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Abstract: The present study aims to elucidate the main variables that increase the level of stress
at the beginning of military conscription service using an artificial neural network (ANN)-based
prediction model. Random sample data were obtained from one battalion of the Lithuanian Armed
Forces, and a survey was conducted to generate data for the training and testing of the ANN models.
Using nonlinearity in stress research, numerous ANN structures were constructed and verified to
limit the optimal number of neurons, hidden layers, and transfer functions. The highest accuracy
was obtained by the multilayer perceptron neural network (MLPNN) with a 6-2-2 partition. A
standardized rescaling method was used for covariates. For the activation function, the hyperbolic
tangent was used with 20 units in one hidden layer as well as the back-propagation algorithm.
The best ANN model was determined as the model that showed the smallest cross-entropy error,
the correct classification rate, and the area under the ROC curve. These findings show, with high
precision, that cohesion in a team and adaptation to military routines are two critical elements that
have the greatest impact on the stress level of conscripts.

Keywords: multilayer perceptron neural network; hyperbolic tangent activation function; hidden
layers; back-propagation algorithm; cross-entropy error; stress levels; military conscription

1. Introduction

The demand for artificial intelligence in human stress management is growing with
a better understanding of the damage to human health caused by chronic stress. Long-
term stress has been found to have a serious impact on the gastrointestinal system, affect
brain activity, and lead to depression [1], kidney disease [2], or even to different types
of cancer [3]. In the military, stress may lead to the development of a post-traumatic
stress disorder [4], and thus considerably reduce the quality of life [5]. In response to
these findings, researchers have already developed different methods for measuring stress
and presented different approaches for the causes of stress. The variety and diversity of
identified causes of stress testify to the fact that classical methods of linear analysis are no
longer sufficient. Artificial intelligence needs to be used to analyze diverse stress stressors
that are measured in a stressful environment, such as the beginning of military conscription
service. The start of conscription is marked by “stressors of social experience” [6] due to
the specific nature of the situation, such as distancing from family and friends, being in
a masculine-warrior narrative [7], having a strict and busy daily routine [8], and doing
physically-demanding tasks.

It should be noted that artificial neural networks (ANNs) analyze stress data much
better than other methods, including machine learning algorithms. There is very good
evidence that ANNs analyze accrued data better than traditional methods of analysis,
confirmed by Li [9]. The researcher used the data collected by Schmidt et al. [10] and
developed two deep neural networks. These two neural networks examined data on
physiological signals from electromagnetic devices (chest-worn and wrist-worn sensors)
and reached much better accuracy than the original linear analysis.
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Similar results can be found in studies on other topics where artificial network ap-
plication indicates high accuracy and reliability. For example, Taherdangkoo et al. [11]
researched a training algorithm that led to excellent results in terms of the goodness-of-fit
and independence test. This is especially important in stress measurements, where even
minor deviations can indicate significant long-term health effects.

Artificial neural networks have one additional advantage in predicting the level
of stress. It is the ability to discover pathways underlying a complex set of data and
to find a hidden association between stress factors. Hence, according to Vinga [12], an
artificial neural network can investigate the complex associations between the level of
stress and various stress factors. For example, researchers [12] have found that not only
anthropometric parameters (e.g., height, weight, and body mass index) and results from
blood tests (e.g., cholesterol and triglycerides) have an effect on stress. Their connectivity
maps have highlighted the job-related social factors that are no less important than physical
health in relation to stress levels.

Using nonlinearity in stress research in military conscription opens up new directions
of research. In terms of the development of the theory, the nonlinearity in stress man-
agement requires a rethinking of how the new environment is experienced and how the
process of psychological adaptation changes [13]. The application of ANNs enables us
to analyze a combination of stress factors that are usually analyzed separately: military
service-related factors and non-service-related factors [14], personal/lifestyle dependent
factors [15] and group cohesion factors [16], and leadership. Previous attempts to analyze
the level of stress in the military using machine learning (ML) methods showed good
results for example, Karstof et al. [17] provided a forecast for long-term post-traumatic
stress responses with high accuracy using ML methods. Their ML forecasting algorithms
identified soldiers at risk for post-traumatic stress disorder with 95% accuracy prior to and
just after deployment [17]. A very similar accuracy level (91%) was achieved in a study by
Pavlova et al. [18], where it was found that subjective feelings about mental conditions best
predicted anxiety among military conscripts. All together, these studies show that machine
learning algorithms provide deep insight into stress-related data with high accuracy.

The importance of research in stress among military conscripts has grown with the
change in the security situation in Europe, involving strengthening or renewing conscrip-
tion in almost a third of the countries in the region [19]. More and more young people
(mostly young men) temporarily become soldiers and enter a new and stressful envi-
ronment. Stress is a risk factor for mental and physical health disorders, and as NATO
Science and Technology Organization (NATO STO) reports point out, long-term stress may
negatively impact soldiers’ attitudes towards following the laws of armed conflict [20] and
also increase the risk of suicide [21]. It can be argued that managing long-term stress in the
military has become an important area of research.

There is not much research focused on conscripts’ level of stress as an outcome
of military service-related and non-related stressors. In contrast, most studies treat the
level of stress as a cause of other adverse events or diagnosis. For example, the findings
of Crump et al. [22] suggested that high levels of stress among conscripts may lead to
hypertension and high body mass index. Other researchers investigated the contribution
of stress to the smoking habits among conscripts [23] and adjustment issues [24]. Only a
few authors investigated stress levels as an outcome. For example, Nilsson [25] identified a
positive association between early life influences and the psychological level of functioning
during the military conscription, while Purre and Oja [6] found a negative association
between voluntary military conscription and the level of stress. Based on the research,
the level of stress is determined not only by social circumstances, but also by physical-
natural parameters. In order to combine these diverse parameters into one study, nonlinear
methods of analysis need to be used.

The main purpose of the present paper is to elucidate the main variables that increase
the level of stress at the beginning of military conscription service using an ANN-based
prediction model. The variables represent diverse causes of stress: individual factors, such
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as personality and values toward military service; adaptation; military service-related
factors, such as group cohesion and leadership; as well as non-service-related factors. ANN
techniques were applied to data analysis and modeling as a methodology, which also
provided the best results in previous literature on stress-level prediction [12,26]. The results
obtained allowed us to build a stress prediction model for conscription with appropriate
accuracy and to determine the effect of the explanatory variables. This prediction is of
great demand in the practice of conscript stress management, as compulsory conscription
brings a large number of young men to the military environment, which could affect the
mental health of the local population in the future.

