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Abstract: This paper focuses on the last stage of the aluminium production process in the context of
Industry 4.0: schedule optimization in the casting process. Casting is one of the oldest manufacturing
processes in which a liquid material is usually poured into a mold that contains a hollow cavity
of the desired shape and then allowed to solidify. This is a complex scheduling problem in which
several constraints, such as different maintenance processes, maximum stocks, machine breakdowns,
work shifts, or the maximum number of mold changes per day, come into play. Four objective
functions have to be taken into account simultaneously. We have to minimize both the unmet
demand at the end of the schedule, and the delays in the injection process with regard to daily
demands. Production costs, including the cost of electricity consumption in the injection process and
gas consumption associated with melting furnaces, should be minimized. Finally, the total number of
mold changes throughout the schedule must also be reduced to a minimum. The simulated annealing
(SA) metaheuristic has been adapted to solve this complex optimization process and parameterized
for application to a wide variety of aluminium making processes. SA efficiently solves the problem
and provides an optimal solution in about three minutes.

Keywords: aluminium production process; schedule optimization in the casting process; simu-
lated annealing

1. Introduction

Today’s organizations are embracing Industry 4.0, the fourth industrial revolution,
which combines advanced manufacturing and operations techniques with emerging smart
technologies, ranging from robotics, artificial intelligence, cognitive technologies, nanotech-
nology to the Internet of Things. Industry 4.0 leads to a continuous cycle, where a real-time
flow of information and actions from heterogeneous sources and sites are networked ac-
cording to a cyclical physical-to-digital-to-physical (PDP) process. The iterative PDP steps
are as follows:

• Digitally record the information captured from the physical world.
• Share information and apply advanced analytics, scenario analysis and artificial

intelligence to discover which information is applicable.
• Apply algorithms to translate digital world decision making into real data.

This PDP process should stimulate actions and changes in the physical world.
In this paper, the PDP cycle has been adapted to tackle the last stage of the aluminium

production process, schedule optimization of the casting process.
The steel-making and aluminium production process is composed of different stages [1].

First, steel or alumina is smelted in an electric arc furnace, then the liquid metal is poured
into a ladle with some additives to obtain the desired chemical composition of the product.
The metal then undergoes the vacuum degassing process, which reduces hydrogen and

Mathematics 2021, 9, 741. https://doi.org/10.3390/math9070741 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-4947-8430
https://orcid.org/0000-0003-4764-6047
https://orcid.org/0000-0002-5374-1457
https://doi.org/10.3390/math9070741
https://doi.org/10.3390/math9070741
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9070741
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/9/7/741?type=check_update&version=1


Mathematics 2021, 9, 741 2 of 18

nitrogen gases dissolved in the molten aluminium to improve the quality of the final
products. Finally, the steel or aluminium is cast.

Casting is one of the oldest manufacturing process, where a liquid material is poured
into a mold that contains a hollow cavity of the desired shape and then allowed to solidify.
It is most often used to make complex forms that would otherwise be difficult or uneco-
nomical to produce. Casting components can vary in size, from the tiniest component of
the size of an ant to huge components weighing tons. Various types of casting processes are
available based on the type of mold and how the molten metal is filled, like sand casting,
die casting, continuous casting, squeeze casting, investment casting, etc.

The success of all these casting processes depends on the close and proper control
of all the input parameters and the metal solidification process. As the casting process
involves advanced technologies, just a small variation in any of the input parameters can
affect the process output and produce defective castings. Hence a lot of effort is being
made to develop mathematical models to achieve exact parameter settings instead of using
trial and error. This can be achieved using advanced optimization techniques as tools
to output the optimum parameter setting for the casting processes under consideration.
A comprehensive literature review about casting process optimization issues is reported
in Reference [2], highlighting the urgent need for research into process parameters and
process optimization.

For instance, three important casting processes, namely squeeze casting, continuous
casting and die casting process, are considered in Reference [3], and the teaching-learning-
based optimization (TLBO) algorithm is used to optimize mathematical models of these
processes in Reference [4].

More recently, the performance parameters of sand casting were optimized on the
basis of grey relational analysis and the missing data predicted using a back propagation
(BP) neural network [5], whereas [6,7] deal with the optimization of die and squeeze
casting processes, respectively, based on the Taguchi approach, and [8] focuses on thermal
optimization of the continuous casting process using a distributed parameter identification
approach.

Optimized scheduling is of crucial importance to ensure productivity and competi-
tiveness in the steel-making and aluminium production processes. There is an extensive
literature on production planning and scheduling in the steel industry. Reference [9] pro-
vides a comprehensive and comparative analysis of early works. Since then, different
versions of the steel-making and casting scheduling (SMCP) problem have been consid-
ered by different authors. A review is available in Reference [1], grouped according to
mathematical programming methods, constraint programming methods and metaheuristic
and hybrid methods. Within the first group of mathematical programming methods, re-
searchers proposed solutions ranging from the first SMCP [10], a multi-objective integer
linear programming (MILP) model [11], a Lagrangian relaxation for machine capacity and
job precedence constraints based on an approximate subgradient algorithm [12]. Constraint
programming methods were reported in References [13–15], whereas metaheuristics and hybrid
methods ranged from tabu search [16], evolutionary programming [17], artificial bee colony
algorithms [18], simulated annealing [19,20], genetic algorithms [21] or particle swarm
optimization (PSO) [22].

