of different
states in each layer and in each sub-state space is finite. Theorem 1 makes it possible to
check K |= ♦ ϕ in a stratified way in that for each layer l ∈ {1, . . . , L + 1} we can check
K, s, d(l) |= ♦ ϕ for each s ∈ {π(d(l− 1)) | π ∈ Pd(l−1)

(K,s0)
}, where d(0) is 0, d(x) is a non-zero

natural number for x = 1, . . . , L and d(L + 1) is ∞.
ES and ES′ are variables to which sets of states are set. Each iteration of the outermost

loop in Algorithm 1, which conducts the model checking experiment in layer l = 1, . . . , L +
1. ES, is the set of states located at the bottom of layer l = 0, 1, . . . L and ES′ is the empty
set before the model checking experiments conducted in the l + 1st iteration. If K, π 6|= ♦ϕ

for π ∈ Pd(l)
(K,s), then π(d(l)) is added to ES′. ES′ is set to ES at the end of each iteration. If

ES is empty at the beginning of an iteration, Success is returned, meaning that K |= ♦ϕ
holds. After the outermost loop, we check whether ES is empty. If so, Success is returned,
and otherwise, Failure is returned.

Although Algorithm 1 does not construct a counterexample when failure is returned,
it could be constructed. For each l ∈ {0, 1, . . . , L}, ESl is prepared. As elements of ESl ,
pairs (s, s′) are used, where s is a state in S or a dummy state denoted δ-stt that is different
from any state in S, s′ is a state in S and s′ is reachable from s if s ∈ S. The assignment at
line 6 should be revised as follows:

ESl ← ∅

The assignment at line 10 should be revised as follows:

ESl ← ESl ∪ {(s, π(d(l)))}

The assignment at line 14 should be revised as follows:

ES← {s | (s, s′) ∈ ESl}

Mathematics 2021, 9, 368 9 of 16

ES0 is set to {(δ-stt, s) | s ∈ I}. We could then construct a counterexample, when failure is
returned, by searching through ESL, . . . , ES1 and ES0.

Algorithm 1: A divide and conquer approach to eventual model checking.
input : K—a Kripke structure

ϕ—a state proposition
L—a non-zero natural number
d—a function such that d(x) is a natural number for x = 1, . . . , L, where
d(x) is the depth of layer x

output :Success (K |= ♦ϕ) or Failure (K 6|= ♦ϕ)
1 ES← I
2 forall l ∈ {1, . . . , L + 1} do
3 if ES = ∅ then
4 return Success
5 end
6 ES′ ← ∅
7 forall s ∈ ES do
8 forall π ∈ Pd(l)

(K,s) do
9 if K, π 6|= ♦ϕ then

10 ES′ ← ES′ ∪ {π(d(l))}
11 end
12 end
13 end
14 ES← ES′

15 end
16 if ES = ∅ then
17 return Success
18 end
19 else
20 return Failure
21 end

6. A Case Study

Many systems’ requirements can be expressed as eventual properties. Termination
or halting is one important requirement that many programs should satisfy, which can
be expressed as an eventual property. The starvation freedom property that should be
satisfied by systems, such as an autonomous vehicle intersection control protocol [4], can
be expressed as an eventual property. Some communication protocols, such as Alternating
Bit Protocol (ABP) and the sliding window protocol used in Transmission Control Protocol
(TCP), guarantee that all data sent by a sender are delivered to a receiver without any data
loss and duplication. The requirement can be expressed as an eventual property.

We use a mutual exclusion protocol as an example in the case study. The requirement
we take into account is that the protocol guarantees that a process can enter the critical
section, doing some tasks there, leaving the section and reaching a final position (or
terminating). The requirement can be expressed as an eventual property. The mutual
exclusion protocol is called Qlock, an abstract version of the Dijkstra binary semaphore in
that an atomic queue of process IDs is used.

In the rest of the section, we first describe Qlock, how to formally specify Qlock and
the property concerned in Maude and how to model check the eventual property with
the proposed technique. Let us note that when there are 10 processes that participate in
Qlock, it is impossible to complete the model checking experiment with Maude LTL model
checker, while it is possible to do so with the proposed technique. We finally summarize
the case study.

