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Abstract: Tooth segmentation is an important aspect of virtual orthodontic systems. In some existing
studies using deep learning-based tooth segmentation methods, the feature learning of point coor-
dinate information and normal vector information is not effectively distinguished. This will lead
to the feature information of these two methods not producing complementary intermingling. To
address this problem, a tooth segmentation method based on multiple geometric feature learning
is proposed in this paper. First, the spatial transformation (T-Net) module is used to complete the
alignment of dental model mesh features. Second, a multiple geometric feature learning module
is designed to encode and enhance the centroid coordinates and normal vectors of each triangular
mesh to highlight the differences between geometric features of different meshes. Finally, for local
to global fusion features, feature downscaling and channel optimization are accomplished layer by
layer using multilayer perceptron (MLP) and efficient channel attention (ECA). The experimental
results show that our algorithm achieves better accuracy and efficiency of tooth segmentation and
can assist dentists in their treatment work.

Keywords: tooth segmentation; geometric feature learning; 3D shape segmentation; deep learning

1. Introduction

Profitting from the rapid development of computer graphics, wireless communication
and other technologies, the entire field of dentistry has developed toward digitalization
and intelligence. New invisible orthodontic tools have emerged, represented by the virtual
orthodontic system. Generating treatment plans through the virtual orthodontic system can
reduce patients’ long orthodontic treatment time, ease the pain of the orthodontic process,
and reduce patients’ medical costs. The virtual orthodontic system allows the dentist to
understand the patient’s oral condition more easily, efficiently and visually, thus assisting
the dentist in developing a better treatment plan and allowing the patient to achieve the
desired orthodontic results faster and better [1].

The purpose of tooth segmentation is to segment each tooth individually in the 3D
orthodontic model. This is a key part of the orthodontic process and the most essential
component of the virtual orthodontic system. The accuracy of segmenting the teeth affects
the accuracy of the subsequent treatment work (e.g., tooth alignment, simulated root
generation). Furthermore, the intelligent and efficient segmentation of the teeth saves the
dentist much time and shortens the orthodontic treatment cycle. However, there are many
difficulties in segmenting each tooth in the dental model. Specifically, the human dental
model is a 3D model with complex appearance, similarity areas and unique shape. The
junction between teeth and gums has blurred shape changes, and the tooth boundary is
not obvious due to crowded, misaligned or missing teeth. All these difficulties make the
tooth segmentation process error prone. Therefore, how to design an accurate and efficient
tooth segmentation algorithm is a key problem in orthodontics.

In recent years, point cloud segmentation has become a highly regarded research
direction in 3D shape segmentation. Since dental models can be transformed into point
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cloud models, the study of point cloud segmentation can play a guiding role for tooth
segmentation. Since the pioneering work of PointNet [2] set off an upsurge in the field of
3D point cloud segmentation, have explored more accurate and efficient point cloud seg-
mentation methods from the perspectives of multilayer perceptrons (MLPs), convolutional
neural networks, graph neural networks, attention mechanisms, and so on. Subsequently,
excellent schemes such as PointNet++ [3], GACNet [4], and RandLA-Net [5] emerged.
RandLA-Net has achieved impressive performance in the field of cloud segmentation in
large scenic spots. This is mainly due to its simple and efficient sampling method and
powerful local feature aggregation module. However, the input of the network is usually
only point coordinate features, and the corresponding processing flow is not designed
for other important geometric features (such as normal vectors). The tooth features to be
learned by the network are missing and prone to erroneous segmentation.

In addition to the above ideas, in the field of deep learning methods, researchers have
also studied tooth segmentation methods in two directions. One is to first convert the 3D
dental model into 2D image data and then use the already more mature 2D CNN to extract
dental features and guide the segmentation of 3D teeth [6–8]. However, this conversion
process is usually accompanied by noise which results in the loss of tooth features. The
other approach is to extend the existing point cloud segmentation network so that it can
handle the dental mesh model and complete tooth segmentation [9,10]. However, these
methods model the coordinates of the mesh vertices in the local region in a simpler way
and do not sufficiently take into account the relationship between the normal vectors of
the different meshes in the local region. This leads to the inability of the network to learn
detailed features, which affects the accuracy of the final tooth segmentation results.