In Reference [23], a steel-making-continuous casting scheduling model is considered,
where due dates are just-in-time-based interval type-2 fuzzy random variables, and the
corresponding type-2 fuzzy random optimization problem is transformed into a crisp and
nonlinear optimization problem using the symmetric approach.

More recently, a simulation annealing approach was developed to tackle a general
model combining common features and constraints on the operations of a real plant [1].
Specifically, it is a complex variant of the hybrid flowshop problem [24] with sequence-
dependent setup times and heterogeneous processing times. The aim is to select the
jobs from a large pool of orders, assign them to machines and plan the sequencing and
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timing, maximizing the number of jobs whose processing starts within the corresponding
time horizon.

A similar version of the problem considered in Reference [1] was previously addressed
in Reference [11], where a MILP formulation was used with the makespan as the objective
function.

The current state and recent developments of plant coordination and control, raw ma-
terials and energy optimization and quality management in the steel industry is reviewed
in Reference [25], discussing the future methods and developments.

In this paper, we focus on the last stage of the aluminium production process, namely
schedule optimization in the casting process, rather than the whole process considered in
References [1,11]. Specifically, different injection machines pour aluminium into molds
including one or more parts. As there is a person who is in charge of reloading the injection
molding machines, we can assume that the aluminum for injection is always on hand, and
aluminium availability does not, therefore, constitute a constraint.

The optimization process will account for four objective functions simultaneously. The
first two objectives refer to orders. On the one hand, we have to take into account delays
with respect to daily part orders and, on the other, orders that are not met on schedule.
Initially, unmet parts orders and parts order delays will not be prioritized, the aim being to
minimize the total sum of unmet orders and delays. Besides, production costs also have
to be reduced to a minimum, and we consider the cost of electricity consumption in the
injection process and gas consumption associated with the melting furnaces. Finally, the
number of mold changes must be minimized. The four objectives are normalized and
incorporated into a weighted additive fitness function, where the weight represents the
relative importance of the objectives.

We have to decide which molds have to be loaded and removed from the injection ma-
chines during the two-week schedule, taking into account different constraints associated
with the injection process (maintenance processes, planned machine downtime, maximum
stocks of parts, work shifts, maximum mold changes per day, non-working days, etc.). The
goal is to reach a feasible solution that minimizes the above fitness function. To do this, we
use the simulated annealing metaheuristic [26,27].

The paper is structured as follows. Section 2 details the aluminium parts casting
process under consideration. The adaptation of simulated annealing to the optimization
problem is described in Section 3. Section 4 illustrates the application of SA to a real
instance together with the parameter settings in the SA, and analyses results. Finally, some
conclusions are outlined in Section 5.

2. Problem Description

The company has several injection molding machines powered by electric holding
furnaces, which in turn are fed by propane gas melting furnaces. There are a total of n
molds, in which we can inject different parts. Specifically, there are molds that have a
single part, most have two parts (50% of each type) and there is a mold for casting three
different parts.

An allocation (binary) matrix indicates, for each injection molding machine, which
molds can or cannot be used to inject parts. The injection time for each mold depends
on the specific mold, but not on the processing machine. Injection times are of the order
of seconds, but our problem is structured according to minimum one-hour production
processes in which several consecutive mold injections are made. The number of parts that
are injected per hour in each mold is known.

As there are several copies of some molds and molds that produce several parts, the
same part may be injected on several machines simultaneously using different molds. Mold
change times range from 1 to 2 h, but they are all rounded to 2 h and do not depend on
the machine or the particular mold. We assume that the first hour of the change time is to
remove the mold and the second to mount the new mold. There is a maximum number of
mold changes (max_MC) that can be performed (on all machines) per day. Mold changes
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cannot be performed simultaneously on multiple injection molding machines, since there
is only one workgroup that performs the changes one by one. No mold change time has to
be considered for consecutive injections of the same mold on the same machine. A mold
change that takes place over a two-day period, that is, between 23:00 on Day 1 and 1:00 on
Day 2, will be accounted for on Day 2. Mold changes are always made within one work
shift: they cannot start during one shift and end during another. Therefore, a mold change
cannot be started during the last hour of each shift. The shifts are as follows: 07:00–15:00,
15:00–23:00, and 23:00–07:00. Therefore, changes from 6:00 to 8:00, from 14:00 to 16:00, or
from 22:00 to 20:00 are not allowed.

We assume that the molds that were being used on the different machines at the end
of the two-week schedule are already in place and must be taken into account (as model
input) for the next schedule. This is the only information that is carried over from one
schedule to another, although orders not met in one two-week schedule are incorporated
into the early stages of the next schedule to minimize production delays.

The injection molding machines work 24 h a day but require maintenance. Melting
furnace maintenance takes three days, whereas holding furnace maintenance takes one
day. During melting furnace maintenance, the associated machines operate at c% of their
capacity. On the other hand, during the one-day maintenance of the holding furnaces,
aluminum cannot be produced (injected) in the associated machines. In the first case,
we use a maintenance (binary) matrix, including the maintenance days in the two-week
schedule. In the second case, we take into account whether the maintenance time slot
is fixed or varies and then process the data input accordingly. Maintenance cannot be
performed on non-working days.

When the maintenance starts, the mold is not removed from the respective injection
molding machine if production is to be continued. We have assumed that the mold is left
in place on non-working days or during planned downtime.