Mathematics 2021, 9, 368 10 of 16

6.1. Qlock

We report on a case study that demonstrates the power of the proposed technique.
The case study used a mutual exclusion protocol called Qlock whose pseudo-code for each
process p can be described as follows:

"Start Section"
ss : enq(queue, p);
ws : repeat until top(queue) = p;

"Critical Section"
cs : deq(queue);
fs : . . .

"Finish Section"

where queue is an atomic queue of process IDs shared by all processes participating in
Qlock. enq(queue, p) atomically puts a process ID p into queue at bottom. top(queue)
atomically returns the top element of queue. deq(queue) atomically deletes the top element
of queue. If queue is empty, deq(queue) does nothing. queue is initially empty. Each process
p is supposed to be located at one of the four locations ss (start section), ws (waiting
section), cs (critical section) and fs (finish section), and is initially located at ss. Let us
suppose that each process p stays fs once it gets there, implying that it enters the critical
section at most once.

The property to be checked in this case study is that a process will eventually get to fs.
The property can be formalized as an eventual property. When there were 10 processes,
it did not complete the model check with the Maude LTL model checker running on a
computer that carried a 2.10 GHz microprocessor and 8 GB main memory because of the
state space explosion.

6.2. Formal Specification

We describe how to formally specify Qlock in Maude. A state is expressed as a braced
soup of observable components, where observable components are name–value pairs and
soups are associative–commutative collections. When there are n processes, the initial state
of Qlock is as follows:

{(queue: empq) (pc[p1]: ss) ... (pc[pn]: ss) (cnt: n)}

where (queue: empq) is an observable component saying that the shared queue is empty,
(pc[pi]: ss) is an observable component saying that process pi is in the ss and (cnt: n)
is an observable component whose value is a natural number n. The role of (cnt: n) will
be described later.

Transitions are described in terms of rewrite rules. The transitions of Qlock are
specified as follows:

rl [start] : {(queue: Q) (pc[I]: ss) OCs} => {(queue: (Q | I)) (pc[I]: ws) OCs} .
rl [wait] : {(queue: (I | Q)) (pc[I]: ws) OCs}
=> {(queue: (I | Q)) (pc[I]: cs) OCs} .

rl [exit] : {(queue: Q) (pc[I]: cs) (cnt: N) OCs}
=> {(queue: deq(Q)) (pc[I]: fs) (cnt: dec(N)) OCs} .

rl [fin] : {(cnt: 0) OCs} => {(cnt: 0) OCs} .

where Q is a variable of queues, I is a variable of process IDs, OCs is a variable of observable
component soups and N is a variable of natural numbers. I | Q denotes a non-empty
queue such that I is the top and Q is the remaining part of the queue. deq(Q) returns the
empty queue if Q is empty and what is obtained by deleting the top from Q otherwise.
dec(N) returns 0 if N is 0 and the predecessor number of N otherwise.

start, wait, exit and fin are the labels given to the four rules, respectively. Rule
start says that if process I is in ss, then it puts its ID into Q at end and moves to ws. Rule

Mathematics 2021, 9, 368 11 of 16

wait says that if process I is in ws and the top of the shared queue is I, then I enters cs.
Rule exit says that if process I is in cs, then it deletes the top from the shared queue,
decrements the natural number N stored in (cnt: N) and moves to fs. Rule fin says that
if the natural number N stored in (cnt: N) is 0, a self-transition s→K s occurs. Rule fin is
used to make the transitions total. The natural number N stored in (cnt: N) is the number
of processes that have not yet reached fs. Use of it and rule fin make it unnecessary to use
any fairness assumptions to model check an eventual property.

Let us consider one atomic proposition inFs1. inFs1 holds in a state if and only if the
state matches {(pc[p1]: fs) OCs}, namely, that process p1 is in fs.

6.3. Model Checking with the Proposed Technique

It quickly completes to model check ♦ inFs1 for Qlock when there are five processes,
finding no counterexample. It is, however, impossible to model check the same property
for Qlock when there are 10 processes. We then use Algorithm 1 to tackle the latter case,
where L = 1 and d(1) = 3.