After a review of the study methodology, discussing the ANN approach applied in
this study, the article explains the data collection methods and measures. For the data
collection, a random sample of 111 conscripts in the first month of service, when the stress
level is the highest, was selected. The main findings of preliminary analysis and parameter
description for the neural network training and testing are presented, followed by a display
of the case processing results. At the end of the article, we present the discussion that lays
out implications for theory and practice and suggestions for future research.

2. Study Methodology

IBM SPSS 27v was applied with its functions of the multilayer perceptron (MLP)
neural network. This function is designed for the measurements that minimize the error in
predicting default. In this study, the neural networks architecture involved three different
layers, which typically are known as: an input layer, a hidden layer that covers the radially
symmetric functions and unsupervised learning [20–22] to describe the hidden neurons,
and an output layer with a categorical node that allows us to calculate the weighted sum
from the hidden layer outputs [22,23] and to compute the index class for the input pattern.

The model building was based on experimentation with various combinations of
nodes in one and two hidden layer(s). As an experiment, the different partition rates of the
dataset were randomly assigned for training, testing, and holdout: ANN1 = 50%–30%–20%,
ANN2 = 60%–20%–20%, and ANN3 = 70%–20%–10%. Taking into consideration that a
neural network builds a model by learning from a potential correlation between two type
of independent (cause criteria) and dependent (effect criteria) variables, ANNs are able to
justify the model outcomes by linking the predicted values with the factual values. In such
applications, neural network systems are better than traditional computing systems that
follow a set of instructions to resolve a problem.

2.1. The ANN Approach

Artificial neural networks (ANNs) are widely used computation procedures to help re-
solve multifaceted problems by simulating animal brain processes in a shortened method [23].
Perceptron-type neural networks (PTNNs) cover the artificial neurons (nodes). These nodes
are the information processing units in PTNNs. Moreover, artificial neurons are system-
atized in layers and interrelated by synaptic weights (connections). According to this
information processing style, the neurons can screen and communicate the data in an
in-demand administered style to construct an analytical model that is able to classify the
data stored in the memory.

The ANNs typically are designed as three-layer network models of interconnected
artificial neurons (the input layer, the hidden layer, and the output layer). It can be
mentioned that there is the possibility for researchers to form one or more hidden layers
between the input and output layers’ neurons. Moreover, the neurons belonging to the
identical layer have no interconnections, but despite this, each neuron can be linked to
another neuron in the subsequent layer (Figure 1).
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Figure 1. Schemes for the structure description of the artificial neural networks (ANNs): (a) Description of neural network
architecture: IL —input layer, HL—hidden layer, and OL—output layer; (b) Description of neural network active node:
IN—inputs, WE—weights, AF—activation function, Sj—sum of the weighted input, and Oj—output activation function.

The input layer collects statistics about variables from the constructed dataset, and
then the hidden layer completes the data processing. The output layer is the layer that is
designed to produce the categorical class label, and otherwise used to predict continuous
measures (see Figure 1a). The input layer values toward the inside the hidden node are
multiplied by weights, which are a set of prearranged values.

Later, all the measures are added to construct a single number, which is accepted as an
argument to a nonlinear mathematical function, named in ANNs as the activation function
(AF). The nonlinear AF returns the output as a number between 0 and 1. In Figure 1b, the
net sum of the weighted input values entering node j and the output activation function
(see Figure 1b) that converts the neuron’s weighted input to its output activation (the most
frequently used is the sigmoid function) can be described by the subsequent equations:

Sj =
n

∑
i=1

xiwij (1)

Oj =
1

1 + eSj
. (2)

The ANNs’ neurons have two process approaches—the training stage and the using
stage. Throughout the training stage, datasets with authentic inputs and outputs are
involved as examples to train the system to predict outputs. This controlled learning starts
with random weights and, through the use of gradient origin examination algorithms
such as back-propagation, corrects the weights to be applied to the problem at hand. The
variance among target output measures and gotten measures is used in the error function
to manage learning [12].

Moreover, the error function belongs on the weights, which must be improved in order
to decrease the error. To explain the specified training dataset {(x1, t1), (x2, t2), . . . , (xk, tk)}
containing k designated pairs of n inputs and m dimensional paths, which can be described
by n inputs and m outputs, and the error for each output neuron can be calculated using
Equation (3):

Ej =
1
2
(
Oj − tj

)2, (3)

and how to minimize the error function of the network can be presented by Equation (4):

Ej =
1
2

k

∑
j=1

(
Oj − tj

)2, (4)
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where Oj is the output yield when input design xi from the training dataset passes in the
network, and tj is the target measure [24]. In the training stage, each weight is transformed
by accumulating quantity to its earlier value:

∆wij = −γ
σE

σwij
, (5)

where the learning rank is measured by constant γ. According to the rule, the higher
learning rank shows faster convergence, but it is not very good decision to look for the high
validation measures of data training, because this search path may wrap around the ideal
explanation and convergence may turn out to be unrealizable. After a dataset of respectable
weights has been originated, the neural network model can take an alternative set with
unidentified output measures and forecast the corresponding outputs automatically.

2.2. The Multilayer Perceptron Approach

The perceptron-based model described above is fairly restricted; it is only typically ap-
propriate for linearly identifiable data. In case of a non-linear dataset, the perceptron-based
model is extended to a more multifaceted construction, specifically known as multilayer
perceptron (MLP) [25–28]. Moreover, MLP can be described as a neural network with
neuron layers that are interconnected, so that the output of a neuron in a layer is only
allowed to be an input to neurons in the upper layer (see Figure 1). Furthermore, it means
that, if non-linear activation functions, such as the sigmoid function, are used for those
neurons (see Figure 1b), then

sigm(z) =
1

1 + e−z . (6)

As such, the MLP neural network is capable of encompassing the high non-linearity
of the dataset, which proves that it is possible to approximate any continuous function at
the random minor error by applying complex-enough MLPs. The weight of the link from
the i-th neuron in the l-th layer to the j-th neuron in the (l + 1) -th layer, or (l + 1)j , can
be used in order to validate the i-th neuron in the l-th layer, which can be described by
the equation:

yli = fli(zli); zli =
nl−1

∑
j=1

w(l − 1)j, liY(l − 1)j + bli, (7)

where yli, fli, and bli are the output, activation function, and bias, respectively; and nl
is the number of neurons for the l-th layer. Additionally, that was symbolized as y0i ≡ xi.
For simplicity, a neuron is activated by the sum of weighted outputs of the neurons in the
lower layer. A MLP network training procedure is used to minimize an objective function
with regard to its criteria (i.e., weights and biases), which is connected to the task that the
MLP is used for. Moreover, the following target function for the binary classification can
generally be used:

E(θ) =
1
n ∑

(x, y)∈D
(y− ŷ)2, (8)

where D is a set of training data, ŷ can be presented as the MLP output of the prearranged
input x, and θ is its dataset of weights and biases. In case of a need to reduce the objective
function E(θ), the gradient method can be used, which states that the sum of an update for
a parameter is negatively proportionate to the gradient at its current value.

