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Abstract: Blood pressure (BP) determines whether a person has hypertension and offers implications
as to whether he or she could be affected by cardiovascular disease. Cuff-based sphygmomanometers
have traditionally provided both accuracy and reliability, but they require bulky equipment and
relevant skills to obtain precise measurements. BP measurement from photoplethysmography (PPG)
signals has become a promising alternative for convenient and unobtrusive BP monitoring. Moreover,
the recent developments in remote photoplethysmography (rPPG) algorithms have enabled new
innovations for contactless BP measurement. This paper illustrates the evolution of BP measurement
techniques from the biophysical theory, through the development of contact-based BP measurement
from PPG signals, and to the modern innovations of contactless BP measurement from rPPG signals.
We consolidate knowledge from a diverse background of academic research to highlight the impor-
tance of multi-feature analysis for improving measurement accuracy. We conclude with the ongoing
challenges, opportunities, and possible future directions in this emerging field of research.

Keywords: blood pressure; hemodynamics; machine learning; deep learning; neural network;
photoplethysmography; remote photoplethysmography

1. Introduction

Blood pressure (BP) is the measure of the force or pressure of blood pumped by the
heart within the major arteries of the circulatory system, and it is influenced by multiple
bodily factors such as cardiac output, vascular peripheral resistance, and arterial elastic-
ity [1]. BP measurement usually accounts for two distinct values: systolic blood pressure
(SBP) and diastolic blood pressure (DBP).

Elevated or high BP (hypertension) is known as “the silent killer” because it may show
no symptoms until heart disease, failure, or damage occurs. Globally, high BP has accounted
for approximately 12.8% of all global deaths per year and 3.7% of all disability-adjusted life
years [2]. It is considered a major risk factor for cardiovascular disease (CVD), coronary
heart disease (CHD), ischemic heart disease, atherosclerosis, myocardial infarction (MI),
and hemorrhagic stroke. In Table 1, BP is categorized into several distinct stages identified
by SBP and DBP levels, ranging from hypotension (low BP) to hypertensive crisis (high BP
necessitating ICU treatment).
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Table 1. Different stages of cardiovascular (CV) health. For details on treatment, see [1,3–8].

CV Stages SBP (mmHg) DBP (mmHg) Additional Biological Information

Hypotension <90 <60

Low BP leading to oxygen deprivation in organs, resulting in
tissue necrosis. May induce shock and cardiac arrest [9].

Symptoms: dizziness, tiredness, back pain, heart palpitations,
etc. Usually a common side effect of drug therapies (e.g., beta

blockers and diuretics) [10].

Normotension
(NT) 90–120 60–80

BP may fluctuate based on poor lifestyle habits. Examples: lack
of exercise, fatty diet, anxiety, insomnia, alcoholism, aging,

etc. [11].

Prehypertension
(PHT) 121–139 81–89

BP is higher than normal but not within range of stage 1
hypertension, also known as high-normal BP. Known as the
upper range of healthy BP that determines the future risk of
clinically overt hypertension [3], it is further divided into its
own 1st and 2nd stages to further define hypertensive risk

parameters [12].

Hypertension I
(HT-I) 140–159 90–99

BP is high enough to be a risk factor. Occurs when the heart is
overly stressed. Treatment may not be required, but drug

therapy will significantly reduce BP. SBP/DBP range refers to
daytime BP as sleep naturally lowers SBP and DBP [13].

Hypertension II
(HT-II) 160–179 100–109

BP is very high, and CVD is very likely. Lack of treatment may
likely result in end organ failure and permanent

damage. Commonly found in elderly people. SBP control
primarily determines risk of CVD and death [4].

Hypertensive Crisis
or Urgency >180 >110

BP is fatally high, and premature death is likely [5]. Symptoms
include chest pain, numbness, weakness in limbs, blurred

vision, breathing difficulty, and other symptoms associated with
stroke or myocardial infarction [14]. Immediate treatment in

ICU is recommended for rapid reduction in BP. Acute cardiac,
renal, and neural damage may occur if treatment is too late [6].

The importance of measuring BP as a gauge of cardiovascular health has long been
recognized since the onset of allopathic medicine. The sphygmomanometer, invented in
1881, was the first blood pressure monitor that historically saw widespread usage [15].
Sphygmomanometers were reliable for the time but proved difficult for clinical practitioners
to form a basic reading from the measurement. Generally, only systolic pressure could be
measured from a mercury gauge, leaving the diastolic pressure to be inexactly estimated,
and several redundant measurements needed to be taken for an accurate assessment [16].
Furthermore, the device was cumbersome and often caused mercury to spill on patients,
leading to mercury poisoning and death in some cases [17].

