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Abstract: The problem of generating beams of periodic internal waves in a viscous, exponentially
stratified fluid by a band oscillating along an inclined plane is considered by the methods of the theory
of singular perturbations in the linear and weakly nonlinear approximations. The complete solution
to the linear problem, which satisfies the boundary conditions on the emitting surface, is constructed
taking into account the previously proposed classification of flow structural components described by
complete solutions of the linearized system of fundamental equations without involving additional
force or mass sources. Analyses includes all components satisfying the dispersion relation that are
periodic waves and thin accompanying ligaments, the transverse scale of which is determined by
the kinematic viscosity and the buoyancy frequency. Ligaments are located both near the emitting
surface and in the bulk of the liquid in the form of wave beam envelopes. Calculations show that in a
nonlinear description of all components, both waves and ligaments interact directly with each other
in all combinations: waves-waves, waves-ligaments, and ligaments-ligaments. Direct interactions
of the components that generate new harmonics of internal waves occur despite the differences in
their scales. Additionally, the problem of generating internal waves by a rapidly bi-harmonically
oscillating vertical band is considered. If the difference in the frequencies of the spectral components
of the band movement is less than the buoyancy frequency, the nonlinear interacting ligaments
generate periodic waves as well. The estimates made show that the amplitudes of such waves are
large enough to be observed under laboratory conditions.

Keywords: stratification; viscosity; internal waves; ligaments; generation; non-linear interaction

1. Introduction

Stable interest in the systematic scientific study of internal gravity waves (IGW),
which are hidden relatively slow periodic flows inside the stratified atmosphere and ocean,
was only formed in the second half of the last century in connection with the general
development of Earth sciences. However, separate observations of this phenomenon
were described earlier. Fluctuations of the water/oil interface in a ship lighting lamp were
observed by B. Franklin in the second half of the XVIII century [1]. Descriptions of the “dead
water” effects, which manifest in the strong impact of relatively weak density stratification
on the motion of sailing or rowing ships, were given even by ancient authors [2].

Rayleigh performed the first theoretical study of IGW in a continuously stratified
fluid [3]. In the conventional wave approach, he determined the limiting frequency and pe-
riod of propagating waves, i.e., frequency N and period of buoyancy Tb in modern notation.
In the atmosphere and ocean, the buoyancy period is within the range of Tb ∼5÷10 min or
more, while in laboratory conditions, Tb ∼5÷10 s. Nansen, who encountered navigational
problems in the Norwegian fjords and the Kara Sea during the famous polar expedition of
1893–1896 years with his ship “Fram”, stimulated the development of laboratory investiga-
tions of the stratification impact on the sailing ships and boats. On his request, V. Ekman
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performed productive laboratory experiments on the generation of internal waves by a
model of a ship and definition of the internal wave drag [2].

The development of aeronautics and gliding showed that IGW plays an important role
in the dynamics of a stratified atmosphere, where they manifest in the vertical oscillations
of meteorological balloons [4] and boundaries of the spectra of variations in physical
quantities [5].

The results of the analysis of the group velocities of internal waves, firstly performed
in the ideal fluid approximation [6], had a great impact on the theory of internal waves in a
stratified fluid and the planning of experiments. The technique of group velocity for a wave
with dispersion is widely used in different branches of physics, in particular, to study the
propagation of elastic waves in three-dimensional periodic lattices [7]. Calculations of the
fundamental mode and first harmonics of two-dimensional internal waves generated by
an oscillating surface (a magic carpet) in an ideal fluid were performed by the perturbation
theory method presented in [8]. The statement of the problem does not contain the potential
to define fine flow components related to velocity dissipation in the theory [8] and low
spatial resolution of the optic instrument has no room to visualize fine interfaces formed in
the flow.

Moreover, the constructed solutions for the equations of IGW by Lighthill’s method [6]
contained singularities at critical angles, when the direction of wave propagation θ, and the
inclination of the boundaries ϕ, coincide (hereinafter and below, θ and ϕ are angles to the
horizon). The experiments did not reveal singularities at critical angles and stimulated the
search for mechanisms for their elimination in theory taking into account the smoothing
effect of dissipative factors that are viscosity, thermal conductivity, and diffusion. The dissi-
pative effects are described by special terms and additional equations in basic systems of
fundamental equations, which include the closing state equations, as well [9–11]. The in-
ternal wave equations [6] were derived as a simplified form of the systems of fundamental
governing equations [9–11] with additional approximations (condition of incompressibil-
ity, Boussinesq simplification, reduction of the problem space from 3D to 2D, and even
1D cases).

Initially and in many subsequent publications, the viscosity effect was taken into
account by the phenomenological introduction of attenuation for each wavenumber k in
the wave packet [12]. A detailed description of modern methods for calculating waves
was given by Lighthill [6], preserving in the calculations only parts of the complete solu-
tions of the equations of motion or equivalent wave equations. Modern analysis of the
IGW generation problems with an explanation of the elegant calculation technique was
recently presented in [13]. Computation of the mean flow generated close to an undulating
horizontal wall that emits internal waves in a viscous, linearly stratified two-dimensional
Boussinesq fluid performed in [14].

The solution to the 3D linearized equations was used to derive an analytic expression
for the mean vertical vorticity production term, which induces a horizontal mean flow.
The solution describes the mean flow generation associated with viscous beam attenuation
and also a peculiar inviscid mean flow in the vicinity of the oscillating wall, resulting from
line vortices at the lateral edges of the oscillating boundary [15].

The efficiency of the wave generator estimated on data of careful measurement of the
wave amplitude based upon group velocity arguments, taking into account the effect of
vertical confinement to induce resonance, was discussed in [16]. In the vicinity of resonance,
the wave fields undergo a transition to nonlinear behavior that is initiated at the central
axis of the domain and proceeds to erode the wave field throughout the domain.

A discussion of the two main mechanisms of instability for periodic internal wave
beams in stratified fluids with a constant buoyancy frequency, which is the triadic resonant
instability generating two secondary wave beams and the streaming instability correspond-
ing to the spontaneous generation of a mean flow, was analyzed in [17]. Calculation of
internal wave generation in the two-layer fluid was analyzed in [18,19], where only wave
fields are calculated without accompanying fine flow components.
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In the conventional technique of internal wave calculations [12–17], a part of the
linearized wave equation solutions and the resulting dispersion relation, respectively,
were discarded. An explanation of such a reduction is usually omitted. One of the rare
exceptions is the well-known tractate [9], where the wave frequencyω is assumed to be a
complex quantity when considering the problem of propagation of surface gravitational
waves. Then, based on the analysis of the wave attenuation condition at infinity, some of
the solutions were discarded. Explanation of the rules for the selection of real or complex
quantities for describing the frequency of waves in [9] was not given. Alternatively,
the frequency ω, as a measure of the wave energy, can be defined as a real positive
parameterω ≥ 0 of a wave motion. Physically, it is more natural to consider the complex
wavenumber k = k1 + ik2, the imaginary part of which k2 characterizes the spatial
attenuation and restructuring of the wave beam during propagation or reflection from a
solid plane [20,21].

Another independent approach was developed for the description of periodic flows in
a viscous stratified fluid based on the construction of complete solutions of the linearized
system of governing equations. The technique of IGW and accompanied fine components
calculation is based on the analysis of an extremely reduced form of the system of funda-
mental fluid mechanics equations [9–11], where only the terms, which take into account
the effects of stratification and viscosity, were conserved. The impact of compressibility,
thermal diffusivity, and diffusion effects [22] was neglected.

In the low-viscosity approximation, the theory of singular perturbations [23] gives
room to calculate complete solutions for internal wave equations taking into account the
condition of compatibility. Firstly, the problem of periodic internal wave generation by a
band oscillating along with a sloping plane in a viscous fluid with a constant buoyancy
period was studied. Analysis of the solutions of the 2D linearized system of governing
equations showed that regularly perturbed functions describe internal wave beams and
singularly perturbed part of the complete solution characterize ligaments, which are
extended but thin in transverse direction flow components [24]. The calculated geometry
and amplitude distributions in the internal wave beam are in satisfactory agreement with
the schlieren visualization data on the flow pattern and measurements of salinity variations
by a contact sensor [25].

The developed technique gives room to construct complete solutions in the entire
range of problem parameters, including the vertical ϕ = π

2 , horizontal ϕ = 0, and critical
(along with the wave beam) angle ϕ = θ inclination of the emitting surface. The problem
of the periodic IGW generation by a moving band or circle along with a plane was solved
both in 2D and 3D formulations [26,27].