The center point of the gradient descent method is used to compute the gradient
σE/σw for all w ∈ θ, which is easily done using the chain rule:

σE
σzLi

=
σE
σyLi

σyLi
σzli

; (9)
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σE
σzli

= ∑
j

σE
σz(l+1)j

σz(l+1)j

σzli
= ∑

j

σE
σz(l+1)j

wli, (l + 1)j
σyli
σzli

; (10)

σE
σwli,(l+1)j

=
σE

σz(l+1)j

σz(l+1)j

σwli,(l+1)j
=

σE
σz(l+1)j

yli. (11)

That is the main idea of the back-propagation algorithm (BPA). The BPA changes ANN
weights to lessen the mean squared error among the looked-for and the actual outputs of
the network. BPA uses controlled learning in which the neural network is trained using
a dataset for which the input, as well as the desired outputs, are known [29]. After the
training process, the network weights are identified and then are used to compute the
output measures for the original input samples.

The feedforward algorithm is the calculation method that allowed us to quickly
complete the prediction by an MLP (Figure 1a). The algorithm indicates that x is primarily
computed by the outputs of the neurons in the primary layer, and later the outputs of the
neurons in the second layer are computed, and the process continues until the top layer
is reached.

2.3. The Number of the Necessary Hidden Units

The computing of the essential number of hidden units (NHUs) in an MLP is important
to realize a specified approximation order. Also, the NHUs influence both the achievement
of the given approximation instruction for the randomly sufficient smooth function and
the number of independent values to be adjusted by varying the network parameters.

Moreover, the computing of a number of MLP parameters is not so straightforward.
Furthermore, the specified NHUs of the network parameters is not single. This situation
can be described in case the hidden units are distributed in dissimilar hidden layers in
numerous different ways. Meanwhile, the purpose is to find the essential NHUs, and it
is also important to define the maximum quantity of the parameters when the number of
hidden units is given [30].

In a multilayer perceptron neural network with one hidden layer, where n0 ∈ N inputs
and the smooth activation function can only implement an approximation order N ∈ N for
all functions f ∈ CN (K→R), if at least n hidden units are used, the following equation can
be obtained: (

N + n0
n0

)
n0 + 2

. (12)

According to this main outcome, no limit on the quantity of hidden layers is expected.
It has come to light that more than two hidden layers are not required. Typically, one
hidden layer if sufficient, but in various situations the needed hidden units must be spread
to two hidden layers in order to complete the required quantity of network constraints.
This can be defined using the resulting Equation (13):(

N + n0
n0

)
≤ (n0 + 2)(n0) + 1 + 2

√
n0, (13)

where n hidden units (Equation (14)) are important to complete approximation order
N ∈ N for all functions f ∈ CN (K→R):

n ≥

(
N + n0

n0

)
n0 + 2

. (14)
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Otherwise, the hidden units necessary to achieve a given approximation order can be
calculated using the Equation (15):

n ≥ 2

√(
N + n0

n0

)
+ 2(n0 + 1) − n0 − 3. (15)

The multilayer perceptron neural network with one hidden layer can realize the
required quantity of parameters, but if two hidden layers are used, the necessary number
of parameters for the MLP neural networks can be found by Equations (16) and (17):

n1 =

⌈
n + n0 − 1

2

⌉
, (16)

n2 = n− n1 =

⌊
n− n0 + 1

2

⌋
. (17)

The presented equations (Equations (12)–(17)) can be appropriate for the computation
of the quantity of the required hidden units and its variation to one or two hidden layers if
the number of inputs is known [30].

3. Data Description
3.1. Ethical Statement

The investigation was accepted by the Vilnius Regional Biomedical Research Ethics
Committee, protocol # 2020/10-1275-754. All participants provided informed written
consent prior to data collection.

3.2. Sample and Data Collection

A random sample of 111 conscripts in their first months of service, when the stress
level is the highest, was selected. The data were collected in one battalion of the Lithuanian
Armed Forces during the COVID-19 pandemic, when additional restrictions were in place,
in line with health safety guidelines. The majority of the sample had secondary education
(73.0%) and the average age of 20.3 years. Research was performed using traditional paper
questionnaires presented in the Lithuanian language.

3.3. Measures

Conscription-related stressors are measured using general and military-specific re-
search instruments. The level of perceived stress (dependent variable) was analyzed in
regard to: (1) the impact of individual factors [31], (2) adaptation [32,33], (3) group co-
hesion [34], (4) leadership [35], and (5) non-service-related stressors. Accordingly, we
developed our own questionnaire composed of several parts.

The level of perceived stress (PS) was measured using the standardized Cohen’s
10-item Perceived Stress Scale (PSS-10) based on a five-point scale [36,37]. Originally
developed in 1983, the PSS-10 is a classic stress assessment instrument that helps explain
how events and changes affect perceived stress. The sum of 10 items ranges in the interval
0–40, with the higher value demonstrating higher perceived stress. According to the rule,
all PSS scores were divided into three groups: the first group included scores varying from
0–13 (measured low stress); the second group had scores varying from 14–26 (measured
moderate stress); and the third group had scores varying from 27–40 (measured high
perceived stress). The Cronbach’s alpha for these 10 items was 0.853 in the current study,
which is similar to the previously reported results ranging from 0.80 to 0.86 [36,38].