In view of this, this paper extends and improves the existing point cloud segmenta-
tion method [2,5] to achieve end-to-end tooth segmentation on a dental mesh model. A
multiple geometric feature learning module is designed, which enables the information
of geometric features with different attributes to be learned in a complementary way by
encoding the enhanced centroid coordinates and normal vectors of each triangular mesh. In
addition, for local to global fusion features, MLP and ECA [11] are used to perform feature
downscaling and channel optimization in a layer-by-layer cascade manner to complete
tooth segmentation accurately and efficiently. The rest of the paper is organized as follows.
Section 2 explores related works that segmentation of teeth from 3D dental models using
traditional or deep learning techniques. Section 3 outlines our methodology. Section 4
presents and discusses our results. Finally, Section 5 presents the conclusions of this paper
and the prospects for future work.

2. Related Works
2.1. Traditional Tooth Segmentation Methods

Kondo et al. [12] calculated a panoramic image of the tooth model using the dental
arch obtained from the depth image as a reference. They then used it to detect the gaps
between the teeth and determine their location and orientation, and finally segmented
the teeth and gums using the gingival margin line. However, the segmentation result of
this method is poor when the tooth model has malformation. Hao et al. [13] proposed an
interactive tooth segmentation method. The method uses the vertex curvature value of
each triangular mesh and the curvature threshold input by the user to obtain the feature
region. The skeleton line of the feature region is obtained by the morphological method,
and the segmentation line is obtained by continuous refinement of the skeleton line to
finally complete the tooth segmentation. However, this method needs to fill in part of the
interrupted part in the feature area manually.

Yuan et al. [14] achieved tooth segmentation by identifying the adhesion areas between
teeth and gums and teeth in the 3D dental model, removing the adhesion areas between
adjacent teeth, and reconstructing the missing surfaces of teeth. However, identifying
the adhesion region link requires many manual operations and consumes the user’s time.
Kronfeld et al. [15] first calculated the segmentation line between teeth and gingiva, ob-
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tained the arch position of a single tooth and then used the snake method to segment the
teeth. However, the segmentation effect was poor in the case of malformation in the dental
model. Wu et al. [16] used a morphological skeleton segmentation algorithm and a regional
growth method to complete the segmentation of dental mesh models. However, when there
is noise in the dental model data, considerable human-computer interaction time is required
to ensure the accuracy of segmentation. Zou et al. [17] proposed a weighted harmonic
field algorithm to segment teeth, which can perform better on malformed dental models.
However, it requires more frequent human–machine interactions, and the segmentation
efficiency is low.

In summary, traditional tooth segmentation methods start from the low-level geo-
metric features of the dental model itself (watershed algorithm [18,19], region growth
method [16,20], snake algorithm [15], harmonic field method [17]) or explore the auxiliary
information from the 2D image of the dental model to solve the 3D model segmenta-
tion [12]. These methods usually have disadvantages, such as large segmentation errors
in the presence of occlusion and deformation of the dental model, ease of producing over-
segmentation, insufficient automation of seed point selection, frequent human–machine
interaction; This burdens the user, and leads to large computational efforts.

2.2. Tooth Segmentation Methods Based on Deep Learning

Xu et al. [8] proposed a two-stage hierarchical CNN structure for tooth segmentation,
where one is used for gingival and tooth labeling and the other for interdental labeling. The
CNN model is first trained using 2D tooth feature images, after which the segmentation
results are optimized using several steps, such as boundary-aware simplification, fuzzy
clustering, and boundary smoothing. However, the 2D tooth feature images are trans-
formed from the simplified tooth model, which will lose the detailed features. Sun et al. [21]
proposed an automatic tooth seed point picking method based on FeaStNet [22], which can
efficiently mark the seed points of teeth and later combine with the region growing method
to complete tooth segmentation. However, manual correction of incorrect seed points is
needed. Tian et al. [23] proposed an automatic tooth segmentation method based on hierar-
chical feature learning. First, the original dental model is preprocessed to obtain the octree
model of teeth with labels. Next, the classification recognition among teeth is completed by
using the hierarchical feature learning-based method. Finally, the segmentation of single
teeth is completed by using 3D CNN and the conditional random field. The segmentation
edge of this algorithm is close to the real segmentation result, but the generalization ability
of the network needs to be enhanced. Zhang et al. [24] proposed a tooth segmentation
algorithm based on the point cloud data of the mouth scan reconstructed from cone beam
CT (CBCT), which mainly consists of an instance segmentation network and a fine-grained
segmentation network. The former is used to obtain the shape and relative position infor-
mation of the teeth, and the latter is used to achieve accurate semantic segmentation of a
single tooth. However, when the teeth overlap, the tooth segmentation results will have
errors. Wang et al. [25] borrowed the network structure design of U-Net [26] and used the
KPConv [27] convolutional kernel to construct a 3D tooth segmentation neural network. It
has good segmentation results for molar teeth, but the segmentation effect of other parts of
teeth is yet to be verified.