We have the option of an extra 24-h shift on each day of the weekend or on public
holidays (divided into two 12-h shifts: from 7:00 to 19:00 and from 19:00 to 7:00 on the
following day). A binary vector is used to indicate which of the days of the two-week
schedule are working days and which are not (public holidays or weekends). This informa-
tion is incorporated into the maintenance matrix, and each public holiday is equivalent to
a one-day maintenance operation (i.e., the injection molding machine is out of service) on
all the machines. All the times considered in the model are integer values. Therefore, the
time is discretized in one-hour intervals.

On the other hand, some injection molding machines might be in operation and others
might not on weekends. This will also be a model input. The schedule can start on any day
of the week, not necessarily on a Monday, but will cover the following two-week period
as of that day. Finally, the schedule can start at any time on the first day, which is another
model input.

There is a maximum stock of stored parts at the end of the week. This will be different
for the different manufactured parts. The first week’s initial stock is not disregarded since
it is accounted for by the orders for the two-week schedule. Therefore, the stock at the end
of the first week is calculated based on the surplus production of the part with respect to
the total weekly demand for that part, after subtracting defective manufactured parts (the
proportion of defective parts is known for each type of part), whereas, for the second week,
it is calculated as the initial stock of the respective part (that is, the stock of that part at the
end of the first week), plus the number of parts that have been injected during the week,
minus the defective injected parts. The schedule covers a two-week period, although the
parts orders are calculated daily and maximum stocks are counted weekly.

Machines may break down. To deal with this problem, a percentage of the available
weekly production hours should be set aside as planned downtime to account for such
breakdowns. Once the failure has been fixed, production takes place during planned
downtime. Planned downtime is set aside at the end of the schedule. If no malfunctions
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occur, planned downtimes could be used to inject additional parts. Planned downtime is
not necessarily the same for all machines, although it is initially set at b% across the board.

The quantity of aluminium available (kg) for the injection molding machines does not
constitute a constraint, since there is a person who is in charge of reloading the machines
and we can assume that injectable aluminum is always available.

We take into account four main objective functions simultaneously. Two of the objec-
tive functions refer to the failure to meet part orders, whereas the other two are concerned
with production costs and the number of scheduled mold changes, respectively. A weight
vector representing their relative importance will be a model input.

Regarding order satisfaction, we must take into account both delays that occur with
respect to daily orders and orders that are not filled by the end of the schedule. Initially,
unmet parts orders and parts order delays will not be prioritized, the aim being to minimize
the total sum of unmet orders and delays. Note that a weighted additive objective function
could quite easily be added in the future for the purpose of prioritization.

Regarding production costs, we consider the cost of electricity consumption in the in-
jection process where consumption only occurs when the machines are injecting molds, but
not during mold changes, maintenance, or simply stoppages (if any). The gas consumption
associated with melting furnaces must be added to the above.

3. Problem-Solving Methodology

Simulated annealing (SA) [26,27] is a trajectory-based metaheuristic method inspired
by annealing in metallurgy, which has been adapted to solve many combinatorial opti-
mization problems [28–30], and with both general and problem-specific improvements and
variants over the years [31].

The basic idea of SA is as follows, see Algorithm 1. An initial feasible solution, x0, is
randomly generated. Then, in each iteration i, a new solution (yi) is randomly generated
from the neighborhood, N(xi), of the solution considered in that iteration, xi. If the new
solution is better than the current one, then the algorithm moves to that solution. Otherwise,
there is a given probability of it moving to a worse solution. The acceptance of worse
solutions makes for a broader search for the optimal solution and avoids trapping in local
optima in early iterations.

The search is initially very diversified, since practically all moves are permitted. Then,
the probability of accepting a worse move decreases as the temperature drops, and only
better moves are accepted when it is zero, working like a hill-climbing algorithm in the
last iterations.

Some elements in the above algorithm require clarification. Generally, the initial
temperature (T0) is set such that the acceptance ratio of worse moves is equal to a specified
value, 0.9 [32].

The cooling schedule defines the way in which the temperature decreases across
iterations. A common cooling schedule is for the temperature to be kept constant for
a number of iterations (L) and then be decreased according to a geometric schedule:
Tk = αkT0, the typical value for α being 0.95 [33].

The most commonly used stopping criterion is to stop when the improvement in the
fitness function is less than a given percentage for a fixed number of iterations.

In the following sections, other elements of the SA algorithm are explained in detail,
including how solutions are modeled (xi), how an initial feasible solution is built and the
neighborhood definition considered (N(xi)).

3.1. Solution Modeling

Solutions are represented by a matrix. The matrix columns represent time slots,
and the rows, injection molding machines (nummachine). Time slots are equivalent to
one hour, as demanded by the experts, since this is the minimum mold injection time,
and we can assume that the duration of injection processes is measured in multiples of
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hours. Consequently, as we have a two-week schedule, the solution matrix is composed of
24 (h)× 14 (days) = 336 columns.

Algorithm 1 Basic SA.