Personal attitude towards military (ATM) is another strong stressor during conscrip-
tion and, according to Salo [39], it is associated with negative coping strategies. In our
study, we used six items from his scale on commitment to military service, such as “it is
important to me to perform well in the military”.
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Adaptation was measured by a seven-item scale on adjustment to a new physical
environment (ADJ). Additionally, engagement (ENG) into a new role was disclosed by
means of the nine-item Utrecht Work Engagement Scale (UWES-9) [40], modified for the
military context.

Group cohesion was measured using a list of 33 items. The items were developed
using and adopting the Group Cohesion Scale-Revised [41,42] and the Scale of Team
Learning Behavior in the Combined Joint Staff Exercise (CJSE) [43]. All cohesion items
were divided into four groups: social cohesion (CTE), task cohesion (CPE), norm cohesion
(CIN), and psychological safety in the squad (PSY). Squad leadership (SLE) was measured
by a four-item scale of exemplary leadership. Exemplary leadership in the military is a
background for moral influence and for military identification to occur [44], which leads to
lower levels of stress [45].

Non-service and non-social military environment-related stressors (D1, D2, D3, D4,
D5, and D6) were used to assess conscript stressors in a full spectrum and to not limit
the study to only the stressors of military experience. A six-item scale was adopted from
Salo’s [45] list of events outside military service, such as quarrels at home and similar events
as well as other stressors that are not related to the social environment in the military.

To this end, one dependent variable, nine independent variables, and six events
outside military service, or non-social military environment-related variables, were used.
The variables and their explanation are presented in Table 1. For the conducted neural
network investigations, individual factors, adaptation, group cohesion, leadership, and non-
service-related factors were included as independent variables. The dependent variable
was the level of perceived stress: low stress, moderate stress, and high stress.

Table 1. Variables used in the study.

Variable’s Code Description of Measurement

Individual Factors:

ATM
Attitude towards military service is evaluated after the aggregation of
six items measured by the Likert scale from 1—totally disagree, to
7—totally agree; construct values vary in the interval [6–42].

1 Adaptation:

ENG
Engagement result after the aggregation of nine items measured by the
Likert scale from 1—almost never, to 6—always; construct values vary
in the interval [9–54].

ADJ
Adjustment to a new physical environment result after the aggregation of
seven items measured by the Likert scale from 1—totally disagree, to
7—totally agree; construct values vary in the interval [7–49].

2 Group cohesion:

CTE
Team Cohesion result after the aggregation of twelve items measured by the
Likert scale from 1—totally disagree, to 7—totally agree; construct values
vary in the interval [12–84].

CPE
Task Cohesion result after the aggregation of eight items measured by the
Likert scale from 1—totally disagree, to 7—totally agree; construct values
vary in the interval [8–56].

CIN
Norm Cohesion result after the aggregation of six items measured by the
Likert scale from 1—totally disagree, to 7—totally agree; construct values
vary in the interval [6–42].

PSY
Psychological (un)safety in the group result after the aggregation of
seven items measured by the Likert scale from 1—totally disagree, to
7—totally agree; construct values vary in the interval [7–49].
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Table 1. Cont.

Variable’s Code Description of Measurement

Leadership:

SLE
Squad leadership result after the aggregation of four items measured by the
Likert scale from 1—totally disagree, to 7—totally agree; construct values
vary in the interval [4–24].

Events Outside Military Service or Non-Social Military Environment-Related Stressors:

D1, D2, D3, D4,
D5, D6

Non-service and non-social military environment-related stressors measured
by a dichotomous scale (0 = No; 1 = Yes): D1 = little or no money;
D2 = disease or injury; D3 = sleeping disorders; D4 = quarrels outside
military service; D5 = relationship that ended outside military service;
D6 = other strong negative experiences.

3 Level of stress:

PSS

Perceived stress questionnaire formulated to ask about the respondent’s
emotional state and opinions throughout the last month.

1 = low stress; values vary in the interval [0–13];
2 = moderate stress; values vary in the interval [14–26];
3 = high perceived stress; values vary in the interval [27–40].

Notes: 1 The nine-item Utrecht Work Engagement Scale; 2 Group Cohesion Scale-Revised and the Scale of Team
Learning Behavior in the Combined Joint Staff Exercise; 3 Standardized Cohen’s 10-item Perceived Stress Scale
based on a five-point scale.

4. Research Results

The IBM SPSS Statistics 27v was used to construct the neural network models and to
examinate their precision. The investigations according the ANN models’ construction,
training, and testing stages are presented below.

4.1. Preliminary Analysis

The analysis starts with the descriptive statistics of the nine variables, providing the
frequency rates and percentages for the categorical variables (see Table A1 in Appendix A)
and the means, standard deviations and skewness for the continuous variables. The results
are shown below (see Table 2).

Table 2. Descriptive statistics for continuous variables.

Variable N Minimum Maximum Mean Std. Deviation Variance
Skewness

Statistic Std. Error

ATM 111 6 42 28.73 8.438 71.199 −0.737 0.229
ENG 111 5 51 31.75 10.267 105.409 −0.219 0.229
ADJ 111 10 49 34.23 9.679 93.690 −0.524 0.229
CTE 111 31 84 61.86 12.171 148.124 −0.356 0.229
CPE 111 23 52 39.77 6.226 38.758 −0.316 0.229
CIN 111 8 42 31.78 7.743 59.953 −0.780 0.229
PSY 111 7 42 16.74 8.300 68.886 0.954 0.229
SLE 111 1 28 22.71 7.233 52.316 −0.566 0.229
PSS 110 1 3 1.78 0.565 0.319 - -

1 Valid N 110

Notes: 1 Valid N listwise.

Additionally, the Pearson’s correlation coefficient was used to evaluate the relation-
ships between the constructed variables. This analysis helped to identify a significant
correlation between the perceived stress construct (variable) and other variables at the
0.01 level (two-tailed) (see Table 3).
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Table 3. Relationships between research variables.