A detailed analysis of the solution for the flow created by a vertically oscillating
horizontal disk showed that besides the conic wave beam, a family of ligaments is formed.
They are placed on the emitting surface and propagate with wave beams [27]. Ligaments
outline the propagating wave beams and are expressed in fields of the velocity deriva-
tives (Figure 1). They include several independent components with the transverse scale
δνN =

√
ν/N and δνω =

√
ν/ω defined by kinematic viscosity of the fluid ν, buoyancy N,

and the body oscillation frequencyω.
Conventional schlieren images of periodic internal waves visualized by high resolving

instrument with narrow illuminating slit and Foucault knife represent four wave beams
and fine horizontal interfaces near their edges in general case when θ 6= ϕ(Figure 2a) and
in the critical case θ = ϕ (Figure 2b).
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Figure 1. Periodic internal waves beams and a family of ligaments (envelopes of beams and thin
flows on the emitting surface), generated by vertical oscillations of a horizontal disk D = 8 cm in
diameter with a period of To = 6.3 s and a velocity amplitude of Uo = 0.25 cm/s in a liquid with a
buoyancy period of Tb = 4.2 s: (a–c)—fields of the vertical component of velocity νz, the first ∂νz

∂r and

second derivatives ∂2νz
∂r2 .

Figure 2. Schlieren images of the harmonic internal waves beams and ligaments (horizontal interfaces)
generated by the sloping band placed under angle ϕ = 35◦ band oscillating along its plane: (a)—
period of buoyancy Tb = 5.5 s and band oscillation T = 6.5 s, width a = 1 cm and amplitude of
oscillations A = 0.15 cm, beam slope angle θ = 57◦ 6= ϕ—general case; (b)ϕ = 45◦, Tb = 5.5 s, T = 7.8 s,
a = 6 cm, A = 0.15 cm, θ =ϕ = 45◦—critical case: (c)—ϕ = 35◦, Tb = 5.5 s, T = 13 s, a = 1 cm A = 0.15 cm,
slope of main beam θ1 = 25◦, second harmonics beam θ2 = 60◦.

When the band oscillation frequency is small and the frequency of harmonics satisfy
Raleigh’s condition 2ω < N even so gentle a source oscillating along its own surface band
generates harmonics of the main mode (Figure 2c).

In a wave field generated by a vertically oscillating sphere, which is a more effec-
tive source of internal waves than a band even at small amplitudes of displacements,
the schlieren images present periodic internal wave beams together with short vertical and
horizontal strips (ligaments) and high-gradient envelopes of the near region (Figure 3a).
As the sphere motion amplitude increases, wave beams are bounded by envelopes (dark
strips at the boundaries of internal wave beams in Figure 3b). In the case of the large
amplitude of the sphere displacements, internal wave beams originate at a thin interface
that is bounded to the near zone, including a blocked liquid (Figure 3c), and outlined by a
system of ligaments represented by dark strips at the edges of the wave beams.

Figure 3. Schlieren images of periodic flows induced by oscillating sphere (D = 4.5 cm),
(a–с)—Tb = 11.2, 7.3, 11.2 s; A = 1, 2.8, 2.8 cm,ω/N = 0.73, 0.8,0.8.

The parameters of ligaments accompanying waves of various types (inertial, internal,
acoustic, hybrid) in rotating viscous stratified fluids were calculated in [28].

Accounting for the diffusion effects, which requires the inclusion of an additional
equation in the governing system, leads to a correction of the attenuation of internal waves
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and an increase in the number of ligaments. Some of them are specific and their thickness
reflects the influence of each of the dissipative factors like δνω =

√
ν/ω for viscosity or

δκω =
√
κ/ω for diffusivity effects; some are of a mixed nature δm

ω = 4
√
κν/ω2 (κ is the salt

diffusion coefficient [29]).
A complete classification of the structural components of periodic flows, taking into

account the action of all dissipative factors that are viscosity and diffusivity of temperature
and the stratified substance, shows that the number of regular periodic solutions to the
fundamental equations system fixed in all formulations, starting with the Euler equa-
tion [30]. The number of singular components of the complete solution, which describe
thin two-dimensional interfaces and individual 3D fibers, increases with the introduction
of the action of each new dissipative factor in the analysis.

As it follows from the compatibility condition, the linearized system of Navier–Stokes
equations for both constant and variable density fluids is of the sixth order. Its complete
solution includes two regular functions that describe waves and four singularly perturbed
functions that define ligaments. Two more singularly perturbed solutions appear with the
inclusion of diffusion effects and two extra ones appear when thermal conductivity effects
are added. We take into account each new dissipative factor leads to the appearance of a
new pair of ligaments, which can be either specific and reflect the independent action of
each of the factors, or mixed. In the latter case, their parameters simultaneously depend
on several dissipative coefficients. The number of independent functions, which make
up the complete solutions of the system of linearized equations, varies from two in the
Euler equations to 10 with account for viscosity, thermal diffusivity, and diffusion [30].
Real flows that represent a combination of a number of arbitrary functions, in general with
incommensurable spatial and temporal scales, are always unsteady.

For an actually homogeneous incompressible fluid, the density as coefficient can be
omitted in all equations, and the set of equations of a fluid motion transforms into a special
operator for converting metric space into itself [31]. The velocity and momentum become
identical in the approximation ρ ≡ const. In this case, the dispersion equation for harmonic
waves in an infinite space has the form for incompressible fluid [30]:

k2
(
ω+ iνk2

)2
= 0 (1)

and for compressible fluid:(
k2
(

1− iων̃
c2

s

)
− ω

2

c2
s

)(
ω+ iν k2

)2
= 0. (2)

Here ν̃ = ζ + 4ν/3; ν, ζ are shear (first) and convergence (second) kinematic viscosity,
and cs is the sound velocity. The multiplicity of roots in (1) and (2) indicates the degenera-
tion of the Navier–Stokes equations for a homogeneous compressible and incompressible
fluid [30].

The solutions of the Navier–Stokes system of this type characterizing the velocity and
pressure fields in actually homogeneous incompressible liquid, do not admit experimental
verification with control of accuracy. The matter is that the velocity of a homogeneous
liquid is a non-observable parameter. Liquid “Eulerian particles” are not identifiable in a
homogeneous medium. Solid markers are not only transported by a vortex or shear flow
but also twist around their own axis, which was noted by Descartes [32] and reproduced in
recent experiments [33]. Small particles perform a chaotic Brownian motion. The liquid
marker, which can be mixed with the carrier liquid, splits into individual fibers in the
vortex flow [34]. All these phenomena complicate and even make it impossible to estimate
the accuracy of the liquid velocity measurements.

Keeping the density as an independent variable, that is introducing stratification
or complete state equation [35], removes the degeneracy of the Navier–Stokes system
of governing equations for a homogeneous liquid or a gas. The complete system of
fundamental fluid mechanics equations [9–11] with the state equation [35] or in a simpler
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form with prescribed density profile becomes correctly formulated and solvable in both
2D and 3D cases in a linear approximation and can be numerically solved in the complete
formulation with an estimation of the accuracy.

Since the procedures for analytical construction of complete solutions of the 3D system
of governing equations of the inhomogeneous fluid mechanics have not yet been developed,
at the first stage it is of interest to study the properties of solutions of wave equations of
complete nonlinear systems. In this paper, three problems on generation of 2D periodic
waves and accompanying ligaments are considered in a complete nonlinear formulation.

A limited simplified system of nonlinear equations of motion of a viscous fluid is con-
sidered, which takes into account the very fact of an inhomogeneous density distribution
that creates a stable stratification with a constant buoyancy frequency N. The source of
waves in the first two sections is a thin solid band oscillating along the plane. In the first
section, the plane is tilted at an arbitrary angle to the horizon, including the critical value,
ϕ = θ. In this geometry, two of the four beams of periodic internal waves, which form an
oblique “St. Andrew” cross figure, propagate along the plane.

In the second problem, the nonlinear properties of a problem with the edges of the
band oscillating with a finite amplitude periodically occupying and releasing part of the
space are analyzed.

In the third section, the emission of internal waves by interacting ligaments, which are
formed on a vertically oscillating surface, is calculated. In all cases, in contrast with [13–16],
all flow components that are large internal waves and thin ligaments are taken into account.

2. A complete Solution to the Problem of Generating 2D Periodic Internal Waves by
an Oscillating Tilted Band

The developed approach gives room to solve the problem IGW generation with
physically valid initial and boundary conditions both in linear [24–26] and in slightly
non-linear approximation without introducing mass or force sources, which are used in
conventional theory [6,13]. The method allows determining both a dynamic and fine
structure of the flow field.

To construct a complete solution of the wave generation problem analytically, the sim-
plest generator was selected, which is an infinitely thin horizontal band of width a.
The band moves along with the infinite plane positioned at an arbitrary angle ϕ to the
horizontal. The geometry of the problem is shown in Figure 4. The band periodically
oscillating with frequency ω generates viscous exponentially stratified fluid with verti-
cal density profile ρ0 = ρ00 exp(−z/Λ) and constant buoyancy frequency N periodical
perturbations containing internal wave beams and ligaments.