1: Do x∗ = x0, f ∗ = f (x0), i = 0. Ti is the temperature in step i
2: repeat
2: Randomly generate yi ∈ N(xi)

3: if ( f (yi)− f (xi)) ≤ 0 then
4: xi+1 = yi

5: if ( f (x∗) > f (yi) then
6: x∗ = yi, f ∗ = f (yi)

7: end if
8: else
9: Randomly generate p ∼ U(0, 1)

10: if (p ≤ e−( f (yi)− f (xi))/Ti ) then
11: xi+1 = yi

12: else
13: xi+1 = xi

14: end if
15: end if

16: Update temperature, i = i + 1

17: until stopping criterion

Each matrix element (i, j) represents the state of the injection molding machine i in
time slot j. It is symbolized by a numerical value. The value 0 indicates that the respective
injection molding machine is stopped, values 1 to n state that mold i = 1, . . . , n is being
injected in the respective time slot on the respective injection molding machine, value −2
refers to a non-working day slot time, value −3 and −4 denote three-day and one-day
maintenance processes, respectively, value −5 represents a mold change and value −6
specifies planned downtime. Colors are also used to improve solution interpretability, see
Figure 1.

Figure 1. Solution modeling.
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Figure 2 illustrates the modeled solution. The solution includes six injection mold-
ing machines (6 rows) and only shows the first two days out of the two-week schedule
accounted for by the modeled solution. Molds 1, 4, 6, 9, 15 and 3 are injected in the six injec-
tion molding machines under consideration at the beginning of the solution, respectively.
Mold 1 is injected on injection machine 1 on the first and second day until time slot 7 on the
third day. Then, mold 1 is replaced by mold 2. Besides, a three-day maintenance process
starts on injection machine 2 on the second day. Mold 15, initially injected on injection
machine 5, is replaced by mold 16 at time slots 6 to 7 on day 1. Mold 16 is then replaced by
mold 6 at time slots 4 to 5 on day 2. Then, a three-day maintenance process starts on day 3.

Figure 2. Illustration of a part of a solution.

3.2. Building an Initial Solution

Although we have daily parts orders, we build the initial solution assuming that
demand is accumulated at the end of each respective week of the two-week schedule.
Besides, production costs are not considered in this process.

Initalization. We first set all the elements in the solution matrix to 0, that is, initially
all the machines are stopped. Then, we enter the value −2 in columns representing public
holidays or weekends where production is stopped. To do this, we take into account a
non-working day vector (input). For instance, the non-working day vector (0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 1) indicates that there is a public holiday on Wednesday of the first week and
the second weekend.

In the case of weekends, where some injection molding machines operate and others
do not, we also enter the value −2 for the machines that are not operational on weekends.

We assign the value −4 for the elements associated with machines under one-day
maintenance, whereas machines undergoing three-day maintenance are marked −3 be-
cause they are operating at only c% of their capacity, taking into account the maintenance
matrix (input) in both cases. Finally, we enter −6 in the column cells at the end of the
solution matrix set aside for planned downtime to cover machine breakdowns.

The initial solution is built in two phases, each considering one of the two weeks of
the schedule. For the first week, we proceed as follows: we complete the solution matrix
row by row, starting with the first machine and performing injections with molds for the
most demanded parts, if possible, and mold changes when necessary, also taking into
account molds availability (i.e., they are not being used on another machine), maintenance
processes and non-working days.

• for m = 1 to nummachine (for each injection machine)

– h = 1
– stopping_criterion = FALSE
– WHILE (h <= 168 and stopping_criterion == FALSE) (until the end of the week

(7 days ×24 h = 168) or the stopping criterion is met)

* If (solution(m, h) == −3 or solution(m, h) == −2) then h = h + 24 (the
machine is under one-day maintenance or not in service because it is a
non-working day. We move to the next day).

* Else, for each mold j that machine m can inject (consult the injection matrix)
and by order of the accumulated demand for the parts during this week
(using the mold that can cast more of the most demanded parts first. . . ), do

· If the injection conditions (specified afterwards) are met, then
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- (perform a mold change). If the mold that was being used during the
previous hour is not the same as the one that is going to be loaded,
then we remove the previous (solution(m, h) = −5) and load the new
mold (h = h + 1, solution(m, h) = −5), i.e., a two-hour mold change is
performed. Else (no mold is loaded on the machine), we just load the
new mold (solution(m, h) = −5).
- (perform the injection). Inject mold j on machine m until the maximum
stock of the parts being injected is exceeded (solution(m, h) = j, until
the end of injection). The injection could end before if mold j is used
on another machine in the future (in an already processed machine,
1 . . . m− 1). Note that we must check if machine m is undergoing a three-
day maintenance process, i.e., working at c% of its capacity. Besides, if
there is a one-day maintenance process or a non-working day before
finishing the injection, then injection continues afterwards until it is
completed.
- Reduce the demand for the parts in the mold by the number of injected
parts and update the respective stocks (if necessary).
- Increase h to the time just after the end of the injection.

· Else (at least one injection condition is not met), try with the following
mold that machine m can inject in the order of demand for parts. Note
that there may be several molds with the most demanded part, and
they should all be used until the maximum stock is reached.
If no mold can be injected, then stopping_criterion = TRUE.

– end_WHILE
– m = m + 1

• end_FOR

The algorithm is the same for the second week, but we first have to update the parts
orders for this week with the stocks of the parts at the end of the first week. Besides, the
stopping criterion will be met when either no mold can be injected or the algorithm reaches
a planned downtime.

The injection conditions mentioned in the above algorithm are as follows:

1. Check that the mold under consideration is not being used (or is being changed and
mold injection begins on another machine) on another machine (previous rows in the
solution matrix) for the next three hours (minimum time necessary to perform a mold
change and at least one injection).

2. Check that the maximum storage stock of the parts included in the mold produced
during week 1 will not be exceeded after the planned injection.