Lian et al. [8] proposed an end-to-end deep neural network that first learns multiscale
contextual features and overall features from a dental mesh model. it then integrates
these features using a dense fusion strategy to finalize tooth segmentation. However,
this algorithm computes two adjacency matrices at different scales, which leads to long
training time and high memory consumption. Zanjani et al. [28] borrowed the idea of
PointCNN [29] and proposed a neural network that directly utilizes the original dental
model without downsampling to achieve accurate tooth segmentation. However, this
network requires a large amount of data and consumes a significant amount of memory
resources at runtime. This imposes some limitations for implementation. Cui et al. [30]
proposed a two-stage neural network, which first detects all the teeth by the tooth center of
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mass and then segments each detected tooth. Zhang et al. [31] proposed a dual-flow graph
convolutional neural network, which separately processes the vertex and normal vector
features of the dental mesh model and then fuses the two obtained geometric features to
obtain the tooth segmentation results.

In summary, deep learning-based segmentation methods usually have higher segmen-
tation accuracy and require less human-computer interaction than traditional methods.
This is mainly due to the extraction and use of higher-level geometric features and the
fusion of features at different levels by neural networks. In addition, the user does not
need to provide a priori knowledge (e.g., manual seed point labeling) for the segmentation
process. However, since the vertex coordinates and normal vectors represent the geometric
features of each triangular mesh from different perspectives, if the processing of vertex
coordinates and normal vectors is not effectively distinguished, this can lead to a failure to
produce a complementary interplay of feature information between the two. Therefore, the
algorithm in this paper encodes the enhancement of these different geometric information
and performs sufficient feature learning to improve the accuracy of tooth segmentation.

3. Method

In this paper, we propose a tooth segmentation method based on multiple geometric
feature learning, which consists of the following two main parts.

(1) Creation and preprocessing of dental model datasets. As shown in Figure 1, it includes
downsampling of the dental model, labeling of the dental model, data augmentation,
and extraction of each triangular mesh centroids;

(2) Construction of a tooth segmentation network based on multiple geometric feature
learning.

Healthcare 2022, 10, x  4 of 17 
 

 

requires a large amount of data and consumes a significant amount of memory resources 

at runtime. This imposes some limitations for implementation. Cui et al. [30] proposed a 

two-stage neural network, which first detects all the teeth by the tooth center of mass and 

then segments each detected tooth. Zhang et al. [31] proposed a dual-flow graph convo-

lutional neural network, which separately processes the vertex and normal vector features 

of the dental mesh model and then fuses the two obtained geometric features to obtain 

the tooth segmentation results. 

In summary, deep learning-based segmentation methods usually have higher seg-

mentation accuracy and require less human-computer interaction than traditional meth-

ods. This is mainly due to the extraction and use of higher-level geometric features and 

the fusion of features at different levels by neural networks. In addition, the user does not 

need to provide a priori knowledge (e.g., manual seed point labeling) for the segmentation 

process. However, since the vertex coordinates and normal vectors represent the geomet-

ric features of each triangular mesh from different perspectives, if the processing of vertex 

coordinates and normal vectors is not effectively distinguished, this can lead to a failure 

to produce a complementary interplay of feature information between the two. Therefore, 

the algorithm in this paper encodes the enhancement of these different geometric infor-

mation and performs sufficient feature learning to improve the accuracy of tooth segmen-

tation. 

3. Method 

In this paper, we propose a tooth segmentation method based on multiple geometric 

feature learning, which consists of the following two main parts. 

(1) Creation and preprocessing of dental model datasets. As shown in Figure 1, it in-

cludes downsampling of the dental model, labeling of the dental model, data aug-

mentation, and extraction of each triangular mesh centroids; 

(2) Construction of a tooth segmentation network based on multiple geometric feature 

learning. 

 

Figure 1. Creation and preprocessing of dental model datasets. 

3.1. Creation and Preprocessing of Dental Model Datasets 

The data used in this paper are original 3D dental models of 32 cases acquired by an 

intraoral scanner and saved on a computer system in the file format STL (STereoLitho-

graph). Dental models with incomplete or severely malformed scan reconstruction results 

are removed. The original dental model contains approximately 350,000 triangular 

Figure 1. Creation and preprocessing of dental model datasets.