We use one more observable component (depth: d), where d is a natural number, to
work on the first layer. The initial state turns into the following:

{(queue: empq) (pc[p1]: ss) ... (pc[p10)]: ss) (cnt: 10) (depth: 0)}

The rules turn into the following:

crl [start] : {(queue: Q) (pc[I]: ss) (depth: D) OCs}
=> {(queue: (Q | I)) (pc[I]: ws) (depth: (D + 1)) OCs}
if D < Bound .

crl [wait] : {(queue: (I | Q)) (pc[I]: ws) (depth: D) OCs}
=> {(queue: (I | Q)) (pc[I]: cs) (depth: (D + 1)) OCs}
if D < Bound .

crl [exit] : {(queue: Q) (pc[I]: cs) (cnt: N)(depth: D) OCs}
=> {(queue: deq(Q)) (pc[I]: fs) (cnt: dec(N)) (depth: (D + 1)) OCs}
if D < Bound .

crl [fin] : {(cnt: 0) (depth: D) OCs} => {(cnt: 0) (depth: (D + 1)) OCs}
if D < Bound .

crl [stutter] :{(depth: D) OCs} => {(depth: D) OCs} if D >= Bound .

where D is a variable of natural numbers and Bound is 3. Rule stutter has been added
to make each state at depth three have a transition to itself. The revised version of rule
start says that if D is less than Bound and process I is in ss, then I puts its ID into Q at
end and moves to ws and D is incremented. The other revised rules can be interpreted
likewise. When we model checked ♦ inFs1 for the revised specification of Qlock, we found
a counterexample that is a finite state sequence starting from the initial state and leading to
a state loop that consists of one state that is as follows:

{(queue: (p1 | p2 | p3)) (cnt: 10) (depth: 3) (pc[p1]: ws)
(pc[p2]: ws) (pc[p3]: ws) (pc[p4]: ss) (pc[p5]: ss) (pc[p6]: ss)
(pc[p7]: ss) (pc[p8]: ss) (pc[p9]: ss) (pc[p10]: ss)}

We needed to find all counterexamples and then revise the definition of inFs1 such that
inFs1 holds in the state as well. When we model checked the same property for the
revised specification, we found another counterexample. This process was repeated until
no more counterexamples were found. We totally found 819 counterexamples and 819
counterexample states at depth three.

We gathered all states at depth three from the initial state, which totaled 820 states,
including the 819 states found in the last step. There was one state at depth three such that
process p1 was located at fs. For each of the 819 states as an initial state, we model checked
♦ inFs1 for the original specification of Qlock, finding no counterexample. Therefore,

Mathematics 2021, 9, 368 12 of 16

we can conclude that it completed model check ♦ inFs1 for Qlock when there were 10
processes, finding no counterexample. It took about 44 h to conduct the model checking
experiments for the second layer and it took less than 200 ms to conduct each model
checking experiment for the first layer. As there were 819 counterexamples for ♦ inFs1 in
the first layer, we needed to conduct 820 model checking experiments for the first layer.

6.4. Summary of the Case Study

The proposed divide and conquer approach to eventual model checking makes it
possible to successfully conduct the model checking experiment ♦ inFs1 for Qlock when
there are 10 processes and each process enters the critical section at most once, which
cannot be otherwise tackled by the computer used in the case study. The specifications
in Maude used in the case study are available at the webpage (http://www.jaist.ac.jp/
~ogata/code/dca2emc/).

7. Related Work

The state space explosion problem is one of the biggest challenges in model checking.
Many techniques to mitigate it have been proposed so far. Among them are partial
order reduction [12], symmetry reduction [13], abstraction [14–16], abstract logical model
checking [17] and SAT-based bounded model checking (BMC) [2]. The proposed divide and
conquer approach to eventual model checking is a new technique to mitigate the problem
when model checking eventual properties. The second, third and fourth authors of the
present paper proposed a (L + 1-layer) divide and conquer approach to leads-to model
checking [18]. The technique proposed in the present paper can be regarded as an extension
of the one described in the paper [18] to eventual properties.