Figure 4. Basic coordinate frames.

The IGW beams propagate under the angle θ = ±arcsin(ω/N) to the horizon [6].
In an arbitrary case ϕ 6= θ, all beams separate from the emitting plane. The critical case,
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ϕ = θ, when two wave beams propagate along with a plane bounding the fluid, is of
particular interest for geophysical applications and calls for special consideration.

The simplified system, but still satisfying the solvability condition, in which the
unperturbed density profile replaces the equation of state for density, the compressibility,
heat conductivity, and diffusion effects are neglected, takes the form [9,30]:

(ρ0 + ρ)
[

∂u
∂t + (u∇)u− ν∆u

]
= −∇p− ρgez,

∂ρ
∂t + u∇ρ = 0,∇u = 0,ρ0(z) = ρ00 exp(−z/Λ).

(3)

Here ρ(x, z, t) is the density perturbation; u is the velocity; p is the pressure, minus
the hydrostatic pressure; g is the acceleration of gravity; and ez is the unit vector in the
upward direction of the vertical axis. The calculations are performed in a laboratory (x, z)
(the gravity acceleration g is opposite to the z-axis) and the sloping plate (ξ, ζ) coordinate
frames, which are shown in Figure 1, as well.

The no-slip conditions for velocity on the radiating surface as well as the damping of
all disturbances at infinity are selected as boundary conditions:

Uξ(ξ) = u0ϑ(a/2− |ξ|), Uζ(ξ) = 0, (4)

where ϑ is the unit Heaviside function. The solution of system (3) is sought in the form
of expansions in plane waves with a real frequency ω and a complex wavenumber k.
The general time factor exp(−iωt) is omitted everywhere below.

The system (3) is transformed into the equation for the stream function Ψ (uξ = ∂Ψ/∂ζ,
uζ = −∂Ψ/∂ξ) [

ω2∆− N2
(

cos ]ϕ
∂

∂ξ
− sinϕ

∂

∂ζ

)2
− iων∆2

]
Ψ(ξ, ζ) = 0, (5)

with boundary conditions on the band

∂Ψ
∂ζ

∣∣∣∣
ζ=0

= Uξ(ξ),
∂Ψ
∂ξ

∣∣∣∣
ζ=0

= −Uξ(ξ). (6)

The solutions of the system (3) are searched for by the additional conditions of con-
tinuity for function Ψ and to all its derivatives at transverse coordinate ζ including the
third at ζ = 0, |ξ| > a/2, as well as the condition of damping at infinity Ψ(ξ, ζ)→ 0 at
ξ, ζ → ±∞ by the method of integral transformations:

Ψ(ξ, ζ) =

+∞∫
−∞

(
beiκ+w ζ + ceiκ+l ζ

)
eikξ dk, ζ > 0, (7)

where b(k) and c(k) are the spectral densities, and the wave numbers κ±w (k) and κ±l (k)
correspond to the propagating internal waves and ligaments. Propagating waves, as sup-
plementing ligaments, fill the entire space. To satisfy the damping conditions at infinity,
the next branches are chosen Imκ+l > 0, Imκ−w < 0, Imκ−l < 0.

The searched wave numbers are the roots of the dispersion equation:

ω2
(
κ2 + k2

)
− N2(κ sinϕ− k cosϕ)2 + iνω

(
κ2 + k2

)2
= 0. (8)

The solution to Equation (8). with the foregoing boundary conditions is constructed
by the method of successive approximations. Firstly, a zero approximation solution Ψ(1)

0 is
constructed with boundary conditions (6) and the additional no-slip conditions uξ = uζ = 0

on the motionless part of the plate at ζ = 0, |ξ| > a/2. The solution Ψ(1)
0 does not satisfy

the conditions of continuity for all its derivatives with respect to ζ outside the band.
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A correction Ψ(2)
0 is added, which satisfies Equation (5) and provides the continuity of the

sum Ψ(1)
0 + Ψ(2)

0 and its derivatives up to the third one for ζ = 0, |ξ| > a/2.

The sum obtained Ψ(1)
0 + Ψ(2)

0 , which violates the boundary conditions (6). To satisfy

these conditions on the moving band, a function Ψ(1)
1 is added to the solution. Adding one

more function Ψ(2)
0 ensures the continuity of the sum Ψ(1)

0 + Ψ(2)
0 and its derivatives up to

the third one outside the plate. Each of the correction functions satisfies Equation (5).
Unlimited repetition of the iterative procedure leads to the following complete solution:

Ψ(ξ, ζ) =
∞

∑
n=0

Ψn(ξ, ζ), Ψn = Ψ(1)
n + Ψ(2)

n . (9)

Substitution of (9) into the boundary conditions of the problem leads to the relations
connecting the functions Ψ(1)

0 , Ψ(1,2)
n and their derivatives;

Ψ(2)
n

∣∣∣
ζ=+0

= Ψ(2)
n

∣∣∣
ζ=−0

, Ψ(2)
nζ

∣∣∣
ζ=+0

= Ψ(2)
nζ

∣∣∣
ζ=−0

,

Ψ(2)
nζζ

∣∣∣
ζ=+0

− Ψ(2)
nζζ

∣∣∣
ζ=−0

= ϑ
(
|ξ| − a

2
)[

Ψ(1)
nζζ

∣∣∣
ζ=−0

− Ψ(1)
nζζ

∣∣∣
ζ=+0

]
,

Ψ(2)
nζζζ

∣∣∣
ζ=+0

− Ψ(2)
nζζζ

∣∣∣
ζ=−0

= ϑ
(
|ξ| − a

2
)[

Ψ(1)
nζζζ

∣∣∣
ζ=−0

− Ψ(1)
nζζζ

∣∣∣
ζ=+0

]
,

Ψ(1)
n+1

∣∣∣
ζ=±0

= 0, Ψ(1)
n+1,ζ

∣∣∣
ζ=±0

= −ϑ
( a

2 − |ξ|
)

Ψ(2)
nζ

∣∣∣
ζ=±0

,

Ψ(1)
0

∣∣∣
ζ=±0

= 0, Ψ(1)
0ζ

∣∣∣
ζ=±0

= u0ϑ
( a

2 − |ξ|
)
,

(10)

where each of the indices ζ at Ψ(1,2)
n denotes differentiation with respect to ζ.

Iterations, Ψ(1,2)
n , like the complete solution (7), are sought in the form:

Ψ(1)
n =

+∞∫
−∞

[
ϑ(ζ)A+

n

(
eiκ+w ζ − eiκ+l ζ

)
+ ϑ(−ζ)A−n

(
eiκ−w ζ − eiκ−l ζ

)]
eikξ dk,

Ψ(2)
n =

+∞∫
−∞

[
ϑ(ζ)

(
B+

n eiκ+w ζ + C+
n eiκ+l ζ

)
+ ϑ(−ζ)

(
B−n eiκ−w ζ + C−n eiκ−l ζ

)]
eikξdk.

(11)

After substitutions of the expressions (11) into relations between iterative functions
(10), we receive the next system of equations:(

κ+w − κ+l
)

A+
0 =

(
κ−w − κ−l

)
A−0 = − iu0

πk sin ka
2 ≡ A0(k),

An+1(k) ≡
(
κ+w − κ+l

)
A+

n+1 =
(
κ−w − κ−l

)
A−n+1 = − 1

π

+∞∫
−∞

κ+w (k′)B+
n (k′)+κ+l (k′)C+

n (k′)
k′−k sin (k′−k)a

2 dk′,

B+
n + C+

n − B−n − C−n = 0,κ+w B+
n + κ+l C+

n − κ−w B−n − κ−l C−n = 0,κ+w 2B+
n + κ+l

2C+
n − κ−w 2B−n − κ−l

2C−n = −D1 An + I1,
κ+w

3B+
n + κ+l

3C+
n − κ−w 3B−n − κ−l

3C−n = −D2 An + I2,

(12)

where

Ij =
1
π

+∞∫
−∞

Dj(k′)An(k′)
k′−k sin (k′−k)a

2 dk′,

D1 = κ+w + κ+l − κ
−
w − κ−l , D2 = κ+w

2 + κ+wκ
+
l + κ+l

2 − κ−w 2 + κ−wκ
−
l + κ−l

2.
(13)

By solving the system (12), substituting the result into (11) and (9), and comparing it
with (7), we find the spectral densities for the wave b(k) and the ligament component c(k)
of flows:

b(k) =
1
π

+∞∫
−∞

Rw(k, k′)g(k′)dk′, c(k) =
1
π

+∞∫
−∞

Rl(k, k′)g(k′)dk′, (14)

where:
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Rw(k, k′) =
D2(k′) + κ+w D1(k′)(