ATM ENG ADJ CTE CPE CIN PSY SLE PSS

ATM 1.000 0.672 ** 0.500 ** 0.567 ** 0.469 ** 0.352 ** −0.494 ** 0.471 ** −0.287 **
ENG 0.672 ** 1.000 0.654 ** 0.566 ** 0.557 ** 0.458 ** −0.469 ** 0.472 ** −0.497 **
ADJ 0.500 ** 0.654 ** 1.000 0.411 ** 0.391 ** 0.509 ** −0.425 ** 0.352 ** −0.553 **
CTE 0.567 ** 0.566 ** 0.411 ** 1.000 0.681 ** 0.582 ** −0.618 ** 0.522 ** −0.216 *
CPE 0.469 ** 0.557 ** 0.391 ** 0.681 ** 1.000 0.514 ** −0.503 ** 0.398 ** −0.317 **
CIN 0.352 ** 0.458 ** 0.509 ** 0.582 ** 0.514 ** 1.000 −0.621 ** 0.268 ** −0.469 **
PSY −0.494 ** −0.469 ** −0.425 ** −0.618 ** −0.503 ** −0.621 ** 1.000 −0.458 ** 0.313 **
SLE 0.471 ** 0.472 ** 0.352 ** 0.522 ** 0.398 ** 0.268 ** −0.458 ** 1.000 −0.226 *
PSS −0.287 ** −0.497 ** −0.553 ** −0.216 * −0.317 ** −0.469 ** 0.313 ** −0.226 * 1.000

Notes: Pearson’s rho correlation is significant at the * 0.05 level and ** 0.01 level (two-tailed hypothesis test used).

The highest significant negative correlation was identified among the perceived stress
scale (PSS) and the adjustment to a new physical environment (ADJ, r = −0.553, p < 0.001),
while significant positive correlation with PSS scores showed psychological (un)safety in
the group variable PSY (r = 0.313, p < 0.001). Also, a significant negative moderate correla-
tion was observed between the PSS and the engagement (ENG, r = −0.497, p < 0.001), and
between the PSS and the cohesion interpersonal result (CIN, r = −0.469, p < 0.001). Fur-
thermore, significant positive high correlation coefficients were observed for the cohesion
in performance (CPE) and the cohesion in team (CTE) (r = 0.681, p < 0.001); engagement
(ENG) and the value for attitude towards military service (ATM) (r = 0.672, p < 0.001); and
the adjustment to a new physical environment (ADJ) and engagement (ENG) (r = 0.654,
p < 0.001).

The statistically significant correlation coefficients between the perceived stress con-
struct and targeted variables suggests that the lower coefficients are the adjustment to a new
physical environment, engagement, and interpersonal cohesion, and the higher coefficient
is the stress level. Moreover, the correlation analysis demonstrated that psychological
unsafety in the group is a positive significant factor in predicting the level of stress.

4.2. Parameter Description for Neural Network Training and Testing

It is important to establish an acceptable structure with the appropriate number
of hidden layers and neurons, since too many neurons can result in over-fitting, while
using too few neurons can be insufficient for data processing. With this in mind, the
MLP neural networks were chosen for data analysis; they were trained using the back-
propagation learning algorithm and the method of gradient descent was used to update
weights in order to gradually minimize the error function. Different partition rates of the
dataset were randomly assigned for training, testing, and holdout: ANN1 = 50%–30%–20%,
ANN2 = 60%–20%–20%, and ANN3 = 70%–20%–10%. The logic of the conducted analysis
was to evaluate the model functions under strict conditions and demonstrate the explicit
and solid association.

Thus, the data training results of 50%, 60%, and 70% were tested with 30% and 20%
iterations. The training sets were adopted to represent moderate and strict conditions for
training, and moderate and low conditions for testing. Before training, all covariates were
standardized using the formula (x−mean)/s.

The model building was determined using the scaled conjugate gradient algorithm
with a few parameters: initial lambda, initial sigma, and interval center as well as the
interval offset. Moreover, the parameters of interval center, ao and a, forced the simulated
annealing algorithm to generate random weights between ao − a and ao + a, and as
such repeatedly minimized the error function. Furthermore, the initial lambda was set to
0.0000005 and the initial sigma was set to 0.00005. Also, zero was defined as the interval
center and the interval offset was established to ±0.5. The basic MLP configurations are
summarized below in Section 4.3.
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4.3. Results of Case Processing

In this analysis we examined whether the MLP neural network identifies the main
stressors of conscripts’ perceived stress by analyzing self-reported data. Table 1 provides
information about the datasets used to build the three ANN models. Table 4 shows the
number of neurons in each layer and 14 independent variables: ATM, ENG, ADJ, CTE,
CPE, CIN, PSY, SLE, D1, D2, D3, D4, D5, and D6. The MLP neural network was designed
by automatic architecture and had three nodes for the hidden layer computation and three
nodes for the output layer to describe the dependent variable perceived stress results by
categories. The different functions were used for different layers: the activation function
was used as the hyperbolic tangent for the hidden layer, and the softmax function was used
for the output layer. Furthermore, the model’s validation, in case of the use of the softmax
function, was assessed by cross-entropy as the error function.

Table 4. Network information for case processing.

Layer Description
Variable Description

Layer Partitions Number of Units Activation Function

ANN1:

Input 51.8% (57) 14 - D1, D2, D3, D4, D5, D6, ATM, ENG, ADJ, CTE,
CPE, CIN, PSY, SLE

Hidden 28.2% (31) 20 Hyperbolic tangent

Output 20.0% (22) 3 Softmax Dependent variable PSS: 1 = low stress,
2 = moderate stress, 3 = high perceived stress.

ANN2: 6–2–2

Input 60.9% (67) 14 - D1, D2, D3, D4, D5, D6, ATM, ENG, ADJ, CTE,
CPE, CIN, PSY, SLE

Hidden 16.4% (18) 20 Hyperbolic tangent

Output 22.7% (25) 3 Softmax Dependent variable PSS: 1 = low stress,
2 = moderate stress, 3 = high perceived stress.

ANN3:

Input 68.2% (75) 14 - D1, D2, D3, D4, D5, D6, ATM, ENG, ADJ, CTE,
CPE, CIN, PSY, SLE

Hidden 21.8% (24) 20 Hyperbolic tangent

Output 10.0% (11) 3 Softmax Dependent variable PSS: 1 = low stress,
2 = moderate stress, 3 = high perceived stress.

Notes: N= number of cases divided for calculations. Standardized rescaling method for covariates; Error Function = cross-entropy.

The IBM SPSS 27v program was used to predict perceived stress (variable PSS:
1 = low stress, 2 = moderate stress, and 3 = high perceived stress) using the 14 variables (see
Table 1). The network diagram is shown in Figure A2 (see Appendix B), which represents
the diagram with 14 input nodes, 20 hidden nodes, and 3 output nodes in the conscripts’
perceived stress measurement according to the three categories.