3.1. Creation and Preprocessing of Dental Model Datasets

The data used in this paper are original 3D dental models of 32 cases acquired by an
intraoral scanner and saved on a computer system in the file format STL (STereoLithograph).
Dental models with incomplete or severely malformed scan reconstruction results are
removed. The original dental model contains approximately 350,000 triangular meshes,
which is limited by training resources and generally requires a downsampling operation to
reduce the model size while trying to retain the key shape structures of the original dental
model. Therefore, referring to some previous works [10,21,25], the number of triangular
meshes is reduced to 10,000 in this paper. As shown in Figure 1, on the downsampled
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dental models, we follow the recommendations of professional dentists and label each
dental model into 15 different semantic parts, including the gingiva as well as each incisor,
canine, premolar, and molar. Normal teeth in the data set account for 70% of the data and
teeth with malformations account for 30% of the data (e.g., crowded teeth, scattered gaps,
etc.). In the testing section, we used 56 teeth from 4 different dental models to complete
the test. To further expand the training dataset, the following data augmentation methods
were applied to the annotated dental models in this paper:

• Random translation. Along any coordinate axis in three-dimensional space, the dental
model undergoes a small translation;

• Construction of a tooth segmentation network based on multiple geometric
feature learning;

• Random rescaling. The dental model is zoomed in or out randomly and appropriately;
• Randomly removal. Some triangular meshes are randomly removed from the dental

models during training.

In recent years, the point cloud segmentation methods represented by PointNet have
achieved good segmentation results on point cloud models. However, there are many
difficulties in applying these methods directly to the segmentation of the dental model. This
is because the point cloud model is a three-dimensional model composed of discrete point
sets, while the dental model used in this paper is a mesh model composed of many triangu-
lar meshes, which have different basic composition units and contain different geometric
information. Since each triangular mesh contains vertex information, one possibility is to
convert all the vertices of the mesh model into a point cloud model and then combine the
point cloud segmentation method to complete the tooth segmentation. However, since the
vertices will be shared by multiple triangular meshes, inferring the class of each triangular
mesh by the class to which the vertices belong will generate ambiguity and inevitably lead
to errors in tooth segmentation. As shown in Figure 2, two different colors represent two
different segmentation categories, and the vertices v1, v2 and v3 in Figure 2a are colored
with two colors at the same time. The category they belong to creates ambiguity, and it
is difficult to infer the category of each triangular mesh through these vertices. However,
Figure 2b shows that the centroids c1, c2, c3, c4 and c5 possess only one color since each
triangular mesh contains only one centroid, and the class to which the centroid belongs is
clear. Therefore, this paper uses the centroid of each triangular mesh as a guide for tooth
segmentation, as shown in Equation (1):

ci =

(
x1

i + x2
i + x3

i
3

,
y1

i + y2
i + y3

i
3

,
z1

i + z2
i + z3

i
3

)
(1)

where ci denotes the coordinates of the centroid of triangular mesh i.
(
x1

i , y1
i , z1

i
)
,
(

x2
i , y2

i , z2
i
)
,

and
(

x3
i , y3

i , z3
i
)

denote the three vertex coordinates of triangular mesh i. Unlike the vertices,
each centroid has a one-to-one mapping relationship with each triangular mesh, and there is
no case where a centroid is shared by multiple triangular meshes. Furthermore, the number
of centroids is equal to the number of triangular meshes, while the number of vertices in
the dental model is usually less than the number of triangular meshes, and a richer number
of centroids is beneficial to improve the performance of neural networks [10,32].
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3.2. Network Architecture Design

Figure 3 shows the overall network structure of our tooth segmentation algorithm. The
network consists of the spatial transformation (T-Net) module [2], the multiple geometric
feature learning module (MGFL), the multilayer perceptron (MLP), and the efficient channel
attention (ECA). The input of the network is an N × 15 feature matrix extracted from the
dental mesh model, where N is the number of triangular meshes of the dental model, and
15 is the feature dimension corresponding to each triangular mesh (containing the vertex
coordinates, centroid coordinates, and normal vectors of the mesh). After T-Net, the feature
alignment is completed. Then, the MGFLs with two different perceptual fields designed in
this paper are fed, and the two outputs are continuously superimposed. The global feature
information is then extracted from the final superimposed features by maximum pooling,
followed by upsampling to restore the original feature dimensions. Finally, the features
aligned by T-Net and the features before and after maximum pooling are fused, and the
features are fed into MLP and ECA to complete feature-by-feature downsampling and
channel optimization. The final output of the network is an N × C feature matrix, with
each row representing the probability that each triangular mesh belongs to one of C (gums
and 14 teeth) different classes.
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3.2.1. Multiple Geometric Feature Learning Module