κ+w − κ−w
)(
κ+w − κ+l

)(
κ+w − κ−l

) , Rl(k, k′) =
D2(k′) + κ+l D1(k′)(

κ+l − κ
−
l
)(
κ+l − κ

+
w
)(
κ+l − κ

−
w
) . (15)

In (14), all wave numbers κ±w and κ±l are functions of k and do not depend on k′.
The universal function g(k) in (14) is a solution of an integral equation:

g(k)− 1
π

+∞∫
−∞

R(k, k′)g(k′)dk′ = − iu0

πk
sin

ka
2

, (16)

with kernel:

R(k, k′) =
1

k′ − k
sin

(k′ − k)a
2

+
1
π

+∞∫
−∞

sin
(k′′ − k)a

2
sin

(k′′ − k′)a
2

D3(k′′ )D2(k′)− D4(k′′ )D1(k′)
(k′′ − k)(k′′ − k′)D0(k′′ )

dk′′ , (17)

where:

D0 = (κ+w − κ−w )
(
κ+w − κ−l

)(
κ+l − κ

−
w
)(
κ+l − κ

−
l
)
, D3 = κ+wκ

+
l − κ

−
wκ
−
l ,

D4 = κ+wκ
+
l
(
κ+w + κ+l

)
− κ−wκ−l

(
κ−w + κ−l

)
,

(18)

and D1 ИD2 were defined in (13). The performed calculations of the stream function at
ζ < 0 show that the wave field has central symmetry: Ψ(−ξ,−ζ) = Ψ(ξ, ζ).

Since further calculations use approximate solutions of the dispersion Equation (8),
the cases of the general position of the band (ϕ 6= ±θ) and critical angles (ϕ = ±θ) require
separate consideration.

In the general non-degenerated case (ϕ 6= ±θ), approximate solutions of the disper-
sion Equation (8) have the form:

κ±w (k) = ∓|k|ctg(θ∓ λϕ)± iν|k|3
2N cosθ sin4(θ∓λϕ)

, λ = sign k,

κ±l (k) = ±kl − k sinϕ cosϕ
sin2ϕ−sin2 θ

, kl =
[
i + sign

(
sin2ϕ− sin2 θ

)]√ N|sin2ϕ−sin2 θ|
2ν sinθ .

(19)

Substituting (19) into (15) and (17) gives approximate expressions for the kernels R,
Rb and Rc:

R(k, k′) =
2

πkl sin 2θ
(
sin2ϕ− sin2 θ

) +∞∫
−∞

sin
(k′′ − k)a

2
sin

(k′′ − k′)a
2

signk′′ (k′′ − k′) + (
∣∣k′′ ∣∣−∣∣k′∣∣) sin2 2ϕ

4(k′′ − k)(k′′ − k′)
dk′′ , (20)

Rb(k, k′) = − 1
kl

[
1

k′ − k
− sin 2ϕ
|k|sin 2θ

]
sin

(k′ − k)a
2

(21)

Rc(k, k′) =
1

kl(k′ − k)
sin

(k′ − k)a
2

(22)

In the low-viscosity approximation for ν→ 0 , kernel (20) of the integral Equation (16)
also tends to zero, and in the first approximation solution, (16) is of the form:

g(k) = − iu0

πk
sin

ka
2

. (23)

Substitution (23) with kernels (20) and (21) in the expressions (14) specifies spectral
density of internal waves and ligaments

b(k) =
iu0

πkb

[
1
k
+

1
2|k|

sin 2ϕ
sin 2θ

]
sin

ka
2

, c(k) = − iu0

πklk
sin

ka
2

. (24)
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In the critical case, ϕ = θ, roots of dispersion Equation (8) have the form:

κ+w = ϑ(k)
[

i−
√

3
2 γ− kctg2θ

3

]
+ ϑ(−k)kctg2θ,

κ+w = ϑ(k)
[

i−
√

3
2 γ− kctg2θ

3

]
+ ϑ(−k)kctg2θ,

κ+l = ϑ(k)
[√

3+i
2 γ− kctg2θ

3

]
+ ϑ(−k)

[
iγ− kctg2θ

3

]
,

κ−l = −ϑ(k)
[
iγ +

kctg2θ
3

]
− ϑ(−k)

[√
3+i
2 γ +

kctg2θ
3

]
,γ =

3
√

2|k|N cosθ
ν .

(25)

Substitution of (25) in (16) gives:

g(k) = − iu0a
2π

F
(

ka
2

)
, (26)

where the reference function F(k) is the solution of the integral equation:
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0 3
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0

exp
2 cos2 cos

i u a kik dk
NN

∞
 β ν ν ξΨ = − − ζ − θπ θ   , (29)

with the universal coefficient of the problem: 

The kernels Rb and Rc are equal to:

Rb(k, k′) = − i
3|k|(k′−k)

3
√

νk′ |k′ |
2N cosθ

{
3ϑ(−k) + ϑ(k)

[
1− (1 + i

√
3) 3
√

k
k′

]}
sin (k′−k)a

2 ,

Rc(k, k′) = − i
3|k|(k′−k)

3
√

νk′ |k′ |
2N cosθ

{
ϑ(−k)

[
1− 2 3

√
|k|
k′

]}
sin (k′−k)a

2 .
(28)

The Equation (27) for F(x) does not contain parameters of medium or the wave source.
They appear in the formula only after transformations (14) with kernels (28), which were
applied to the function g(k).

In the critical case, ϕ = θ, the coordinate system (ξ, ζ) becomes the intrinsic reference
frame for two beams propagating along the plane of the band oscillation. Taking into
account these properties, the expression for the stream function in the region ξ > a/2 can
be found immediately without solving Equation (27):

Ψ = − iβu0

π2
3

√
ν2a2

2N2 cos2 θ

∞∫
0

exp
[
−ikζ − νk3ξ

2N cos θ

]
dk, (29)

with the universal coefficient of the problem:

β =

+∞∫
−∞

sin x
3
√

x|x|
F(x)dx. (30)

As follows from (29), the periodic IGW beam propagating along the plate is unimodu-
lar in the critical case. The vertical-displacement amplitude on its axis is determined by
the formula:

h(ξ, 0) =
βb sin θ

3π2 Γ
(

2
3

)
3

√
2a2

ξ2 , (31)
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where b = u0/ω is the amplitude of the band oscillations. Thus, employing the solu-
tions (25) to the dispersion Equation (8) resolves the difficulty with critical angles in the
wave generation:

κ+w = ϑ(k)
[

i−
√

3
2 γ− kctg2θ

3

]
+ ϑ(−k)kctg2θ,

κ+w = ϑ(k)
[

i−
√

3
2 γ− kctg2θ

3

]
+ ϑ(−k)kctg2θ,

κ+l = ϑ(k)
[√

3+i
2 γ− kctg2θ

3

]
+ ϑ(−k)

[
iγ− kctg2θ

3

]
,

κ−l = −ϑ(k)
[
iγ +

kctg2θ
3

]
− ϑ(−k)

[√
3+i
2 γ +

kctg2θ
3

]
,γ =

3
√

2|k|N cosθ
ν .

(32)

Substitution of (32) in (16) gives:

g(k) = − iu0a
2π

F
(

ka
2

)
, (33)

where the reference function F(k) is the solution of the integral equation:
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The kernels Rb and Rc are equal to:

Rb(k, k′) = − i
3|k|(k′−k)

3
√

νk′ |k′ |
2N cosθ

{
3ϑ(−k) + ϑ(k)

[
1− (1 + i

√
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√

k
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The Equation (34) for F(x) does not contain parameters of medium or the wave source.
They appear in the formula only after transformations (14) (with kernels (28), which were
applied to the function g(k).

In the critical case, ϕ = θ, the coordinate system (ξ, ζ) becomes the intrinsic reference
frame for two beams propagating along the plane of the band oscillation. Taking into
account these properties, the expression for the stream function in the region ξ > a/2 can
be found immediately without solving Equation (27):

Ψ = − iβu0

π2
3

√
ν2a2

2N2 cos2 θ

∞∫
0

exp
[
−ikζ − νk3ξ

2N cos θ

]
dk, (36)

with the universal coefficient of the problem:

β =

+∞∫
−∞

sin x
3
√

x|x|
F(x)dx. (37)

As follows from (36), the periodic IGW beam propagating along the plate is unimodu-
lar in the critical case. The vertical-displacement amplitude on its axis is determined by
the formula:

h(ξ, 0) =
βb sin θ

3π2 Γ
(

2
3

)
3

√
2a2

ξ2 , (38)

where b = u0/ω is the amplitude of the band oscillations. Thus, employing the solutions
(32) to the dispersion Equation (8) resolves the difficulty with critical angles in the wave
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generation problem as well as in the problem on reflection of internal waves from a rigid
surface in a viscous, continuously stratified fluid [21].