The summary for the designed models provides information on the results of the
training (and testing) and holdout sample, as shown in Table 5.

The cross-entropy error was used for both the training and testing samples; mean-
while, it is the error function that the neural network minimizes throughout the training
stage. Moreover, the ANN2 model was identified to have the smallest cross-entropy error
value (7.422), indicating the model’s capability to predict the perceived level of stress. Ac-
cording to the research results, the ANN2 model’s percentages of inappropriate predictions
constructed on the training and testing sample were 1.5% and 22.2%, respectively, while
the degree of improper predictions in the holdout dataset equaled 32.0%. The training
procedure was performed until one consecutive step with no decrease in the error function
was achieved. Additionally, the synaptic weights, which were computed using the statistics
of the training dataset only, are presented in Table S5.5, Supplementary Materials. A de-
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scription of the ANN2 model case classification (i.e., the confusion matrix) for the PSS as a
categorical dependent variable, by partition, and in total (see Table 6). The forecast outcome
by the ANN2 model for each case was defined as correct if the predicted probability was
bigger than 0.5. As seen in Table 6, the ANN2 network correctly classified 66 cases (out
of 67) of stress measured by the three categories in the training data sample and 14 out of
18 variables in the testing sample. Overall, the designed model ANN2 properly classified
98.5% of the training cases and 77.8% of the testing cases.

Table 5. Summary for designed models.

Layer Description ANN1 ANN2 ANN3

1 Training
Cross Entropy Error 28.981 7.422 38.943

Percent Incorrect Predictions 22.2% 1.5% 17.3%
Training Time 0:00:00.03 0:00:00.02 0:00:00.03

Testing Cross Entropy Error 32.096 6.147 10.356
Percent Incorrect Predictions 43.2% 22.2% 15.8%

Holdout Percent Incorrect Predictions 26.3% 28.0% 30.0%
1 Notes: Stopping rule used = consecutive step(s) with no decrease in error. Dependent variable: perceived stress scale (PSS): 1 = low stress,
2 = moderate stress, and 3 = high perceived stress. Error computations are based on the testing sample.

Table 6. Survey sample classification of the ANN2 model.

Sample Observed
1 Predicted PSS

Low Stress Moderate Stress High Stress Percent Correct

Training

1 low stress 20 1 0 95.2%
2 moderate stress 0 42 0 100.0%

3 high perceived stress 0 0 4 100.0%
Overall Percent 29.9% 64.2% 6.0% 98.5%

Testing

1 low stress 6 1 0 85.7%
2 moderate stress 2 8 1 72.7%

3 high perceived stress 0 0 0 0.0%
Overall Percent 44.4% 50.0% 5.6% 77.8%

Holdout

1 low stress 3 1 0 75.0%
2 moderate stress 4 13 0 76.5%

3 high perceived stress 0 2 2 50.0%
Overall Percent 28.0% 64.0% 8.0% 72.0%

1 Notes: Dependent variable: PSS: 1 = low stress, 2 = moderate stress, 3 = high perceived stress.

In the holdout sample, the low stress rate (or low stress, moderate stress, or high
perceived stress rate), assumed by the equation Low stress

LS+MS+HS × 100%, was found to be 75.0%,
the predicted moderate stress rate Moderate stress

LS+MS+HS × 100% was 76.5%, and the high perceived

stress rate, High perceived stress
LS+MS+HS × 100%, was 50.0% with 72.0% accuracy of the model.

Additionally, the conducted analysis results from the IBM SPSS 27v software presented
the ANN2 model’s predicted pseudo-probability for the three perceived stress categories
of the PSS variable in a box-plot diagram. This specific graph separately illustrated the
predictions for the three categories of the dependent variable PSS. Moreover, it should
be pointed out that this diagram shows box plots that categorize the predicted pseudo-
probabilities based on the whole analyzed dataset. According to the rule, for each box plot
in each different category, the values above 0.5 can confirm the correct predictions.

Subsequently, the box plot developed on the ANN2 model showed the predicted
probability of the observed level of stress in the three categories: low stress, moderate
stress, and high perceived stress. The detailed analysis of the diagram should be started
from left side, or the low stress category. The first box plot from the left indicated low levels
of stress, while the second box plot demonstrated the probability for moderate perceived
stress to be classified in the low stress category, although it actually was in the moderate
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stress category. The third box plot had the zero value for outcomes that are indicative of the
high perceived stress category in the low stress category and in the moderate stress category.
Furthermore, the probabilities predicted by the ANN2 model for all three stress groups in
the high perceived stress category showed that the probability of the high perceived stress
category was close to one, the low stress probability in the high stress group was equal to
zero, and the moderate stress group probability was also close to zero. These findings let
us concluded that the ANN2 model properly classified the cases (see Figure 2).
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With further processing, the ANN2 model was validated by the ROC curve, which
showed the classification performance for all possible cutoffs by a diagram of sensitivity
versus specificity. The measures of sensitivity and specificity for the designed ANN1,
ANN2, and ANN3 models were presented as an area under the curve (AUC), which
presents the entire position of the ROC curve according to the PSS variable’s three stress
categories: low stress, moderate stress, and high perceived stress (see Table 7).

Table 7. Area under the curve.

ANN1
50%–30%–10%

ANN2
60%–20%–20%

ANN3
70%–20%–10%

Area Area Area

PSS
1 = low stress 0.836 0.997 0.827

2 = moderate stress 0.746 0.995 0.754
3 = high perceived stress 0.785 1.000 0.916

The area under the curve, used as the dimensional index, helped to summarize
the general location of the ROC curves for each designed ANN model according to the
three perceived stress categories. This information was of great importance; meanwhile,
it also has a meaningful explanation for scholars. The AUC presented in the Table 7
can be described as the probability that a randomly selected conscript can be rated or
ranked correctly if he is more likely to perceive stress. This interpretation is based on non-
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parametric Mann–Whitney U statistics that are used in computing the AUC. Additionally,
the maximum AUC = 1.000 (ANN2, PSS group 3, Table 7) showed that perceived stress
measured by the chosen variables as a biomarker had high predictive ability to discriminate
conscripts who had perceived high stress at the beginning of military conscription service.