Considering that the normal vector is also important geometric information, combin-
ing it with vertex coordinate information can better represent the geometric features of the
dental model. To further explore the contribution of geometric information with different
attributes to the feature representation of the dental model, a multiple geometric feature
learning (MGFL) module inspired by RandLA-Net is designed in this paper. As shown in
Figure 4, MGFL consists of submodules, including the shared multilayer perceptron (shared
MLP), geometric information encoding (GIE) module and geometric feature aggregation
(GFA) module. These submodules are stacked together using skip connections to form a
residual structure that can improve the network performance. The centroid coordinates,
normal vectors and original features of each triangular mesh are used as the input data of
MGFL to obtain semantically informative local mesh residual features.
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The role of the geometric information encoding module is to encode the centroid
coordinates and normal vectors of the meshes in the local region for enhancement and to
capture the local mesh encoded features through spatial geometry information. Assume
that the number of input triangle meshes is N and the number of neighbor meshes for each
triangle mesh is K (including itself). First, for each mesh, use the K nearest neighbor search
algorithm to compute K other meshes. For these K meshes, their centroid coordinates,
normal vectors and other information are efficiently able to construct the local centroid
coordinate feature set pk and local normal vector feature set nk of each mesh, as shown in
Equations (2) and (3), respectively.

pk = pi ⊕ pk
i ⊕

(
pi − pk

i

)
⊕ ‖pi − pk

i ‖ (2)

nk = nori ⊕ nork
i ⊕

(
nori − nork

i

)
⊕ cos

(
nori, nork

i

)
(3)

rk
i = MLP(pk ⊕ nk) (4)
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where pi is the centroid coordinate of triangular mesh i, pk
i is the centroid coordinate of

K other meshes of triangular mesh i, pi − pk
i is the relative coordinate between triangular

mesh i and other meshes, ‖ pi − pk
i ‖ is the Euclidean distance between triangular mesh

i and other meshes, nori is the normal vector of triangular mesh i, nork
i is the normal

vector of K other meshes of triangular mesh i, nori − nork
i is the normal vector difference

between triangular mesh i and the other meshes, and cos
(

nori, nork
i

)
is the normal vector

cosine similarity between triangular mesh i and the other meshes. Finally, as shown in
Equation (4), the new triangular mesh geometric feature rk

i is obtained by cascading pk
and nk, and then rk

i is cascaded with the original features of each triangular mesh to obtain
the local mesh encoded features and sent to the geometric feature aggregation module
for processing.

In the feature extraction stage, it has become common practice for existing deep
learning models to directly extract local features using average pooling or maximum
pooling operations. However, such processing can easily lose useful feature information
and affect the final performance. Therefore, to focus on the important features from
the input features and avoid wastage of computational resources, the geometric feature
aggregation module uses an attention mechanism to aggregate the local mesh encoded

features. Specifically, for the augmented semantic feature set F̂i = {f̂
1
i · · · f̂

k
i · · · f̂

K
i } obtained

from the geometric information encoding module, a function is designed to learn a unique
attention score for each triangular mesh, which consists of a multilayer perceptron, as
shown in Equation (5):

sk
i = g

(
f̂

k
i , W

)
(5)

where W is the learnable weight parameter of the multilayer perceptron, and sk
i is the

learned attention score, which can automatically select more abstract geometric features
and reduce or filter out the influence of other features. Finally, the attention weighted
features are obtained by the dot product of the local mesh encoded features and the
corresponding attention scores, as shown in Equation (6). Then the local mesh aggregation
features are obtained by a multilayer perceptron.

~
fi =

K

∑
k=1

(
f̂

k
i · sk

i

)
(6)

3.2.2. Global Feature Channel Optimization

The local geometric features of the dentition are obtained from the MGFL of different
neighborhood perceptual fields in two different neighborhoods. Then the global geometric
features of the dentition can be obtained by the global maximum pooling operation. The
semantic information of each triangular mesh of the dentition can be comprehensively
described by fusing the local and global geometric features together. However, the dimen-
sionality of the fused features is very large. Hence in the final output stage of the neural
networks, to quickly condense the decisive mesh semantic information and prevent the
neural networks from being too complex, this paper achieves the goal of feature downscal-
ing and channel optimization by stacking a small number of MLPs and efficient channel
attention (ECA) [11].

As shown in Figure 5, ECA-Net is a lightweight channel attention module that ac-
complishes cross-channel information exchange without reducing the dimensions through
adaptive one-dimensional convolution. Specifically, each channel of the input feature is
first pooled globally to generate the feature descriptor of each channel. Second, the cross-
channel interaction range k is dynamically adjusted by the channel dimension C of the
input feature, which represents that each channel has k nearest neighbor channels. Then,
the local cross-channel interaction is completed by using one-dimensional convolution with
convolution kernel size k, and the weight of each channel is obtained by using a sigmoid
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activation function. Finally, the weight of each corresponding channel of the original feature
is weighted to complete the reoptimization of the original feature.
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Figure 5. ECA diagram. N represents the number of input triangular meshes for the dental model,
and C represents the feature dimension of each triangular mesh.