In a 3D case, fine flow components, which in contrast to the conventional boundary
layer can occupy any domains in the entire space, has a more complex structure. They
include components with parameters similar to periodic Stokes flow, whose length scale
δνω =

√
ν
ω does not depend on the presence of stratification, and transient length scale of

ligaments δνN =
√
ν
N is specific for a given stratification and geometry [29,30]. The exten-

sions of the ligaments form a fine structure of the medium at the horizon of the band edges,
which manifests itself in the form of thin horizontal interfaces in Figure 2. Non-linearly
interacting ligaments form thin interfaces of finite length in the domain of the intersecting
internal wave from independent sources [36,37] and in the vicinity of a free oscillating
sphere on a neutral buoyancy horizon [38]. Nonlinear interaction between ligaments and
IGW can serve as an additional mechanism of the internal wave generation.

3. A Non-Linear Model of Periodic Flow Formation by a Band Oscillating Along a
Tilted Plate

Linear models of IGW [6,13–16] generated by the periodically oscillating body do
not describe a number of important properties of wave fields experimentally observed.
The phenomenon of generation of the second and higher harmonics of internal waves,
as well as the formation of fine high-gradient interfaces, which were interpreted as liga-
ments [30] or internal waves of zero frequency (dissipative-gravitational waves [39]) are
among them.

When a body oscillates in a fluid, two types of nonlinearity are presented. One type
follows directly from the nonlinear terms of the equations of motion. A second type, which
can be named by the consequence of the boundary conditions nonlinearity, is associated
with the fact that there is a domain near the body edge, in which either part of the body or
the fluid is alternately present. In this case, even with monochromatic oscillating of the
body, harmonics of the fundamental oscillation have appeared in the wave field.

Just as in the case of linear problems, a convenient source for constructing exact
solutions is part of an infinite plane of performing monochromatic oscillations. Here
the source of a two-dimensional wave in an exponentially stratified viscous fluid is a
horizontal band of width a placed on an infinite plane, inclined at an arbitrary angle
ϕ to the horizon (Figure 4). The band oscillates along the plane with frequency ω0 and
amplitude b. The only non-zero tangential component of the surface velocity in the
coordinate system (ξ, ζ) associated with the plane in Figure 4 has the form:

u(ξ, t) = ω0b cosω0tϑ
( a

2
− |ξ − b sinω0t|

)
, (39)

where ϑ is the unit Heaviside function. In the linear problem of generating internal waves
by the band on plate, the oscillation amplitude is assumed to be infinitely small, and the
second term b sinω0t in the argument of the Heaviside function is absent. It represents in
(39) the nonlinearity following from the boundary conditions.

The same simplified system (3) with the unperturbed density profile ρ0 = ρ00e−z/Λ,
which replaces the equation of state for density, was selected for analysis. The no-slip
conditions for velocity on the radiating surface and the damping of all disturbances at
infinity are selected as boundary conditions:

wξ(ξ, ζ = 0, t) = u(ξ, t), wζ(ξ, ζ = 0, t) = 0 (40)

The solution of system (3) in the first order of the perturbation theory is constructed
in the form of the following sums for density ρ = ρ1 + ρ2, fluid velocity w = w1 + w2,
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and pressure P = P1 + P2. The quantities with the index 1 satisfy the homogeneous
linear system:

ρ0

(
∂w1

∂t
− ν∆w1

)
= −∇P1 − ρ1gez,

∂ρ1
∂t

+ w1z
dρ0
dz

= 0, ∇w1 = 0, (41)

with boundary conditions on the band (40).
The quantities with index 2 satisfy the inhomogeneous linear system:

ρ0

(
∂w2

∂t
− ν∆w2

)
= −∇P2 − ρ2gez + f,

∂ρ2
∂t

+ w2z
dρ0
dz

= m
∂ρ2
∂t

+ w2z
dρ0
dz

= m, (42)

with zero boundary conditions on the plane.
Here the sources f and m, which are formed from the nonlinear terms of system (3) by

substituting the solutions of system (41), have the form:

f = −ρ0(w1∇)w1, m = −w∇ρ1. (43)

In the expression for f in (43), the term −ρ1∂w1/∂t is omitted, which is possible if the
inequality λ << Λ holds, where λ is the natural wave length of the generated disturbances.

For a stream function Ψ1 such that u1ξ = ∂Ψ1/∂ζ, u1ζ = −∂Ψ1/∂ξ, from Equation
(42), we obtain in the Boussinesq approximation:[

∂2

∂t2

(
∂2

∂ξ2 +
∂2

∂ζ2

)
+ N2

(
cosϕ

∂

∂ξ
− sinϕ

∂

∂ζ

)2
− ν ∂

∂t

(
∂2

∂ξ2 +
∂2

∂ζ2

)2]
Ψ1 = 0, (44)

where N is the buoyancy frequency. Following [24] the solution to Equation (44) with
boundary conditions (40) can be represented as

Ψ1 =

+∞∫
−∞

+∞∫
−∞

A(ω, k)
[
eikwζ − eikl ζ

]
ei(kξ−ωt)dkdω, (45)

where kw(ω, k) and kl(ω, k) are the roots of the dispersion equation corresponding to
(44 for which the next approximate expressions are valid:

kw = kctg(ϕ− θsignk) + i|k|3

2N cosθ sin4(ϕ−θsignk)
, |ω|< N,

kw =
i|ωk|

√
ω2−N2−kN2 sinϕ cosϕ
ω2−N2 sin2ϕ

, |ω|> N,

kl = (i + signω̃)
√
ω̃
2ν , ω̃ = ω2−N2 sin2ϕ

ω .

(46)

Here, the root kw describes the wave (or pseudo-wave) that is evanescent at |ω|> N
field, kl is the fine-structured ligament, and θ = arcsin(ω/N) is the angle of inclination of
the beam to the horizontal or wave vector k to vertical.

The spectral density A(ω, k) is given by the expression:

A(ω, k) =
iU(ω, k)
kl − kw

, (47)

where:

U(ω, k) =
1

4π2

+∞∫
−∞

+∞∫
−∞

u(ξ, t)e−i(kξ−ωt)dξdt. (48)
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Substituting (40) into (48) gives:

U =
ω0

πk2 sin
ka
2

+∞

∑
n=−∞

nJn(kb)δ(ω− nω0), (49)

where Jn is the Bessel functions, and δ is the delta function. The spectrum (49) does not
lead to the generation of dissipative-gravity waves [39].

For propagating internal waves with frequencies nω0 < N, vertical displacement of
particles in each beam are described by the expression:

h(n)1 (pn, qn) =
2i sin θn

πkbn sin(ϕ+ θn)
e−inω0t

+∞∫
−∞

1
k

sin
ka′

2
Jn(kb′) exp

[
ikpn −

νk3qn

2N cos θn

]
dk. (50)

Here, θn = arcsin(nω0/N) is such an angle, which the n-th harmonic beam makes
with the horizon, (pn, qn) is the coordinate system accompanying the beam with the axis qn
directed along the beam, a′ = a sin(ϕ+ θn), b′ = b sin(ϕ+ θn), and kln = kl(ω = nω0).

From (50), it follows that if the band oscillates with an infinitesimally small amplitude
b, then there is only a beam with a frequencyω0, the expression for which, when using the
asymptotic J1(kb′) = kb′/2, coincides with the linear solution [24].

If the amplitude of band oscillations is large enough, then the use of the asymptotic
behavior of the Bessel function Jn for large values of the argument allows us to assert
that each of the fields (50) is created by four point sources located on the plane at points
with coordinates ξ = −(b + 0.5a), −|b− 0.5a|, |b− 0.5a|, b + 0.5a. An analysis of the
modality of the emitted beams, similar to that carried out in [25], shows that the following
situations are possible. If 2b′ + a′ < Lν, where Lν = 3

√
gν/N is the viscous wave scale,

a unimodal beam is excited. In the case 2b′ + a′ > Lν, the following options are possible:
If b′ + a′−|b′ − a′|< Lν , the excited beam will be bimodal; if 2|b′ − a′|< Lν it will be
three-modal; if 2|b′ − a′|> Lν and b′ + a′−|b′ − a′|> Lν it will be four-modal.