Figure 3 gives the sensitivity and specificity (1—low stress, 2—moderate stress,
and 3—high stress) diagram, constructed on the training and testing illustrations. The
45-degree line from the upper right angle of the chart to the lower left characterizes the
situation of randomly guessing the category. The more the curve goes away from the
45-degree reference line, the more precise the classification. The area under the curve was
measured and the best result of 1.000 appeared for the high-level stress category (0.995 for
the moderate stress category and 0.997 for the low stress category). Figure 3 presents the
results of the ANN2 model under the ROC curve with research data divided for analysis in
the following way: training = 60%, testing = 20%, and holdout = 20%.
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Furthermore, the cumulative gains, i.e., the illustration of the precise classifications
found by the ANN model against the correct classifications that could be chance outcomes
(i.e., without using the model), are shown for the ANN2 model in the chart in Figure 4.

The ANN2 model performance in the gain chart (see Figure 4a) illustrates that the
high perceived stress category, according the third point on the curve, was at (10%, 100%);
so, if the network scores these data and sorts all of the conscripts by the foreseen pseudo-
probability of high stress, the top 10% would be expected to cover approximately 100% of
all of the cases that take the high perceived stress category. Moreover, it is not important to
select 100% of the scored data to find all of the identified high perceived stress samples in
the dataset. This means that the gain chart displays the effectiveness of the classification
calculated by the neural network model.

According to the baseline and the curve position, we can identify how great is the
gain. It can be concluded from this rule and the chart in Figure 4a that the constructed
model shows a higher overall gain and indicates perfect performance for the high per-
ceived stress group and low stress group, but that the moderate stress group is not very
precisely predicted.
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Lift diagrams, as well as gain diagrams, are graphical supports for assessing the
performance of classification models (see Figure 4b). Nevertheless, in dissimilarity to the
confusion matrix that estimates models on the whole population, gain or lift diagrams only
estimate model performance in a part of the population. Moreover, the lift graph uses a
part of the data to give a clear view of the advantage to using a model, in contrast to not
using a model. The measures from the gains chart were used to compute the lift aspect (i.e.,
the benefit): the lift at 100% for the high perceived stress group was 100%/10% = 10.

The importance of the assessment of independent variables in the designed neural
network models is illustrated in Table 8. The conducted analysis showed that the CIN
had the highest indication of all predictors (normalized importance=100%). This highest
normalized importance for CIN was identified only in the constructed ANN2 model
(see Table 8).

Table 8. Independent variable importance.

Variables

ANN1
50%–30%–10%

ANN2
60%–20%–20%

ANN3
70%–20%–10%

Importance Normalized
Importance Importance Normalized

Importance Importance Normalized
Importance

D1 0.096 45.0% 0.060 38.4% 0.171 100.0%
D2 0.021 9.8% 0.030 19.4% 0.070 40.7%
D3 0.060 28.1% 0.043 27.1% 0.042 24.5%
D4 0.013 6.3% 0.061 38.7% 0.084 49.2%
D5 0.049 23.0% 0.039 25.1% 0.024 14.1%
D6 0.212 100.0% 0.051 32.7% 0.140 81.9%

ATM 0.027 12.9% 0.073 46.8% 0.084 49.2%
ENG 0.091 42.8% 0.115 73.2% 0.052 30.5%
ADJ 0.165 77.5% 0.034 21.6% 0.087 51.0%
CTE 0.034 16.0% 0.095 60.8% 0.050 29.0%
CPE 0.013 6.3% 0.120 76.7% 0.109 64.0%
CIN 0.055 25.8% 0.157 100.0% 0.008 4.4%
PSY 0.115 53.9% 0.049 31.2% 0.048 27.9%
SLE 0.050 23.3% 0.071 45.5% 0.031 18.1%
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The impact of each independent variable, in terms of relative and normalized im-
portance, identified in the designed ANN1, ANN2, and ANN3 models is displayed in
Table 8. Additionally, the charts for the ANN1, ANN2, and ANN3 model are presented for
a better illustration of the stressors and their importance for stress increases (see Figure A1,
Appendix B).

When analyzing the results, it should be noted that CIN (norm cohesion) had the
highest indication of all predictors (normalized importance=100%) in the designed neural
network models in terms of assessing the importance of independent variables. Other
predictors with the highest magnitude were task cohesion, indicated by CPE (normalized
importance = 76.70%), engagement (ENG, normalized importance = 73.20%), and social
cohesion (CTE, normalized importance = 60.80%). Next in the order of importance were
two indicators found to be very close to the 50% threshold: attitude towards military
service (ATM, normalized importance = 46.80%) and squad leadership (SLE, normalized
importance = 45.50%). Other important predictors included conscripts’ personal negative
experiences, such as quarrels with close persons (D4, normalized importance = 38.70%),
financial problems (D1, normalized importance = 32.70%), and other strong negative
experiences (D6, normalized importance = 32.70%). Surprisingly, psychological unsafety in
a group was found to have low effects on the level of perceived stress (PSY, normalized
importance = 31.20%). Moreover, the adaptation to military routines (ADJ, normalized
importance = 21.60%) and disease or injury (D2 normalized importance = 19.40%) showed
the lowest levels of stress (see Table 8).

5. Discussion

Using nonlinearity in stress research helps answer the complex question of which of
the stressors are the most important in the situations when numerous and diverse stressors
of social and physical experience occur.

A multilayer perceptron neural network was trained by the back-propagation algo-
rithm to yield the main stressors that gradually increase the level of stress at the beginning
of military conscription service. Though stress in the military has been widely explored
in the scientific literature, especially in the field of military psychology, this study sought
to predict what stressors are the most important in periods of a fundamentally changing
social and physical environment in which civilians temporarily become soldiers. Specifi-
cally, we found that cohesion in a team and adaptation to military routines are two critical
elements that have the greatest impact on the level of conscript stress. Given the inverse
relationship between the level of stress and these two factors, we can predict that managing
conscript-team cohesion and new-soldier adaptation in military units could prevent high
levels of stress.