3. Check that the maximum value for mold changes per day is not exceeded (this is
not a problem if no mold change is required but must be checked if there are mold
changes) or that they are not being carried out during shift change hours (4:00 to 5:00,
12:00 to 13:00 or from 20:00 to 21:00).

Note that initial solutions generated may differ if the machines to be injected (rows)
according to the algorithm are randomly selected.

3.3. Neighborhood Definitions

The simulated annealing algorithm takes into account three neighborhood definitions:
completely remove an injection, partially remove an injection, and add an injection.

In the first neighborhood definition, completely remove an injection, a randomly
selected injection is completely removed from the respective machine. This process also
implies removing the mold change hour before and after the respective injection process.
The process is a follows:

1. Randomly select a machine m.
2. Randomly select an injection process (mold i) on machine m.
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3. Set to 0 all the hours corresponding to the injection process under consideration.
4. Set to 0 the mold change hour just before and after the removed injection (they are

associated with the process of loading and removing the mold at the beginning and
end of the injection, respectively).

5. Update the weekly stock of the parts included in the removed mold i (possibly more
than one part). For each part, either subtract the quantity of the part that is not to be
injected from the stock or set to 0 if the number of parts that are not injected is greater
than the available stock. Be sure to update the stocks of both weeks if the removed
injection covers the entire two-week schedule.

6. Update the fitness functions for the new solution: decrease the demand (at the end of
the two weeks) satisfied for each part in mold i, decrease the cost of the new solution
since no electricity and gas will be paid for the injection of the removed mold i on
machine m, and update delays in production regarding the daily orders (this complex
task involves recomputing delays for the entire schedule).

Figure 3 shows an example of the application of this neighborhood definition, in
which injection of mold 5 is completely removed.

Figure 3. Examples of neighborhood definition 1.

In the second neighborhood definition, partially remove an injection, a part is re-
moved at the beginning of a randomly selected injection process. The length of the injection
removed is also selected at random. In this case, the mold change hour is moved from
the beginning of the injection process to the new mold loading time at the end of the
removed injection time. Figure 4 shows an example of the application of this neighborhood
definition, in which the injection of mold 5 is partially removed.

Figure 4. Examples of neighborhood definition 2.

In the third neighborhood definition, add an injection, the injection of a randomly
selected available mold is added in a randomly selected gap (during which the machine is
stopped) of a randomly selected machine m. The new injection covers the entire gap, and a
mold change hour must be added at the beginning and end of the injection process to load
and remove the respective mold. Note that it is important to check if the selected mold i
was being injected just before or after the new injection, in which case no mold change will
be necessary.

Now, the mold change hour at the beginning of the injection process is removed and
added at the end of the removed hours, which is when the mold is loaded. Figure 5 shows
examples of the application of this neighborhood definition.
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Figure 5. Examples of neighborhood definition 3: (a) corresponds to an injection with the same mold
that was used before the gap and covers the entire gap, where the mold used afterwards is different,
(b) is the same as (a) but the gap is not completely covered, where the mold has to be removed
leaving a smaller gap, (c) corresponds to an injection of a different mold than the one used before the
gap, covering the entire gap, where the same mold is used afterwards (there is no change of mold
at the end of the gap), (d) is the same as (c) but the gap is not completely covered, where the mold
is removed leaving a smaller gap, (e) corresponds to an injection of a different mold from the one
before and after the gap which covers the entire gap, and, finally, (f) is the same as (e) but the gap is
not completely covered, where the mold has to be removed leaving a smaller gap.

3.4. Fitness Function

As already mentioned, the optimization process will take into account four objective
functions simultaneously. The first two objectives refer to demands. Orders that are not
met by the end of the schedule should be minimized, whereas delays with respect to the
satisfaction of daily part demands must also be taken into account. Initially, neither unmet
parts orders and delays will be prioritized. Therefore, the total sum of unfufilled orders F1
and of delays F2 will be minimized.

Regarding the production costs (F3), electricity pricing is made up of a power capacity
and electricity consumption (fixed term and variable term). Power capacity is calculated on
an annual basis averaged per month (we do not take into account this cost). We take into
account electricity consumption, but not the surcharge for power peaks above 2450 kW. We
also consider the gas consumption associated with melting furnaces.

Finally, the number of mold changes (F4) in the planned period must be minimized.
The four objectives are incorporated into a weighted additive fitness function, where

the corresponding weights represent their relative importance according to the experts’ pref-
erences:

min F = w1 × NormF1 + w2 × NormF2 + w3 × NormF3 + w4 × NormF4. (1)

To do this, the objective functions must be normalized, since they are measured in
different units with different value ranges:

NormFi = (Fi − Fi−min)/(Fi−max − Fi−min), (2)

where

F1−min = 0 and F1−max = total_demand,

F2−min = 0 and F2−max = delay_no_injection,

F3−min = 0 and F3−max = complete_injection, and

F4−min = 0 and F4−max = max_MC× number_days,
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and F1−max is the total parts demand during the two-week schedule, F2−max are the accu-
mulated delays if parts are not injected, F3−max represents the solution in which all machine
molds are injected with maximum amount of aluminium across the two-week schedule
and F4−max accounts for a solution with the maximum permitted mold changes per day
(max_MC) on the all working days.

Note that the fitness for each visited SA solution is not computed from zero. In-
stead, we merely compute how the movement dependent on the respective neighborhood
definition affects the fitness function of the previous solution (although the updated de-
lays have to be recomputed for the entire solution). This improves the algorithm from a
computational point of view.