The solution of system (42) expressed through the stream function
Ψ2, (u2ξ = ∂Ψ2/∂ζu2ζ = −∂Ψ2/∂ξ), can be written in the form:

Ψ2 =

+∞∫
−∞

+∞∫
−∞

ψ(ζ; Ω, κ)eiκξ e−iΩtdκdΩ, (51)

where the function ψ satisfies the equation:[
Ω2
(

∂2

∂ξ2 +
∂2

∂ζ2

)
− N2

(
cosϕ

∂

∂ξ
− sinϕ

∂

∂ζ

)2
− iνΩ

(
∂2

∂ξ2 +
∂2

∂ζ2

)2]
ψ = −F(ζ; Ω, κ). (52)

Here the function F is obtained by substituting solution (45) into (43) and has the form:

F = iΩ
+∞∫
−∞

+∞∫
−∞

A(ω, k)A(Ω−ω, κ− k)
[

D
(

kw, k̃w

)
− D

(
kl , k̃w

)
− D

(
kw, k̃l

)
+ D

(
kl , k̃l

)]
dkdω, (53)

where kw,l = kw,l(ω, k), k̃w,l = kw,l(Ω −ω, κ− k), function D is defined by expressing
D(σ, σ̃) = ei(σ+σ̃)ζ D0(σ, σ̃) and

D0(σ, σ̃) = [kσ̃− (κ− k)σ]
{

σ2 + k2 +
N2

ωΩ
(σ sinϕ− k cosϕ)[(σ + σ̃) sinϕ− κ cosϕ]

}
. (54)

The solution to Equation (52) can be represented as a convolution of its right-hand
side with the Green’s function:

ψ(ζ; Ω, κ) =
∞∫

0

G(ζ, ζ ′; Ω, κ)F(ζ ′; Ω, κ)dζ ′. (55)
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Green’s function, which is the solution to Equation (52), with the right-hand side
−δ(ζ − ζ ′) and boundary conditions G(0, ζ ′; Ω, κ) = ∂G(ζ,ζ ′ ;Ω,κ)

∂ζ

∣∣∣
ζ=0

= 0 has the form:

G =
[
α+w eiκ+w (ζ−ζ ′) + α+l eiκ+l (ζ−ζ ′)

]
ϑ(ζ − ζ ′) +

[
α−w eiκ−w (ζ−ζ ′) + α−b eiκ−l (ζ−ζ ′)

]
ϑ(ζ ′ − ζ) + βweiκ+w ζ + βle

iκ+l ζ . (56)

where:

α±w = ± 1
νΩ(κ±w−κ∓w )(κ±w−κ+l )(κ

±
w−κ−l )

, α±l = ± 1
νΩ(κ±l −κ

∓
l )(κ

±
l −κ

+
w )(κ±l −κ

−
w )

,

βw = e−iκ−w ζ′

νΩ(κ−w−κ+w )(κ−w−κ−l )(κ
+
w−κ+l )

+ e−iκ−l ζ′

νΩ(κ−l −κ
+
w )(κ−l −κ

−
w )(κ+w−κ+l )

,

βl =
e−iκ−w ζ′

νΩ(κ−w−κ+l )(κ
−
w−κ−l )(κ

+
l −κ

+
w )

+ e−iκ−b ζ′

νΩ(κ−l −κ
−
w )(κ−l −κ

+
l )(κ

+
l −κ

+
w )

.

(57)

Here, κ±w,l are the four roots of the dispersion equation:

Ω2
(
κ̃2 + κ2

)
− N2(κ̃ sinϕ− κ cosϕ)2 + iνΩ

(
κ̃2 + κ2

)2
= 0, (58)

resolved relative to κ̃. The perturbations decay at infinity when the inequalities Imκ+w,l > 0,
Imκ−w,l < 0 are valid.

Substituting (53) and (56) with (57) into (55) and performing integration over, we ob-
tain, taking into account (51), the expression for the wave part of the field excited due to
nonlinear interactions:
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0 0*
2

1

1 ( , ) ( , )
2

in t in t
w n n

n

e e
∞

− ω ω

=

 Ψ = ψ ξ ζ +ψ ξ ζ  , (60)

where for the nψ , approximate expression is valid: 

2
0

2
2 ( ) wni i

n n
ln

S e e d
+

+∞

κ ζ κξ
+

−∞

ωψ = κ κ
π νκ  , 

[ ]2
( ) 1 ( )( ) sin sin ( ) ( )

2 2( )
nm

n m n m
lm

m n m ka k aS J k b J kb dk
k k k

−
+∞+∞

−

=−∞ −∞

− γ κ −′κ = κ −
κ −  , 

(61)

2 2

2
0

1 sin
( )( )

l l
nm l l

l l l l l

k kNk k
m n mk k k k n−

  ϕγ = − + −  −+ + − κ ω   


  , 

2 2

2
0

1 sin1
( )l l

Na
n n mk −

 ϕ− + −− κ ω 
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( )
2 2 2 2

2 0

0

( ) sin
( )l

n m Nk i
n m

− ω − ϕ=
ν − ω

, ( )
2 2 2 22 0

0

sin
l

m Nk i
m

ω − ϕ=
ν ω

 , ( )
2 2 2 22 0

0

sin
l

n Ni
n

− ω − ϕκ =
ν ω

. (63)

The calculations show that, despite the differences in characteristic scales, all compo-
nents of the flows described by both regular (waves) and singularly perturbed solutions 
(ligaments) interact with each other and generate new waves and ligaments with multiple 
frequencies and specific transient size. All solution components propagate along radius 
vectors inclined at an angle to the horizon in the beam with the width and modality de-
termined by the ratio of the source size to the viscous wave scale Lν . 

The first term in square brackets in (59) describes the nonlinear interaction of wave
(or pseudowave) fields with each other, the second and third—the interaction of wave
fields with ligaments, and the fourth—the interaction of ligaments with each other.

All terms have a different order of smallness in viscosity, and the main terms are
those that describe the interaction of ligaments with each other and with wave fields. This
indicates the exceptional importance of small-scale perturbations in nonlinear generation
processes. Substituting expressions (47) for U(ω, k) and in (59), integrating overω and Ω,
we obtain the following representation for Ψ2w:

Ψ2w =
1
2

∞

∑
n=1

[
ψn(ξ, ζ)e−inω0t +ψ∗n(ξ, ζ)einω0t

]
, (60)

where for the ψn, approximate expression is valid:

ψn =
2ω2

0
π2νκ+ln

+∞∫
−∞

Sn(κ)eiκ+wnζeiκξ dκ,

Sn(κ)′ =
+∞
∑

m=−∞

− m(n−m)γnm

k̃l

+∞∫
−∞

1
k2(κ−k) sin ka

2 sin (κ−k)a
2 Jm[(κ− k)b]Jn−m(kb)dk,

(61)

γnm = 1
(kl+k̃l)(kl+k̃l−κ−l )

[
kl − k̃l +

N2 sin2ϕ
nω2

0

(
k̃l
m −

kl
n−m ,

)]
a− 1

kl−κ−l

[
1 + N2

ω2
0

sin2ϕ
n(n−m)

]
.

(62)

Here, the sign (–) at the sum means the exclusion of terms with m = 0 and m = n.



Mathematics 2021, 9, 586 16 of 23

The quantities kl , k̃l and κ−l in (62) are determined by the formulas

(kl)
2 = i

(n−m)2
ω2

0 − N2 sin2ϕ

ν(n−m)ω0
,
(

k̃l

)2
= i

m2ω2
0 − N2 sin2ϕ

νmω0
,
(
κ−l
)2

= i
n2ω2

0 − N2 sin2ϕ

νnω0
. (63)

The calculations show that, despite the differences in characteristic scales, all compo-
nents of the flows described by both regular (waves) and singularly perturbed solutions
(ligaments) interact with each other and generate new waves and ligaments with mul-
tiple frequencies and specific transient size. All solution components propagate along
radius vectors inclined at an angle to the horizon in the beam with the width and modality
determined by the ratio of the source size to the viscous wave scale Lν.

4. Non-Linear Generation of Flows by a Band Oscillating along a Vertical Plate

The complete solution to the linearized problem of generating disturbances by a
body performing a periodic motion in a viscous continuously stratified fluid describes a
family of thin ligaments supplementing either propagating internal waves (ω < N) or
evanescent periodic flows around the source (ω > N) depending on the relation between
the oscillation ω and buoyancy N frequencies. Since the governing Equations (3) are
nonlinear, the interacting ligaments can be one of the direct sources of waves even when
propagating internal waves cannot be generated directly due to Rayleigh frequency limit [3].
The parameters of waves generated by ligaments in a flow on a horizontal disc performing
torsional oscillations are in satisfactory agreement with measurements [40]. Here the
generation of internal waves by the nonlinearly interacting ligaments with each other and
with propagating internal waves or residual motions atω > N is analyzed.

As a source of flows, we consider an infinite motionless vertical plane and infinitely
thin band on it performing complex two-dimensional motion. The displacement of the
band is the superposition of two vertical oscillations with frequenciesω1 andω2. In this
case, only the vertical component of the band velocity is nonzero:

U(z, t) = U1(z)e−iω1t + U2(z)e−iω2t. (64)

The system of governing Equation (3) is supplemented by the no-slip boundary
conditions on the plane:

ux(x = 0, z, t) = 0, uz(x = 0, S(z), t) = U(S(z), t), (65)

where function S(z) describes the geometry of moving part of the plane and damping of
all perturbations at infinity.