Compared with the fully connected layer, the one-dimensional convolution with
kernel size k has fewer parameters and it only considers the interaction between its k
nearest neighbor channels when interacting. This has higher computational efficiency and
does not affect the overall complexity of the model. Generally, when the channel dimension
C of the input features is large, appropriately increasing the k value will have better results.
Thus, it is assumed that there is a positive relationship between the channel dimension C
and k, which is expressed by a nonlinear function, as shown in Equation (7).

C = 2(γ∗k−b) (7)

Using the deformable Formula (8)

k = |t|odd =

∣∣∣∣ log2(C)
γ

+
b
γ

∣∣∣∣
odd

(8)

where |t|odd denotes the odd number closest to t. γ and b are fixed parameters, set to 2 and
1, respectively.

3.2.3. More Network Details

The alignment of point cloud features using T-Net first appeared in PointNet [2]. As
shown in Figure 6, T-Net consists of three convolutional layers, one maximum pooling
layer and three fully connected layers. Each layer, except the maximum pooling layer
and the last fully connected layer, is followed by batch normalization (BN) and a ReLU
activation function. The module takes the original mesh features of the dental model as
input. Then, firstly, the mesh features are gradually mapped to 64, 128 and 512 dimensions
by three convolutional layers. Then, the global mesh features of size 1 × 512 are obtained
by the maximum pooling layer. After this, the global mesh features are mapped to 256, 128
and 255 dimensions by three fully connected layers. Finally, the transformation matrix of
size 15 × 15 is obtained by tensor shaping. This matrix is multiplied by the original mesh
features, thus achieving a certain degree of mesh feature alignment and allowing the neural
network to better learn the features of the dental mesh model.
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As shown in Figure 3, for MGFL and MGFL-L, two variants of MGFL with different
perceptual fields, the K values of K-nearest neighbor search are set to 3 and 20, the feature
dimension of MGFL-S1 and MGFL-L1 output is 128, and the feature dimension of MGFL-S2
and MGFL-L2 output is 512. To compensate for the differences in geometric features of the
two different perceptual fields and to compensate for the differences and deficiencies in the
geometric features of the two different perceptual fields, the outputs of each pair of MGFLs
are summed to complement each other. In the global feature channel optimization stage,
the feature output dimension of MLP-1 and ECA-1 is 256, the feature output dimension
of MLP-2 and ECA-2 is 128, and the feature output dimension of MLP-3 is C. The above
MLP layers except MLP-3 are connected with batch normalization and ReLU activation
functions. Finally, the network is obtained after softmax function processing and tensor
deformation, and the results are output.

4. Experiments

The hardware environment for the experiments in this paper is an AMD Ryzen
5 3600 @ 4.2 GHz, NVIDIA GeForce RTX 3060Ti, 32 GB RAM. The software environ-
ment is Windows 10 64-bit version, Python 3.8, PyTorch 1.9.0+cu111, and CUDA 11.3.
The Generalized Dice Loss (GDL) function [33] is used as the objective function for tooth
classification, and the number of training rounds is 200. In addition, the Adam optimizer is
used to train the neural networks, with the batch size set to 4. The initial learning rate is
set to 0.001 which dynamically decays by the adaptive adjustment learning rate method
(Reduce LR On Plateau) with a retention rate of 0.5 for the dropout parameter of the fully
connected layer, using the change in the validation set loss as a reference.
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4.1. Evaluation Metrics

To verify the validity of the experimental results in this paper, the overall accuracy
(OA) and mean intersection over union (mIoU) are used to evaluate the accuracy of tooth
segmentation. Overall accuracy represents the ratio of the number of correctly predicted
meshes to the number of all meshes, and the mean intersection over union ratio represents
the ratio of intersection and union between predicted values and labeled data (ground
truth, GT), as shown in Equation (9).

mIoU =
1

k + 1

k

∑
i=0

pii

∑k
j=0 pij + ∑k

j=0 pji − pii
(9)

where there are k + 1 segmentation categories; pij denotes the probability that prediction
triangular mesh i belongs to category j; pii denotes the number of correct samples; and pji
denotes the number of incorrect samples.