3.5. Parameter Tuning

Different instances of the problem were used to set the SA parameters and improve
its performance. Different stopping criteria and cooling schedules were tested together
with the probability of using the three neighborhood definitions. Several graphs about the
evolution of the fitness value, its optimal value, and the probabilities of worse movements
were plotted to check that the search process evolved adequately.

As a result of the above analysis, the SA parameters were set to the following values:
stopping condition (iterations = 1500, %_improvement = 0.0005), cooling schedule (L =
1500, α = 0.95), and neighborhood probabilities (complete removal 0.1%, partial removal
0.4%, insertion 0.5%).

4. An Illustrative Example

In this illustrative example, we consider m = 6 aluminum injection molding machines,
powered by electric holding furnaces, which in turn are fed by four propane gas melting
furnaces. There are 84 available injection molds, including molds for a single part, two
parts or three different parts. Of the 173 different parts that can be injected, only 33 are
ordered during the two-week schedule, where the total demand for parts is 224,864. Note
that parts that are not in demand could be injected if they are in the same mold as an
ordered part. Table 1 specifies the molds including the 33 ordered parts, together with the
number of parts and quantity of aluminium (kg) injected per hour.

We assume that there are no stocks and no molds are loaded on the six injection
machines at the beginning of the schedule. The first Sunday and the second weekend are
non-working days, whereas only injection machines 1, 4, and 5 are available on the first
Saturday. There is a three-day maintenance process on machine 1 from Wednesday to
Friday during the first week (c = 30% operating capacity), and a one-day maintenance on
machine 2 on Tuesday during the first week.

Up to four mold changes are permitted per day (max_MC = 4). Mold changes must
not be simultaneous or overlap with shift changes (6:00–8:00, 14:00–16:00, and 22:00–24:00).
Planned downtime for machine breakdowns accounts for b = 5% of the schedule.

Regarding the production costs (F3), electricity pricing is made up of a power capacity
and electricity consumption (fixed term and variable term). Power capacity is calculated on
an annual basis averaged per month (we do not take into account this cost). We take into
account electricity consumption, but not the surcharge for power peaks above 2450 kW. We
also consider the gas consumption associated with melting furnaces.

The consumption in kWh of the six injection molding machines is computed for
machine 1 as follows:

1.7 + 3.12×Q1, if Q1 ≤ 15

70 + 0.2× (50−Q1), if 15 < Q1 ≤ 60

where Qi is the number of kilograms of aluminum injected per hour into the mold that is
being used on machine i. Similar expressions are used for the other machines.
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Table 1. Mold information.

Mold Parts Injected Parts Injected Al (kg) Mold Parts Injected Parts Injected Al (kg)

1 {1} 445 55.36 51 {84,85,86} 236 162.64
7 {7,8} 232 83.29 52 {87,88} 444 55.42
8 {8} 546 23.31 53 {89,90} 212 82.17
12 {14,15} 446 66.22 54 {91,92,93} 134 136.33
15 {20,21} 332 35.23 55 {93} 462 135.31
16 {22,23} 312 110.45 56 {95} 633 144.04
18 {26,27,28} 256 176.50 57 {96,97,98} 234 184.04
19 {29} 534 175.09 58 {99,100} 342 88.65
22 {34} 456 135.33 59 {101,102} 334 35.44
23 {35} 123 204.04 60 {103,104} 342 96.13
24 {36,37} 233 66.33 62 {107,108} 442 13.06
28 {41,42} 543 44.66 63 {109,110,111} 167 230.33
30 {45,46,47} 532 35.78 64 {112,113} 734 216.38
31 {48} 288 49.65 66 {116,117} 244 138.72
33 {51,52} 253 106.23 67 {118,119,120} 242 48.47
37 {57,58,59} 312 80.48 68 {120,121} 378 44.43
38 {59,60} 443 94.22 70 {124} 947 371.08
39 {61,62,63} 231 122.81 71 {125} 334 182.96
40 {64} 112 68.23 72 {126,127} 625 177.48
41 {65,66} 523 66.46 74 {130,131,32} 276 102.37
42 {67,68} 384 159.01 75 {132,133,134} 232 113.31
43 {69,70} 293 67.83 76 {135} 114 116.55
44 {71,72,73} 420 74.54 77 {136} 432 116.55
45 {74} 244 63.67 78 {137,138,139} 523 108.43
46 {75,76} 224 91.34 79 {140,141} 623 114.61
47 {77,78,79} 423 53.63 80 {142,143} 345 120.35
48 {80} 245 82.73 81 {144,145,146} 234 44.23
49 {81,82} 262 75.29 82 {147,48} 262 81.76
50 {83} 242 43.23 83 {149,150,151} 523 42.89

Figure 6 shows the price in euros per kWh consumed for each of the 24 h of the
day (from Monday to Friday) over the different months of the year. The price per kWh
consumed on Saturday, Sunday, or public holidays is 0.057762 euros irrespective of time of
the day.

Regarding gas consumption in melting furnaces (4 furnaces), we have for melting
furnace 1:

60 + 8× (Q1 + Q2), if (Q1 + Q2 + Q3) ≤ 60

150 + 2.5× (300− (Q1 + Q2)), if 60 < (Q1 + Q2 + Q3) ≤ 300.