In the approximation of weak nonlinearity, the solution of the problem in the first-
order perturbation theory is represented as the sum of solutions of a linearized system (3)
with boundary conditions (65) and the solutions of the inhomogeneous linearized system:

ρ0
∂ũx
∂t = − ∂P̃

∂x + ρ0ν∆ũx + ρ0 f x, ρ0
∂ũz
∂t = − ∂P̃

∂z + ρ0ν∆ũz − ρ̃g + ρ0 f z,
∂ρ̃
∂t + ũz

dρ0
dz = m, ∂ũx

∂x + ∂ũz
∂z = 0,

(66)

with zero boundary conditions in the plane. The sources f x, f z and m in the right part
of equations (66) are results of substitutions of stream function Ψ (ux = Ψz, uz = −Ψx),
which is the solution of the linearized system, into the quadratic terms of Equation (3) and
have the form:

f x = ΨxΨzz −ΨzΨxz, f z = ΨzΨxx −ΨxΨxz, m = Ψxρz −Ψzρx, (67)

where the subscripts x and z denote the partial derivatives with respect to the corresponding
variables. In Equation (66), the terms ρ∂u/∂t and ρν∆u are omitted under the assumption
that the typical internal wave length λ and the typical spatial scale of viscous ligaments
δνN =

√
2ν/N are small with respect to the stratification scale Λ: λ << Λ,

(
δνN
)2

<< λΛ.
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For the correction to the stream function, Ψ̃ (ũx = Ψ̃z, ũz = −Ψ̃x), we obtain the next
equations, which follows from Equation (66):[

∂2

∂t2 ∆ + N2 ∂2

∂x2 − ν
∂

∂t
∆2
]

Ψ̃ =
∂

∂t

(
∂ f x

∂z
− ∂ f z

∂x

)
+

g
ρ0

∂m
∂x
≡ F. (68)

Substituting (67) into (68), the solution of linearized system (66) with boundary condi-
tions (65) is represented as the plane-wave expansion [21]:

Ψ = 1
2
(
Ψ1e−iω1t + Ψ2e−iω2t)+ c.c., ρ = iρ′0

2ω1
Ψ1xe−iω1t + iρ′0

2ω2
Ψ2xe−iω2t + c.c.,

Ψj =
+∞∫
−∞

Aj(k)
(

eikjwx − eikjl x
)

eikzdk, Aj(k) = i
2π

1
kjw−kjl

+∞∫
−∞

Uj(z)e−ikzdz,
(69)

which describes both the internal waves and the ligaments (the terms with the subscripts
w and l, the term c.c means the complex conjugate). Wavenumbers k jw(k) and k jl(k) satisfy
the dispersion equation:

ω2
j

(
k2

j + k2
)
− N2k2

j + iωjν
(

k2
j + k2

)2
= 0. (70)

The substitution of solutions (69) into expressions (67) and (68) results in the appear-
ance of the terms with different combination frequencies 0, 2ω1, 2ω2, andω1 ±ω2 at the
right-hand side of Equation (68). To calculate the generation of waves with the frequency
Ω = ω1 −ω2, we seek a solution of Equation (68) in the form:

Ψ̃ =
1
2

[
ψ(x, z)e−iΩt +ψ∗(x, z)eiΩt

]
.

Here, the asterisk denotes complex conjugation, and ψ satisfies the equation:[
Ω2∆− N2 ∂2

∂x2 − iΩν∆2
]
ψ = FΩ(x, z), (71)

and

FΩ = iΩ
2 {(1 + α1)[Ψ∗2xΨ1xxz −Ψ∗2zΨ1xxx] (1− α2)[Ψ1xΨ∗2xxz −Ψ1zΨ∗2xxx]+

+(α1 + α2)[Ψ1xzΨ∗2xx − Ψ1xxΨ∗2xz]+Ψ1xΨ∗2zzz −Ψ1zΨ∗2xzz + Ψ∗2xΨ1zzz −Ψ∗2zΨ1xzz},
(72)

where αj =
N2

(Ωωj)
.

A solution for Equation (71) is constructed in the form of the convolution of its right-
hand side with the Green’s function of this equation:

ψ(x, z) =
∞∫

0

+∞∫
−∞

G(x, ξ; z− ζ)FΩ(ξ, ζ)dζdξ, (73)

which for boundary conditions, ∂G/∂x = ∂G/∂z = 0, at x = 0, has the form:

G =
1

4πΩν

+∞∫
−∞

G̃(κ; x, ξ)eiκ(z−ζ)dκ, (74)

and
G̃ = 1

κ2
l −κ

2
w

{
1
κw

[
eiκw |x−ξ| − κl+κw

κl−κw
eiκw(x+ξ)+ 2κw

κl−κw
eiκwxeiκlξ

]
−

− 1
κl

[
eiκl |x−ξ| + κl+κw

κl−κw
eiκl(x+ξ) − 2κl

κl−κw
eiκl xeiκwξ

]}
,

(75)
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where the solutions κw(κ) and κl(κ) of the dispersion equation corresponding to the
Equation (71) have the form

κw = |κ|tgθ+ iν|κ|3

2N cos5 θ
, κl = (i− 1)ctgθ

√
Ω
2ν

, (76)

and θ = arcsin(Ω/N) is the angle between the direction of the beam propagation and the
horizontal plane.

Substituting Equations (69), (72), (74), and (75) into Equation (73) and integrating with
respect to ζ and k′′ we obtain:

ψ =
i

4ν

+∞∫
−∞

eiκz
+∞∫
−∞

∞∫
0

A1(k)A∗2(k− κ)G̃(κ; x, ξ)F̃(k, κ; ξ)dξdkdκ, (77)

where:

F̃ = H(kw, k̃w)− H(kl , k̃w)− H(kw, k̃l) + H(kl , k̃l),
H(σ, σ̃) = ei(σ−σ̃)ξ [(k− κ)σ− kσ̃]{(σ− σ̃)[(1 + α1)σ + (1− α2)σ̃] + κ(2k− κ}.

(78)

The notations introduced here are:

kw = k1w(k), k̃w = k∗2w(k− κ), kl = k1l(k), k̃l = k∗2l(k− κ). (79)

Separate terms in expression for F̃ in (4.15) describe the nonlinear interaction between
the internal waves, which is the interaction of the internal waves with ligaments and
between the different ligaments.

Separate terms in the expression for F̃ in (78) describe three types of different nonlin-
ear interactions: between the internal waves, the interaction of the internal waves with
ligaments, and between the different ligaments.

When integrating in Equation (77) with respect to the coordinate ξ in the low viscosity
approximation, we retain only the terms of the minimum order in ν→ 0 . Then the
terms presenting the direct interaction between internal waves disappear in Equation (77),
since they have a higher order in ν. The nonlinear interaction of the ligaments with each
other and with the internal waves leads to the generation of a wave field, whose stream
function is:

ψ = 1
2νκl

+∞∫
−∞

eiκwxeiκz
+∞∫
−∞

A1(k)A∗2(k− κ)×
{

(1+α1)(k−κ)kl
κl+kl

+ (1−α2)kk̃l
κl−k̃l

−

− [(k−κ)kl−kk̃l ][(1+α1)kl+(1−α2)k̃l ]
(κl+kl−k̃l)(kl−k̃l)

}
dkdκ.

(80)

Solution (80) exists for arbitrary frequenciesω1 andω2, in particular, exceeding the
buoyancy frequency N. Since the density of energy increases with the wave frequency,
only the case ω1, ω2 >> N is of practical importance. In these conditions, the direct
generation of propagating internal waves is forbidden by the properties of the dispersion
equation. In this case, it follows from Equation (70) that the roots of the dispersion equation
corresponding to the ligaments take the form:

kl = (1 + i)

√
ω2

1 − N2

2ω1ν
, k̃l = (1− i)

√
ω2

2 − N2

2ω2ν
.
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Substituting values for Aj(k) in (69) into expression (79) and performing integration,
we obtain:

ψ = − i
4πνκl(κl+kl−k̃l)(kl−k̃l)

+∞∫
−∞

eiκwxeiκz[β1 I1(κ) + β2 I2(κ)]dκ,

I1(κ) =
+∞∫
−∞

U′1(z)U∗2 (z)e
−iκzdz, I2(κ) =

+∞∫
−∞

U1(z)U′
∗
2(z)e−iκzdz,

β1 = 2 + α1 − α2 + (1− α2)
kl−k̃l
κl−k̃l

, β2 = 2 + α1 − α2 + (1 + α1)
kl−k̃l
κl+kl

.