4.2. Results

Our algorithm is compared with representative 3D shape segmentation methods
(PointNet, RandLA-Net) and 3D tooth segmentation methods (MeshSegNet). The compari-
son of tooth segmentation accuracy results is shown in Table 1. Compared with PointNet
and RandLA-Net, the proposed algorithm improves the OA by 3.5% and 6.4% and the
mIoU by 7.0% and 15.6%, respectively. Compared with MeshSegNet in the field of tooth
segmentation, the algorithm in this paper improves OA and mIoU by 1.1% and 3.4%,
respectively. This shows that our algorithm achieves excellent tooth segmentation accuracy
results, and the dentist can obtain fairly accurate tooth segmentation results, which have
important applications for the subsequent treatment planning of patients.

Table 1. Comparison of tooth segmentation accuracy of different algorithms.

Method OA mIoU

PointNet 95.9 89.3
RandLA-Net 92.2 81.4
MeshSegNet 97.3 92.9

Ours 98.4 96.3

We also consider the issue of tooth segmentation efficiency. As shown in Table 2, under
the same environment, it can be seen that the training time per round of MeshSegNet is
approximately 929.97 s and the segmentation time per dental model to be processed is
approximately 3.20 s. In contrast, the training time per round of Pointnet, RandLA-Net
and our algorithm is within 90 s, and the segmentation time per dental model is within
0.5 s or less. The computational efficiency of the proposed algorithms is about 11 times and
7 times higher than that of MeshSegNet, which involves the creation and computation of two
adjacency matrices, and the size of these matrices is relatively large. This results in the high
computational complexity of the algorithm. In contrast, our algorithm utilizes the efficient
MGFL instead of the complex adjacency matrix to achieve higher computational efficiency.

Table 2. Comparison of tooth segmentation efficiency of different algorithms.

Method Training (s/Epoch) Prediction (s/Dental)

PointNet 20.83 0.24
RandLA-Net 56.15 0.34
MeshSegNet 929.97 3.20

Ours 86.55 0.48

Three dental models were randomly selected from the test set, and the tooth segmen-
tation results of PointNet, RandLA-Net, MeshSegNe, and our algorithm are visualized.
The first three rows of Figure 7 represent the frontal views of the 1st, 2nd, and 3rd models,
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and the last row represents the lateral view of the 3rd model. From the first three rows of
Figure 7, it can be seen that PointNet shows undersegmentation at the base of the crown
of the incisors, oversegmentation in the gingiva around incisors, and more segmentation
errors in adjacent incisors; RandLA-Net as a whole has a larger range of segmentation
errors, with most incisors and cusps bearing category labels of other teeth and significant
segmentation errors in the gingival part. This is mainly because PointNet and RandLA-Net
focus more on point coordinate geometric information, which makes it difficult to use
them directly in dental models with complex geometric information. MeshSegNet also has
some degree of undersegmentation and adjacent tooth segmentation errors. The last row of
Figure 7 further shows that MeshSegNet displays more obvious segmentation errors be-
tween adjacent molars and undersegmentation at the base of the crowns of the molars. This
indicates that the feature extraction of MeshSegNet for teeth is relatively coarse because
the complex geometric information of the dental model is simply used as a single feature
vector. The tooth segmentation results of our algorithm are significantly better than those
of PointNet and RandLA-Net and are more accurate than those of MeshSegNet in terms
of details such as adjacent teeth and crown base. This shows that the proposed algorithm
has a significant effect on the coding enhancement of different geometric features, thus
improving the accuracy of tooth segmentation.
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4.3. Ablation Study
4.3.1. Effectiveness of Geometric Information Encoding Module

To evaluate the effectiveness of the geometric information encoding module, we
implemented two deformation structures of the original network by changing the input
form of the geometric information encoding module, including (1) the centroid coordinates
of each triangular mesh (i.e., pk) and (2) the normal vectors of each triangular mesh (i.e.,
nk). These two deformation structures are compared with the original network design of
our model, and the segmentation accuracy comparison results are shown in Table 3. We see
that the network achieves higher segmentation accuracy when the input of the geometric
information encoding module contains both pk and nk. Specifically, for OA and mIoU, our
algorithm improves by 2.4% and 5.7% over the former and 1.0% and 2.2% over the latter,
respectively, compared to the deformation structure containing only pk or nk. This indicates
that encoding only the geometric information of a single attribute cannot fully extract the
dental model features, and it is difficult to obtain better tooth segmentation results. It also
shows that encoding the spatial coordinate information together with the normal vector
helps to describe the mesh features of the dental model from a complementary perspective.
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Table 3. The segmentation result for our original network and two variants implemented by changing
Geometric Information Encoding Module inputs.