To develop a model based on neural network performance for the identification of
main stressors, numerous ANN models in the MLP structure were created and tested to
point out the ideal number of neurons, hidden layers, and transfer functions; these findings
go in line with the results of other researches [46]. The study results, shown in Table 5,
let us conclude that the most appropriate model was MLPNN (ANN2), trained with
14 middle components for the input parameters (6–2–2) with 14 input neurons, 20 hidden
neurons, and 3 output factors. The outcomes of the model trained with a threshold function
hyperbolic tangent showed the smallest cross-entropy error values (7.422 and 6.147) for
training and testing, respectively. This indicated that the ANN2 model, in which data were
divided for training, testing, and holdout by 60%–20%–20%, respectively, with hyperbolic
tangent used as the activation function in the hidden layer and the softmax function used in
the output layer, yielded a better validation result and proved the model’s high capability
to predict the perceived level of stress in the three layers.

Moreover, establishing an acceptable construction with the appropriate number of
hidden layers and neurons was significant for the precise identification of criteria for
increasing stress. Also, the accuracy of the networks was measured using a ROC curve,
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cumulative gains, and lift charts, which are constructed on the combined training and
testing examples and produce the best combination of sensitivity and specificity [47].

In fact, the importance of independent variables in the ANN2 model implied the pre-
diction that high levels of stress depend on soldier engagement and three types of cohesion:
norm cohesion (CIN, normalized importance = 100%), task cohesion (CPE, normalized
importance = 76.70%), and social cohesion (CTE, normalized importance = 60.80%).

The study findings on the classical Truckman’s group dynamics model [48–52] are
in line with the mainstream literature on small group research in the military, where
“military cohesion” is used [53,54] as a general term to describe micro-level dynamics
among soldiers that lead to greater combat efficiency [55–57].Together with this, the ANN2
model predicted different importance for task cohesion (CPE) and social cohesion (CTE), as
these are two fundamentally different elements of the military environment. Our findings
are in line with a theoretical hypothesis provided by Kirke [58]. The level of stress was more
precisely determined by CPE, showed by its absence (normalized importance = 76.70%)
more than by CTE (normalized importance = 60.80%) because of the nature of compulsory
military service, where the functional hierarchical structure dominates. Attitude towards
military service (ATM, normalized importance = 46.80%) and squad leadership (SLE,
normalized importance = 45.50%) were two predictors with effects on the level of stress
among conscripts that were very close to the 50% threshold, i.e., they can predict the level
of stress with a 50% probability. These findings are close to the results of the study carried
out by others [6], who analyzed stress tolerance among Swedish solders.

Several surprising results were observed in the ANN2 classification model. First,
leadership is traditionally seen in military service as a very important factor [59]. In our
study, squad leadership (SLE, normalized importance = 45.50%) was a moderate predictor
for the level of stress among conscripts. Second, it is surprising that unsafety in the group
(PSY, normalized importance = 31.20%) was found to be a low predictor for the level of
stress at the beginning of military service. This contradicts a series of research findings in
the field of workplace stress [59,60]. An explanation for this contradiction can be found in
a study by Munsh et al. [61] that analyzed masculinity contest norms and found that, if
group members are dominated by strength and stamina norms, ignorance and insecurity
in the group is low.

It should be noted that the multilayer perceptron neural network as the ANN2 model
predicted three PSS categories by 14 criteria, and the model validation tests proved the best
results for high-level stress (with 90% probability), whereas its accuracy for medium-level
stress was lower. This does not diminish the importance of the designed ANN2 model
because the beginning of conscription military service is expected to increase the level
of stress.

Although our research provided a very accurate prediction of stress levels, it had
some limitations that should be characterized. First, data from a single source were used in
the study. Although the single basis approach is typical and is employed in more than 80%
of organizations’ studies, there are some issues of variance in the common approach [46].
To overcome this limitation, we performed a sophisticated data analysis and used three
versions of data iteration. However, for future research, we suggest using diverse data
sources for stress-level measurement and prediction. Second, the data were collected using
self-reported information, where it is difficult to avoid bias in assessing situational factors.
Despite these limitations, the self-reported information gathered during the survey was
important because sensitive questions were not asked face-to-face.

The research also has a practical implication. For practitioners in the military, these
results are interesting for gaining statistically significant results of stress-predicting factors
associated with entry into conscription. Our findings point out that creating norms in
conscripts’ groups (norm cohesion), shaping their attention and energy towards common
tasks (task cohesion), and creating their interdependence (social cohesion) as well as
helping them feel engaged could decrease the level of stress among conscripts and, most
importantly, prevent stress from rising to a critically high level.
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6. Conclusions

A multilayer perceptron neural network was trained by the back-propagation algo-
rithm to specify the main stressors that remarkably increased the level of stress at the
beginning of military conscription service.

Our findings demonstrate that the highest accuracy was attained using the multilayer
perceptron neural network (MLPNN) with 6-2-2 partition, the standardized rescaling
method for covariates, and the activation function—a hyperbolic tangent with 20 units in
one hidden layer and the back-propagation algorithm. The best ANN model was identified
by the smallest cross-entropy error value of 7.422, a correct classification rate of 82%, and
the area under the ROC for each category with the predicted pseudo-probability (low stress
= 0.997; moderate stress = 0.995; high stress = 1.000). Additionally, based on the outcomes,
the MLPNN appeared to be the most acceptable ANN2 model for the three stress-level
predictions. Nevertheless, the activation function and the number of hidden layers or
neurons are very individual matters for individual-type estimates.

Furthermore, according to neural network analysis, the most powerful predictors of
conscripts’ perceived stress were norm cohesion (CIN, normalized importance = 100%),
task cohesion (CPE, normalized importance = 76.70%), and engagement (ENG, normalized
importance = 73.20%).

Future studies on complex psychological constructs, such as perceived stress, should
put additional focus on indicators or multifaceted methods that may better reflect how
these cognitive processes elicit a response. Despite the strong indication that the proposed
neural network model can be effectively implemented to predict conscript stress levels and
support instructors to plan an environment that prevents the possibility for stress levels
to rise to critical (high) levels, future studies need to validate these findings in larger and
more diverse samples. Additionally, future studies could be extended to include other
classifiers, such as support vector machines, and be used for testing other kernels different
from Gaussians.
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Appendix A

Table A1. Descriptive statistics for categorical variables.

Variable Category Frequency 1 Valid Percent

D1
No 70 63.1
Yes 41 36.9

D2
No 82 73.9
Yes 29 26.1

D3
No 53 47.7
Yes 58 52.3

D4
No 85 76.6
Yes 26 24.4

D5
No 97 87.4
Yes 14 12.6

D6
No 79 71.2
Yes 32 28.8

1 Notes: Valid N = 111 listwise.
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