Note that injection machines 1, 2 and 3 are fed by melting furnace 1, whereas injection
machines 4, 5 and 6 are fed by melting furnaces 2, 3 and 4, respectively. Similar expressions
are used for the other melting furnaces. The cost of gas per kWh is 0.13 euros.

Weights representing the relative importance of the objective functions in the normal-
ized fitness function were provided by the casting company’s expert (w1 = 0.5, w2 = 0.4,
w3 = w4 = 0.05, respectively), i.e., the first two objectives concerning orders are much
more important than operating costs and the total number of mold changes.

The schedule starts on Monday at 13:00 h. A first feasible solution is derived from
the algorithm described in Section 3.2, whose fitness value is 0.052382. The total unmet
demand in the two-week schedule is 540 parts, amounting to 0.24% of total demand, the
total delay (units × days) is 83.092, the operating costs are 21,552.37 euros and the total
number of mold changes is 19.
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Figure 6. Electricity billing term.

Then, SA is executed to derive an optimal solution. Figure 7 shows the evolution of
both the fitness function and the four original objective functions throughout the execution.
We find that the search is very diversified at the beginning of the execution, since practically
all moves are permitted. As the temperature drops, the probability of accepting a worse
move decreases, and the search becomes more intensified, working like a hill-climbing
algorithm at the end when only moves that improve the fitness function are allowed. A
total of 301.499 iterations were performed before the algorithm stopped. We used an
Intel(R) Xeon(R) E3-1240 PC with 3.50 GHz and 16 GB of RAM, running Windows 10, and
the execution time was 3 min.

The fitness value for the optimal solution is 0.050004. The total demand (224,864 parts)
is met according to schedule, the total delay (units × days) is 55,351 (there are delays for
only 14 out the 33 ordered parts), the operating costs is 20,630.84 euros, and the number of
mold changes is 25.

Figure 8 shows the first three days for the optimal solution. As already mentioned, the
schedule starts on Monday at 13:00 h when no molds are loaded on any of the six machines.

During the first hour (13:00), mold 79 is loaded on machine 1, which is injected until
the time slot 4 on the second day, when it is replaced by mold 62, used until the end of
day 2. Then, a three-day maintenance process starts on Wednesday, where the machine
continues to inject mold 62, but only at 40% of its capacity.

Besides mold 7 is loaded on injection machine 2 at 14:00 h. Note that mold changes
cannot be performed simultaneously on more than one machine. Mold 7 is injected on
machine 2 until 20:00 on which it is loaded but not injected from 20:00 to the end of the day.
Then, machine 2 undergoes a one-day maintenance operation on Tuesday, and mold 7 is
again injected from 0:00 to 7:00 on Wednesday, when it is replaced by mold 44, which is
injected for the rest of the day.
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Figure 7. Simulated annealing (SA) evolution.

Figure 8. Part of the optimal solution.

Tables 2 and 3 show further details about the optimal solution. The first two columns
list part numbers and the respective maximum stocks. Note that Tables 2 and 3 list more



Mathematics 2021, 9, 741 15 of 18

than 33 parts (rows), since they include all the parts injected over the two-week schedule
and not only the ordered parts.

Table 2. Optimal solution I.

Parts Max. Stock Orders 1 Parts Injected 1 Stock/Unmet 1 Orders 2 Parts Injected 2 Stock/Unmet 2 Delay

1 9000 0 614 614 0 614 1228 0
2 9000 0 614 614 0 614 1228 0
7 8000 12,159 16,185 4026 1047 249 3228 0
8 8000 12,159 16,185 4026 1047 249 3228 0

15 5425 0 0 0 0 313 313 0
21 8000 10,000 17,914 7914 0 0 7914 11,712
23 6000 1960 0 −1960 1047 9282 5852 13,449
27 1000 0 0 0 0 162 162 0
28 1000 0 0 0 0 162 162 0
35 6000 4000 2312 −1688 0 7225 5537 3626

36 6000 4000 2312 −1688 0 7225 5537 3626
41 5425 0 108 108 0 0 108 0
42 5425 0 108 108 0 0 108 0
45 5425 0 113 113 0 0 113 0
46 5425 0 113 113 0 0 113 0
47 5000 1536 3978 2442 3070 3315 2687 1902
48 5000 1536 3978 2442 3070 3315 2687 1902
51 6000 5499 8360 2861 0 418 3279 0
52 6000 5499 8360 2861 0 418 3279 0
58 1200 0 133 133 0 0 133 0
59 1200 0 133 133 0 0 133 0

62 5425 0 136 136 0 136 272 0
63 5425 0 136 136 0 136 272 0
64 5425 0 121 121 0 0 121 0
65 5425 0 121 121 0 0 121 0
66 8000 0 179 179 0 179 358 0
67 8000 0 179 179 0 179 358 0
70 10,000 0 0 0 0 138 138 0
71 10,000 0 0 0 0 138 138 0
72 8000 3499 11,308 7809 3499 0 4310 2177
73 8000 3499 11,308 7809 3499 0 48 2177

76 10,000 0 48 48 0 0 48 0
77 10,000 0 48 48 0 0 250 0
78 5425 0 0 0 0 250 250 0
79 5425 0 0 0 0 250 2924 0
82 3000 1620 4402 2782 0 142 2924 0
83 3000 1620 4402 2782 0 142 3228 0
84 5425 0 162 162 0 0 162 0
85 5425 0 162 162 0 0 162 0
86 2000 0 164 164 0 164 328 0
87 2000 0 164 164 0 164 328 0