Structure OA mIoU

only pk 96.0 90.6
only nk 97.4 94.1

both include 98.4 96.3

4.3.2. Effectiveness of the Double Branch MGFL

To verify the effectiveness of the double branch MGFL, a series of experiments were
designed. Specifically, the MGFL modules were split with two different sensory fields
originally used in combination, including (1) MGFL with a large sensory field removed
(i.e., MGFL-S) and (2) MGFL with a small sensory field removed (i.e., MGFL-L). These two
deformation structures are compared with the original network design and the segmenta-
tion accuracy comparison results are shown in Table 4. It can be seen that the proposed
algorithm’s accuracy is 2.2% and 5.6% higher than that of MGFL-S in OA and mIoU, re-
spectively, and 0.8% and 1.2% higher than that of MGFL-L, respectively. This means that
MGFLs with different receptive fields have different fine-grained granularities for local
region feature extraction, and the combination can provide more comprehensive local
geometric information for tooth segmentation.

Table 4. The segmentation results by using single or double branch MGFL.

Structure OA mIoU

MGFL-S 96.2 90.7
MGFL-L 97.6 95.1

both include 98.4 96.3

4.3.3. Effectiveness of Global Feature Channel Optimization

The fusion of local to global features has been shown to be effective for downstream
tasks [2], and the fused features need to undergo feature dimensionality reduction to
obtain the desired neural network output. The optimization of feature channels during the
dimensionality reduction process can effectively utilize both local and global features of
the dental model. To verify the effectiveness of ECA for feature channel optimization, a
deformation structure of the original network is designed. Specifically, ECA is not used
as a postprocessing step in the feature reduction part behind the original network. This
deformation structure is compared with the original network design, and the segmentation
accuracy comparison results are shown in Table 5. As shown, our algorithm is 0.5% and
1.6% more accurate than the deformation structure in OA and mIoU, respectively. Thus, it
can be concluded that adding ECA as postprocessing in the feature downscaling part can
achieve the purpose of channel optimization and obtain better tooth segmentation results.

Table 5. The comparison of segmentation results with or without ECA in the global feature channel
optimization stage.

Structure OA mIoU

without ECA 97.9 94.7
with ECA 98.4 96.3

4.3.4. Effect of Different Input Triangular Mesh Numbers on Tooth Segmentation Results

In order to investigate the effects of different input triangular mesh numbers on the
tooth segmentation results, the input triangular mesh numbers of the dental model were
adjusted in this paper. Specifically, the number of input triangular meshes was assumed to
be N. A total of five different sizes of N = 6000, N = 7000, N = 8000, N = 9000, and N = 10,000
were set as the input for network training. As shown in Table 6, the test results show that
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compared with N = 6000 and N = 7000, when the number of input triangular meshes
is 8000–10,000, an improvement of about 2.0% and 2.6% is achieved in OA and mIoU,
respectively. Moreover, as N gradually increases from 8000 to 10,000, the improvement
in OA and mIoU gradually becomes smaller. This indicates that the accuracy of tooth
segmentation is improved as N increases, while when N is small, the geometric features of
the tooth learned by the network are more vestigial, and it is difficult to obtain good tooth
segmentation results.

Table 6. The segmentation results of different input number of triangular meshes.

Input Number of
Triangular Meshes OA mIoU

6000 87.7 80.5
7000 95.1 91.1
8000 97.1 93.7
9000 98.4 96.3

10,000 98.1 95.4

5. Conclusions

In this paper, we propose a tooth segmentation method based on multiple geometric
feature learning for segmenting 3D dental mesh models. In this paper, a multiple geometric
feature learning module is designed to enable the neural network to extract geometric
features that are more discriminative across different meshes. When processing local-
to-global fusion features, MLP and ECA are used to complete feature downscaling and
channel optimization layer by layer to further improve the tooth segmentation results.
The experimental results show that the algorithm in this paper achieves better results in
terms of tooth segmentation accuracy and efficiency, and the overall process is automatic
and efficient without complex and lengthy user interaction. However, since most of the
dental models in the dataset are normal teeth data, in the future, we plan to introduce
extreme dental models such as missing teeth as the training set to further improve the
model’s generalization ability. In addition, considering that the annotation of 3D dental
models is a time-consuming task, the weakly supervised point cloud segmentation method
is a promising research direction, and in the future we may be able to obtain good tooth
segmentation results using incompletely annotated dental models. Finally, collaboration
with other areas of work may be beneficial to the depth of this study [34,35], and such
collaboration has an important role to play in the development of each area.
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