Clarke et al. summarized several techniques that address the state space explosion
problem in model checking [19]. One of them is SAT-based BMC. SAT-based BMC is used
in industries, especially hardware industries. BMC can find a flaw located within some
reasonably shallow depth k from each initial state but cannot prove that systems whose
(reachable) state space is enormous (including infinite-state systems) enjoy the desired
properties. Some extensions have been made to SAT-based BMC so that we can prove that
such systems enjoy the desired properties. One extension is k-induction [20,21]. k-induction
is a combination of mathematical induction and SAT/SMT-based BMC, where SMT stands
for SAT modulo theories. The bounded state space from each initial state up to depth k is
tackled with BMC, which is regarded as the base case. For each state sequence s0, s1, . . . , sk,
where so is an arbitrary state, such that a property concerned is not broken in each state si
for i = 0, 1, . . . , k, it is checked that the property is not broken in all successor states sk+1 of
sk, which is done with an SAT/SMT solver and regarded as the induction case. If an SMT
solver is used, infinite-state systems, for example, in which integers are used, could be
handled. Our proposed technique can be regarded as another extension of BMC, although
we do not use any SAT/SMT solvers.

SAT/SMT-based BMC has been extended to model check concurrent programs [22].
Given a concurrent (or multithreaded) program P together with two parameters u and r
that are the loop unwinding bound and the number of round-robin schedules, respectively,
an intermediate bounded program Pu is first generated by unwinding all loops and inlining
all function calls in P with u as a bound, except for those used for creating threads, and then
Pu is transformed into a sequential program Qu,r that simulates all behaviors of Pu within
r round-robin schedules. Qu,r is then transformed into a propositional formula, which is
converted into an equisatisfiable CNF formula that can be analyzed by an SAT/SMT solver.
This way to model check multithreaded programs can be parallelized by decomposing the
set of execution traces of a concurrent program into symbolic subsets and analyzing the set
of execution traces in parallel [23]. Instead of generating a single formula from P via Qu,r,
multiple propositional sub-formulas are generated. Each sub-formula corresponds to a
different symbolic partition of the execution traces of P and can be checked for satisfiability
independently from the others. The approaches to BMC of multithreaded programs

http://www.jaist.ac.jp/~ogata/code/dca2emc/
http://www.jaist.ac.jp/~ogata/code/dca2emc/

Mathematics 2021, 9, 368 13 of 16

seem able to deal with safety properties only, while our tool is able to deal with leads-
to properties, a class of liveness properties. Another difference between their approach
and our approach is that the target of our approach is designs of concurrent/distributed
systems, while the one of theirs is concurrent programs.

Barnat et al. [24] surveyed some recent advancements of parallel model checking
algorithms for LTL. Graph search algorithms need to be redesigned to make the best use of
multi-core and/or multi-processor architectures. Parallel model checkers based on such
parallel model checking algorithms have been developed, among which are DiVinE 3.0 [25],
Garakabu2 [26,27] and a multicore extension of SPIN [28]. In the technique proposed in
the present paper, there are generally multiple sub-state spaces in each layer, and model
checking experiments for these sub-state spaces are totally independent from each other.
Furthermore, model checking experiments for many sub-state spaces in different layers
are independent. It is possible to conduct such model checking experiments in parallel.
Therefore, it is possible to parallelize Algorithm 1, which never requires us to redesign any
graph search algorithms and makes it possible to use any existing LTL model checker, such
as Maude LTL model checker.

To tackle a large system that cannot be handled by an exhaustive verification mode,
SPIN has a bit-state verification mode that may not exhaustively search the entire reachable
state space of a large system, but can achieve a higher coverage of large state spaces
by using a few bits of memory per state stored. The larger a system under verification
becomes, the higher chances the SPIN bit-state verification mode may overlook flaws
lurking in the system. To overcome such situations, swarm verification [29] has been
proposed. The key ideas of swam verification are parallelism and search diversity. For
each of the multiple different search strategies, one instance of bit-state verification is
conducted. These instances are totally independent and can be conducted in parallel.
Different search strategies traverse different portions of the entire reachable state space,
making it more likely to achieve higher coverage of the entire reachable state space and
find flaws lurking in a large system if any. An implementation of swarm verification on
GPUs, called Grapple [30], has also been developed. Although the technique proposed
in the present paper splits the reachable state space from each initial state into multiple
layers, generating multiple sub-state spaces, it exhaustively searches each sub-state space
with the Maude LTL model checker. It may be worth adopting the swarm verification
idea into our technique such that swarm verification is conducted for each sub-state space
instead of exhaustive search, which may make it possible to quickly find a flaw lurking in
a large system.