(81)

If the geometry of the part of the plane moving with different frequencies is charac-
terized by a common function S(z), i.e., Uj(z) = −iωjbjS(z), where bj is the amplitude of
corresponding oscillations and maxS(z) = 1, we have:

ψ =
ω1ω2b1b2β

8πνκl

+∞∫
−∞

κeiκwxeiκz
+∞∫
−∞

S2(ζ)e−iκζdζdκ, β =
β1 + β2

(κl + kl − k̃l)(kl − k̃l)
. (82)

Since the frequencies ω1 and ω2 are high (ω1 ≈ ω2 = ω >> Ω), it follows from
(81) that:

ψ = −3ωb1b2

8πκl

+∞∫
−∞

κeiκwxeiκz
+∞∫
−∞

S2(ζ)e−iκζ dζdκ. (83)

As an illustration, we consider the generation of waves by a band with width a when
S(z) = ϑ

( a
2−
∣∣z∣∣), where ϑ is the unit step function. Integrating with respect to ζ in

expression (83), we obtain the stream function in the form:

ψ = −3ωb1b2

4πκl

+∞∫
−∞

sin
κa
2

eiκwxeiκzdκ. (84)

Considering propagation of a single beam in the first quadrant and introducing the
attached coordinate system (p, q)) with the q-axis directed along the beam, and using
Equations (76) and (83), we obtain the vertical displacements h of particles:

h(p, q) =
3ωb1b2(1 + i) sin2 θ

8πΩ

√
2ν
Ω

∞∫
0

κ sin
κa cos θ

2
exp

(
iκp− νκ3q

2N cos θ

)
dκ, (85)

which can be expressed by means of reference functions F(p, q) (27).
The amplitude of the displacements in the axis of the single-mode beam generated by

the motion of a narrow band (a < Lν) with respect to viscous wave scale Lν =
3√gν
N and

for large distances from a source, q >> 2Na3 cosθ
ν , takes the form:

hm(q) =
ωab1b2 cos2 θ

4πq

√
sin θ
νN

, (86)

and is proportional to the product of the oscillation amplitudes, a; average frequency,ω;
and band width, b1 and b2. Under the laboratory conditions, when q = 20 cm, N = 1 s−1 s,
a = b1 = b2 = 1 cm, θ = 45◦, and ω = 10 s−1, formula (85) gives the estimate hm(q) ≈ 2
mm that is quite available for experimental observation. The presented technique gives a
room to evaluate the parameters of wave beams for other combination frequencies: double,
summary, and zero.
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The effects of nonlinear generation are also manifested in the cases of more complex
motions of a generating surface. In particular, let a part of the plane perform frequency-
modulated oscillations with a constant amplitude b so that the surface velocity is:

U(z, t) = −iφ′(t)be−iφ(t)S(z), φ′(t) ≡ ω(t) = ω0(1 + µ sin Ωt), (87)

where µ is the frequency-modulation depth and the function S(z) specifies, as above,
the geometry of the moving band on the plane. Following the above method, we find the
stream function of the generated wave field:

ψ = −3ω0b2µ

16πκb

+∞∫
−∞

κJ(κ)eiκwxeiκzdκ, J(κ) =
+∞∫
−∞

S2(z)e−iκzdz. (88)

When a wave beam is generated by an oscillating band with width a, S(z) = ϑ
( a

2−
∣∣z∣∣)

the expression (88) has a form:

Ψ̃Ω =
3µω0b2

8πκb

+∞∫
−∞

sin
κa
2

eiκwxeiκzdκ, (89)

which determines both the beams of internal waves propagating away from the source
to the right. Considering motion only in the first quadrant of the coordinate system (p, q)
attached to the beam, we find the vertical displacements h of particles in the beam in
the form:

h(p, q) =
3µω0b2(1 + i) sin2 θ

16πΩ

√
2ν
Ω

∞∫
0

κ sin
κa cos θ

2
exp

(
iκp− νκ3q

2N cos θ

)
dκ. (90)

At large distances from the source q >> 2Na3 cosθ
ν when the beam is single-mode,

the integral in formula (89) is calculated and the expression for the displacements in the
beam axis becomes:

hm(q) =
3µω0ab2(1 + i) sin θ cos2 θ

8πq
√

2νΩ
. (91)

The amplitude of the generated wave is proportional to the depth of the frequency
modulation µ.

Under natural conditions, when the flows are substantially nonstationary, the mecha-
nisms under consideration can significantly contribute to the generation and formation of
the internal-wave spectrum. Similar effects can be observed in the dynamics of other types
of waves (acoustic, surface, inertial, and hybrid), which also coexist with their specific
system of ligaments [28].

5. Discussion of the Results

Starting from the works of the late 60s of the last century [6] and up to the present
time [8,13–16], the construction of solutions to problems of generation and propagation
of internal waves in a viscous continuously stratified fluid based on the fundamental
equations of fluid mechanics [9–11], is limited to defining only partial solutions that
characterize waves.

Exceptions from the analysis of the problem in a linear or weakly nonlinear description
of a large group of solutions are carried out on the basis of arbitrarily interpreted physical
considerations [9] or even without explanations of the performed re-duction. At the same
time, the methods of the modern theory of singular perturbations [25] have room to find
complete solutions of the system of fundamental equations, supplemented by physically
justified boundary conditions without involving addition-al parameters, in particular,
sources of mass and momentum. Complete solutions of the linearized fundamental system
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are consistent with data of high-resolution laboratory investigations of periodic internal
wave generation [41], propagation internal waves in an arbitrarily stratified liquid [42],
reflection from a critical layer where frequencies of buoyancy and the running waves
equal [43].

In this paper, we study the properties of solutions to a problem of two-dimensional
wave generation by a band oscillating along an inclined surface in an exponentially strati-
fied viscous fluid. In the second section, a complete solution of the linearized system of
equations of motion with no-slip boundary conditions for velocity and impermeability
for matter is presented, which includes regularly perturbed functions describing beams of
periodic internal waves and singular functions characterizing ligaments.

The wave beams form an oblique cross of St. Andrew in space, the slope of the rays of
which is determined by the ratio of the wave frequency to the buoyancy frequency, and the
beam width is determined by the width of the band and an additional viscous correction.
The ratio of the band size to the viscous wave scale Lν = 3

√
gν/N characterizes the modality

of the beam. The group of singular solutions describes ligaments that are systems of thin
extended perturbations on the radiating surface and in the liquid bulk, where they outline
the wave beams. The characteristic transverse scale of the ligaments is determined by the
values of the kinetic coefficients and natural frequencies of the problem that are buoyancy
or the source oscillation frequency. Both components of periodic disturbance flows, which
in an infinite space are described by functions of the same type and differ in the relations
between the real and imaginary parts of the solution, can interact with each other when
taking into account the nonlinear properties of equations and boundary conditions.

In the third section, we present a solution to the generation of periodic perturbations
by a band oscillating along an inclined plane, constructed by the methods of singular
perturbation theory in the approximation of weak nonlinearity. When formulating the
problem, both the intrinsic nonlinearities of the equations and of the boundary conditions
due to the periodic replacement of a part of the fluid by a band near the body edge are
taken into account. The solutions constructed in the second order of the perturbation theory
describe the interaction of waves with waves, waves with ligaments, and ligaments with
each other. Each act of interaction generates all components of the flow, both internal waves
and accompanying ligaments, which explains the continuous evolution of the formed flows
and the complication of their structure.

In the fourth section, the solution to the problem of calculating the wave component
of flows by a rapid biharmonically oscillating vertical band in a continuously stratified
viscous fluid is considered. In the considered problem, both characteristic frequencies
ω1 andω2 exceed the buoyancy frequency,ω1,ω2 >> N. If the difference in oscillation
frequencies falls within the frequency range of the existence of propagating internal waves
(ω1, −ω2) < N, the interacting ligaments on the band become a source of internal waves.
The conditions are determined under which the waves are emitted efficiently enough and
can be recorded in a laboratory experiment.

The inclusion of the action of other dissipative factors in the calculations provides
additional attenuation of wave motions and a significant complication of the flow structure,

in which interfaces and fibers with their own δνN =
√
ν
N , δκT

N =
√
κT
N and combinatory

δν,κT
N = 4

√
ν·κT

N2 , δ
ν,κS
N = 4

√
ν·κS

N2 length scales appear. Taking into account the registration
criteria for both waves and ligaments determines the conditions for setting up a laboratory
experiment and carrying out a numerical simulation of natural processes based on a system
of fundamental equations. The observation area should be large enough to contain large-
scale components, and the resolution of the instruments (or the numerical code) should be
high enough to resolve the finest components. The results of calculating two-dimensional
problems of flow around obstacles have room, in a unified formulation, to calculate the
flow around a vertical band with a height h, moving horizontally at a constant velocity U in
a wide range of parameters, including creeping flows at Re = hU

ν ∼ 1 [44], and unsteady
vortex flows at Re ∼ 100, 000 [45], consistent with the experiment.
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