88 2000 0 162 162 0 0 162 0
89 2000 0 162 162 0 0 162 0
90 5424 0 129 129 0 129 258 0
91 5424 0 129 129 0 129 258 0
92 5424 0 129 129 0 129 258 0
93 5424 0 129 129 0 129 258 0
94 5424 0 252 252 0 126 378 0
95 5424 0 252 252 0 126 378 0
96 8000 0 0 0 0 220 220 0
97 8000 0 0 0 0 220 220 0

98 5000 0 244 244 981 1464 727 193
99 5000 0 244 244 981 1464 727 193
100 5425 0 155 155 0 155 310 0
101 5425 0 155 155 0 155 310 0
102 3000 0 0 0 2998 3596 598 0
103 3000 0 0 0 2998 3596 598 0
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Table 3. Optimal solution II.

Parts Max. Stock Orders 1 Parts Injected 1 Stock/Unmet 1 Orders 2 Parts Injected 2 Stock/Unmet 2 Delay

108 8000 0 378 378 4500 6300 2178 0
109 8000 0 378 378 4500 6300 2178 0
110 5425 0 0 0 0 313 313 0
111 5425 0 0 0 0 313 313 0
112 6000 3024 5385 2361 3744 5016 3633 0
113 6000 3024 5385 2361 3744 5016 3633 0
116 1000 0 183 183 0 0 183 0
117 1000 0 183 183 0 0 183 0
118 500 0 0 0 0 183 183 0
119 500 0 0 0 0 183 183 0

120 150,000 63,640 68,640 5000 16,362 50,452 39,090 0
124 600 0 320 320 0 0 320 0
125 600 0 320 320 0 0 320 0
127 500 0 254 254 0 0 254 0
130 3000 804 258 −546 0 3483 2937 5172
131 2000 0 1548 1548 720 258 1086 0
132 500 0 0 0 0 131 131 0
134 3000 894 258 −546 0 3483 2937 5172
135 2000 0 1548 1548 720 258 1086 0
136 500 0 0 0 0 131 131 0

138 2000 0 129 129 0 0 129 0
139 2000 0 129 129 0 0 129 0
140 2000 0 129 129 0 129 258 0
141 2000 0 129 129 0 129 258 0
142 2000 0 320 320 0 0 320 0
143 2000 0 320 320 0 0 320 0
144 6000 0 0 0 3808 7611 3803 0
145 6000 0 0 0 3808 7611 3803 0
146 4000 1788 1612 −176 4611 8680 3893 2025
147 4000 1788 1612 −176 4611 8680 3893 2025

148 4000 2809 3036 227 0 132 359 0
149 4000 2809 3036 227 0 132 359 0
150 2000 0 0 0 0 1600 1600 0
151 2000 0 0 0 0 1600 1600 0

The following three columns show the aggregate orders over the first week (note that
orders are received on a daily basis), the number of parts injected, and the stock (positive)
or unmet demand (bold-red-negative) at the end of the respective week. The following
three columns show the same information for the second week. Note that the demand for
seven parts is not met at the end of the first week, leading to delays, but the demands for
these parts is met at the end of the second week. Moreover, the demand for all parts over
the entire two-week schedule is met at the end of the second week.

The last column represents the delays (units × days) in parts injection with respect
to daily orders. There are delays (bold-red) with respect to only 14 out the 33 demanded
parts, and the maximum delay is 13,449, in part 21, mainly caused by the fact that no parts
of this type were injected during the first week, although 1960 units were ordered during
that week. The total delay is 55,351.

5. Conclusions

In this paper, the physical-to-digital-to-physical (PDP) cycle has been adapted to
tackle the last stage of the aluminium production process, schedule optimization of the
casting process. Specifically, aluminium is poured into molds including one or more
parts on different injection machines. This is a complex scheduling problem in which
several constraints have to be taken into account together with four simultaneous objective
functions accounting for demand satisfaction, delays, operating costs and mold changes,
respectively. To do this, the simulated annealing (SA) metaheuristic was applied.

The SA adaptation was parameterized for application to a wide variety of aluminium
production processes and integrated into the company information systems to load the
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demands for the two-week schedule, update the respective stocks and output the optimal
scheduling for the injection machines under consideration.

SA efficiently solves the problem and provides an optimal solution in about three
minutes. The time it takes to derive an optimal solution makes it possible to reduce
or even remove the planned downtime set at the end of the schedule to offset machine
breakdowns, since a new optimal solution could be computed for the schedule starting
when the respective injection machine has been repaired.

As a future research line, we propose to further generalize the algorithm so that it
can be applied for casting processes of parts in aluminium or other materials, considering
different technical characteristics (injection machines, production costs, maintenance pro-
cesses, manpower and work shifts, etc.) and other types of objective functions. Besides, the
algorithm could account for the different parameters in the casting process stochastically
using simulation techniques on the basis of the design of experiments.

Additionally, other metaheuristics, such as the variable neighborhood search (VNS) or
tabu search (TS), might be used to solve the problem, analyzing their performances in terms
of fitness functions and computational times. Finally, as different initial solutions could
be derived if the proposed algorithm were to randomly select machines for injection, a
multi-start adaptation of the SA, as well as evolutionary metaheuristics, such as the particle
swarm optimization (PSO) or the gravitational search algorithm (GSA), are another option.
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