One hot theme in research on methods to formally verify liveness properties including
program termination is liveness-to-safety reductions. Biere et al. [31] have proposed a
technique that formally verifies that finite-state systems satisfy liveness properties by
showing the absence of fair cycles in every execution and coined the term “liveness-to-
safety reduction” to refer to the technique. The technique can be extended to what is called
“parameterized systems” in which the state space is infinite but actually finite for every
system instance [32]. Padon et al. [33] have further extended “liveness-to-safety reduction”
to systems such that processes can be dynamically created and each process state space
is infinite so that they can formally verify that such systems enjoy liveness properties
under fairness assumptions. Their technique basically reduces a infinite-state system
liveness formal verification problem under fairness to a infinite-state system safety formal
verification problem that can be expressed in first-order logic. The latter problem can be
solved by existing first-order theorem provers, such as IC3 [34,35] and VAMPIRE [36]. The
technique proposed in the present paper does not take into account fairness assumptions.
We need to use fairness assumptions to model check liveness properties, including eventual
ones from time to time. We might adopt the idea used in the Padon et al.’s liveness-to-safety
reduction technique. To our knowledge, the liveness-to-safety reduction technique has not
been parallelized. Our approach to eventual model checking might make it possible to
parallelize the liveness-to-safety reduction technique.

Mathematics 2021, 9, 368 14 of 16

8. Conclusions

We have proposed a new technique to mitigate the state explosion in model checking.
The technique is dedicated to eventual properties. It divides an eventual model checking
problem into multiple smaller model checking problems and tackles each smaller one. We
have proved that the multiple smaller model checking problems are equivalent to the origi-
nal eventual model checking problem. We have reported on a case study demonstrating
the power of the proposed technique.

There are several things left to do as our future research. One piece of future work
for us will be to develop a tool supporting the proposed technique. We will use Maude as
an implementing language with its reflective programming (meta-programming) facilities
to develop the tool that will do all necessary modifications to systems specifications (or
systems models) so that human users do not need to change systems specifications to use
the divide and conquer approach to eventual properties. It was impossible to conduct
the model checking experiment with Maude LTL model checker; the autonomous vehicle
intersection control protocol [4] enjoys the starvation freedom property when there are
13 vehicles with the tool supporting the proposed technique. The starvation freedom
property can be expressed as an eventual property. Another piece of future work will
be to complete the model checking experiment with the tool supporting the proposed
technique. To complete the model checking experiment, we may need to make the best
use of up-to-date multi-core/processor architectures. To this end, we need to parallelize
Algorithm 1 and the tool supporting the proposed technique. Therefore, yet another piece
of future work may be to evolve the tool into a parallel version that can make best use of
up-to-date multi-core/processor architectures.

Author Contributions: Conceptualization, methodology, software, investigation and formal analysis,
M.N.A., Y.P., C.M.D. and K.O.; project administration and funding acquisition, K.O. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was partially funded by JSPS KAKENHI Grant Number JP19H04082.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The specifications in Maude used in the case study are available at the
webpage http://www.jaist.ac.jp/~ogata/code/dca2emc/ (accessed on 16 January 2021).

Acknowledgments: The authors would like to thank the anonymous reviewers who carefully read
an earlier version of the paper and gave them valuable comments without which they were not able
to complete the present paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Burch, J.R.; Clarke, E.M.; McMillan, K.L.; Dill, D.L.; Hwang, L.J. Symbolic Model Checking: 1020 States and Beyond. Inf. Comput.

1992, 98, 142–170. [CrossRef]
2. Clarke, E.M.; Biere, A.; Raimi, R.; Zhu, Y. Bounded Model Checking Using Satisfiability Solving. Form. Methods Syst. Des. 2001,

19, 7–34. [CrossRef]
3. Aung, M.N.; Phyo, Y.; Ogata, K. Formal Specification and Model Checking of the Lim-Jeong-Park-Lee Autonomous Vehicle

Intersection Control Protocol. In Proceedings of the 31st International Conference on Software Engineering and Knowledge
Engineering, SEKE 2019, Lisbon, Portugal, 10–12 July 2019; pp. 159–208. [CrossRef]

4. Lim, J.; Jeong, Y.; Park, D.; Lee, H. An efficient distributed mutual exclusion algorithm for intersection traffic control.
J. Supercomput. 2018, 74, 1090–1107. [CrossRef]

5. Clavel, M.; Durán, F.; Eker, S.; Lincoln, P.; Martí-Oliet, N.; Meseguer, J.; Talcott, C. All About Maude—A High-Performance Logical
Framework: How to Specify, Program and Verify Systems in Rewriting Logic; Lecture Notes in Computer Science (LNCS); Springer:
Berlin/Heidelberg, Germany, 2007; Volume 4350. [CrossRef]

6. Holzmann, G.J. The SPIN Model Checker—Primer and Reference Manual; Addison-Wesley: Reading, MA, USA, 2004.

http://www.jaist.ac.jp/~ogata/code/dca2emc/
http://doi.org/10.1016/0890-5401(92)90017-A
http://dx.doi.org/10.1023/A:1011276507260
http://dx.doi.org/10.18293/SEKE2019-021
http://dx.doi.org/10.1007/s11227-016-1799-3
http://dx.doi.org/10.1007/978-3-540-71999-1_21

Mathematics 2021, 9, 368 15 of 16

7. Goguen, J.A.; Kirchner, C.; Kirchner, H.; Mégrelis, A.; Meseguer, J.; Winkler, T.C. An Introduction to OBJ 3. In Proceedings of the
Conditional Term Rewriting Systems, 1st International Workshop, Orsay, France, 8–10 July 1987; Lecture Notes in Computer
Science; Kaplan, S., Jouannaud, J., Eds.; Springer: Berlin/Heidelberg, Germany, 1987; Volume 308, pp. 258–263. [CrossRef]

8. Diaconescu, R.; Futatsugi, K. Cafeobj Report—The Language, Proof Techniques, and Methodologies for Object-Oriented Algebraic
Specification; AMAST Series in Computing; World Scientific: Singapore, 1998; Volume 6. [CrossRef]

9. Cimatti, A.; Clarke, E.M.; Giunchiglia, E.; Giunchiglia, F.; Pistore, M.; Roveri, M.; Sebastiani, R.; Tacchella, A. NuSMV 2:
An OpenSource Tool for Symbolic Model Checking. In Proceedings of the Computer Aided Verification, 14th International
Conference, CAV 2002, Copenhagen, Denmark, 27–31 July 2002; Lecture Notes in Computer Science; Brinksma, E., Larsen, K.G.,
Eds.; Springer: Berlin/Heidelberg, Germany, 2002; Volume 2404, pp. 359–364. [CrossRef]

10. Ogata, K.; Futatsugi, K. Comparison of Maude and SAL by Conducting Case Studies Model Checking a Distributed Algorithm.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2007, 90, 1690–1703. [CrossRef]

11. de Moura, L.M.; Owre, S.; Rueß, H.; Rushby, J.M.; Shankar, N.; Sorea, M.; Tiwari, A. SAL 2. Computer Aided Verifi-
cation. In Proceedings of the 16th International Conference, CAV 2004, Boston, MA, USA, 13–17 July 2004; Lecture Notes
in Computer Science; Alur, R., Peled, D.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3114, pp. 496–500.
[CrossRef]

12. Clarke, E.M.; Grumberg, O.; Minea, M.; Peled, D.A. State Space Reduction Using Partial Order Techniques. Int. J. Softw. Tools
Technol. Transf. 1999, 2, 279–287. [CrossRef]

13. Clarke, E.M.; Emerson, E.A.; Jha, S.; Sistla, A.P. Symmetry Reductions in Model Checking. In Proceedings of the CAV 1998,
Vancouver, BC, Canada, 28 June–2 July 1998; Lecture Notes in Computer Science; Springer: Vancouver, BC, Canada, 1998;
Volume 1427, pp. 147–158. [CrossRef]

14. Clarke, E.M.; Grumberg, O.; Long, D.E. Model Checking and Abstraction. ACM Trans. Program. Lang. Syst. 1994, 16, 1512–1542.
[CrossRef]

15. Clarke, E.M.; Grumberg, O.; Jha, S.; Lu, Y.; Veith, H. Counterexample-guided abstraction refinement for symbolic model checking.
J. ACM 2003, 50, 752–794. [CrossRef]

16. Meseguer, J.; Palomino, M.; Martí-Oliet, N. Equational abstractions. Theor. Comput. Sci. 2008, 403, 239–264.
[CrossRef]

17. Bae, K.; Escobar, S.; Meseguer, J. Abstract Logical Model Checking of Infinite-State Systems Using Narrowing. In Proceedings
of the RTA 2013, Eindhoven, The Netherlands, 24–26 June 2013; LIPIcs; Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik:
Eindhoven, The Netherlands, 2013; Volume 21, pp. 81–96. [CrossRef]

18. Phyo, Y.; Minh, C.D.; Ogata, K. A Divideeventual model checking Conquer Approach to Leads-to Model Checking. Comput. J.
2021, [CrossRef]

19. Clarke, E.M.; Klieber, W.; Novácek, M.; Zuliani, P. Model Checking and the State Explosion Problem. In LASER Summer School
2011; Lecture Notes in Computer Science; Springer: Elba Island, Italy, 2011; Volume 7682, pp. 1–30. [CrossRef]

20. Sheeran, M.; Singh, S.; Stålmarck, G. Checking Safety Properties Using Induction and a SAT-Solver. In Proceedings of the FMCAD,
Austin, TX, USA, 1–3 November 2000; Lecture Notes in Computer Science; Springer: Austin, TX, USA, 2000; Volume 1954,
pp. 108–125. [CrossRef]

21. de Moura, L.M.; Rueß, H.; Sorea, M. Bounded Model Checking and Induction: From Refutation to Verification. In Proceedings
of the CAV 2003, Boulder, CO, USA, 8–12 July 2003; Lecture Notes in Computer Science; Springer: Boulder, CO, USA, 2003;
Volume 2725, pp. 14–26. [CrossRef]

22. Inverso, O.; Tomasco, E.; Fischer, B.; Torre, S.L.; Parlato, G. Bounded Model Checking of Multi-threaded C Programs via Lazy
Sequentialization. In Proceedings of the Computer Aided Verification—26th International Conference, CAV 2014, Held as Part of
the Vienna Summer of Logic, VSL 2014, Vienna, Austria, 18–22 July 2014; Lecture Notes in Computer Science; Biere, A., Bloem, R.,
Eds.; Springer: Berlin/Heidelberg, Germany, 2014; Volume 8559, pp. 585–602. [CrossRef]

23. Inverso, O.; Trubiani, C. Parallel and distributed bounded model checking of multi-threaded programs. In Proceedings of the
PPoPP ’20: 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, San Diego, CA, USA, 22–26
February 2020; Gupta, R., Shen, X., Eds.; ACM: New York, NY, USA, 2020; pp. 202–216. [CrossRef]

24. Barnat, J.; Bloemen, V.; Duret-Lutz, A.; Laarman, A.; Petrucci, L.; van de Pol, J.; Renault, E. Parallel Model Checking Algorithms
for Linear-Time Temporal Logic. In Handbook of Parallel Constraint Reasoning; Springer: Berlin/Heidelberg, Germany, 2018;
pp. 457–507. [CrossRef]

25. Barnat, J.; Brim, L.; Havel, V.; Havlícek, J.; Kriho, J.; Lenco, M.; Rockai, P.; Still, V.; Weiser, J. DiVinE 3.0—An Explicit-State Model
Checker for Multithreaded C & C++ Programs. In CAV 2013; LNCS; Springer: Berlin/Heidelberg, Germany, 2013; Volume 8044,
pp. 863–868. [CrossRef]

26. Kong, W.; Liu, L.; Ando, T.; Yatsu, H.; Hisazumi, K.; Fukuda, A. Facilitating Multicore Bounded Model Checking with Stateless
Explicit-State Exploration. Comput. J. 2015, 58, 2824–2840. [CrossRef]

27. Kong, W.; Hou, G.; Hu, X.; Ando, T.; Hisazumi, K.; Fukuda, A. Garakabu2: An SMT-based bounded model checker for HSTM
designs in ZIPC. J. Inf. Sec. Appl. 2016, 31, 61–74. [CrossRef]

28. Holzmann, G.J.; Bosnacki, D. The Design of a Multicore Extension of the SPIN Model Checker. IEEE Trans. Softw. Eng. 2007,
33, 659–674. [CrossRef]

29. Holzmann, G.J.; Joshi, R.; Groce, A. Swarm Verification Techniques. IEEE Trans. Softw. Eng. 2011, 37, 845–857. [CrossRef]

http://dx.doi.org/10.1007/3-540-19242-5_22
http://dx.doi.org/10.1142/3831
http://dx.doi.org/10.1007/3-540-45657-0_29
http://dx.doi.org/10.1093/ietfec/e90-a.8.1690
http://dx.doi.org/10.1007/978-3-540-27813-9_45
http://dx.doi.org/10.1007/s100090050035
http://dx.doi.org/10.1007/BFb0028741
http://dx.doi.org/10.1145/186025.186051
http://dx.doi.org/10.1145/876638.876643
http://dx.doi.org/10.1016/j.tcs.2008.04.040
http://dx.doi.org/10.4230/LIPIcs.RTA.2013.81
http://dx.doi.org/10.1093/comjnl/bxaa183
http://dx.doi.org/10.1007/978-3-642-35746-6_1
http://dx.doi.org/10.1007/3-540-40922-X_8
http://dx.doi.org/10.1007/978-3-540-45069-6_2
http://dx.doi.org/10.1007/978-3-319-08867-9_39
http://dx.doi.org/10.1145/3332466.3374529
http://dx.doi.org/10.1007/978-3-319-63516-3_12
http://dx.doi.org/10.1007/978-3-642-39799-8_60
http://dx.doi.org/10.1093/comjnl/bxu127
http://dx.doi.org/10.1016/j.jisa.2016.08.001
http://dx.doi.org/10.1109/TSE.2007.70724
http://dx.doi.org/10.1109/TSE.2010.110

Mathematics 2021, 9, 368 16 of 16

30. DeFrancisco, R.; Cho, S.; Ferdman, M.; Smolka, S.A. Swarm model checking on the GPU. Int. J. Softw. Tools Technol. Transf. 2020,
22, 583–599. [CrossRef]

31. Biere, A.; Artho, C.; Schuppan, V. Liveness Checking as Safety Checking. Electron. Notes Theor. Comput. Sci. 2002, 66, 160–177.
[CrossRef]

32. Pnueli, A.; Shahar, E. Liveness and Acceleration in Parameterized Verification. In Proceedings of the Computer Aided Verification,
12th International Conference, CAV 2000, Chicago, IL, USA, 15–19 July 2000; Lecture Notes in Computer Science; Emerson, E.A.,
Sistla, A.P., Eds.; Springer: Berlin/Heidelberg, Germany, 2000; Volume 1855, pp. 328–343. [CrossRef]

33. Padon, O.; Hoenicke, J.; Losa, G.; Podelski, A.; Sagiv, M.; Shoham, S. Reducing liveness to safety in first-order logic. Proc. ACM
Program. Lang. 2018, 2, 1–33. [CrossRef]

34. Bradley, A.R. Understanding IC3. In Proceedings of the Theory and Applications of Satisfiability Testing—SAT 2012—15th
International Conference, Trento, Italy, 17–20 June 2012; Lecture Notes in Computer Science; Cimatti, A., Sebastiani, R., Eds.;
Springer: Berlin/Heidelberg, Germany, 2012; Volume 7317, pp. 1–14. [CrossRef]

35. Bradley, A.R. IC3 and beyond: Incremental, Inductive Verification. In Proceedings of the Computer Aided Verification—24th
International Conference, CAV 2012, Berkeley, CA, USA, 7–13 July 2012; Lecture Notes in Computer Science; Madhusudan, P.,
Seshia, S.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7358, p. 4. [CrossRef]

36. Riazanov, A.; Voronkov, A. The design and implementation of VAMPIRE. AI Commun. 2002, 15, 91–110.

http://dx.doi.org/10.1007/s10009-020-00576-x
http://dx.doi.org/10.1016/S1571-0661(04)80410-9
http://dx.doi.org/10.1007/10722167_26
http://dx.doi.org/10.1145/3158114
http://dx.doi.org/10.1007/978-3-642-31612-8_1
http://dx.doi.org/10.1007/978-3-642-31424-7_4

	Introduction
	Preliminaries
	Outline of the Proposed Technique
	Multiple Layer Division of Eventual Model Checking
	A Divide and Conquer Approach to an Eventual Model Checking Algorithm
	A Case Study
	Qlock
	Formal Specification
	Model Checking with the Proposed Technique
	Summary of the Case Study

	Related Work
	Conclusions
	References