Over the course of the 20th century, scientists would continue to develop and refine
the sphygmomanometer, including how to read diastolic pressure and strengthen the
frame of the device. However, in 1981, the first automated oscillometric manometer was
developed, representing a major technological shift from manual hand pumps to digital
algorithms [18,19]. This solved the accuracy problem that had plagued the older monitors of
the mid-20th century and made them able to precisely measure the mean arterial pressure
(MAP). However, over time, problems with automated oscillometric manometers emerged,
including major discomfort toward children, the elderly, and the medically challenged [20].
The fitting of the cuff itself led to interference from either bodily vibrations or the individ-
ual’s motions to address the irritation posed by the cuff, and the device would lose accuracy
over time [21]. In addition, it was able to measure the MAP but not the systolic or diastolic
pressure, which needed to be calculated via subsequent mathematics. By the 1990s, count-
less jobs using the Internet allowed people to work from home, meaning patients would
have to either transit to the nearest hospital or clinic for regular BP check-ups or operate an
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oscillometer at home, which many people at the time simply could not afford [22,23]. A
convenient solution to these shortcomings was in high demand.

Photoplethysmography (PPG) has existed for almost 80 years. However, it was not
until the 1980s that researchers truly began to understand its functions and potential for
various medical applications (see [24–28] for reviews). PPG utilizes infrared (IR) light to
measure the changes in volume of the vasculature. These volumetric changes can yield
important information about cardiovascular status and health and can reliably estimate BP
changes. PPG devices consist of a light source and sensor, where reflected light is measured
as a response to changes in blood volume [29]. Most often, these are IR or light-emitting
diode (LED) light sources, depending on the region of application.

Over the past four decades, PPG has been used to investigate hemodynamics, circu-
lation patterns, and even changes in dental pulp [30]. Indeed, its application has often
centered around the clinical investigation of atherosclerosis [31]. However, it was not
until 1979 that the link between PPG and BP estimates was made in a study on venous
insufficiency [32]. Thereafter, interest in PPG as an accurate and reliable measure of BP
increased dramatically, especially toward the late 1980s, with many researchers using
contact-based technology to increase the useful application of this method. However, as
shown in Figure 1, interest in the field stagnated from the early 1990s to the 2000s, with far
fewer related publications, possibly due to the technical limitations of the time.
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Timeline of PPG-related publications every year from 1990 to 2022.

Figure 1. A timeline of PPG-related publications every year from 1990 to 2022. For 2022, the number
of publications was recorded up to 26 July 2022.

A further challenge has been estimating BP using the pulse wave velocity (PWV),
which is the speed needed for a pressure wave to travel a particular distance. To uncover
the PWV, previous research attempted to measure the pulse arrival time (PAT), (The authors
of [33] gave various definitions for PAT in their study. For instance, (1) PATDerivative is
defined as the time difference between the R-peak of the ECG and the inflection point
of the PPG, which is between the trough and the crest, and (2) PATPeak is defined as the
time difference between the R-peak of the ECG and the crest of the PPG. PATFoot in [33] is
equal to the PAT defined in this paper.) which is the time difference between the crest of
the electrocardiography (ECG) waveform (called the R-peak) and the trough of the PPG
waveform after time synchronization between the ECG and PPG waveforms [34]. The
authors of [34] considered the mathematical relation between the PAT and BP. The authors
of [35] proposed an algorithm based on the PAT for the continuous and cuffless estimation
of the SBP, DBP, and mean arterial pressure (MAP) values.

However, the authors of [36] suggested that the pulse ejection period (PEP), defined
as the electro-mechanical delay of the heart and the iso-volumic contraction time of the left
ventricle. (Another equivalent understanding of the PEP is the time difference between
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the R-peak of the ECG and the opening of the aortic valve [33].) The authors of [37–39]
suggested this should be subtracted from the PAT so as to give a more accurate estimation
for the PWV. The authors of [40] also indicated that even though the PAT is easier to collect
using wearable devices, using the PAT alone can result in errors due to the change in the
PEP. The authors of [41] illustrated that it is more accurate to use PPG features to classify
BP as normotension, prehypertension, or hypertension rather than using PAT features. This
time difference, which can also be interpreted as the time taken for the pulse to travel along
that artery, is called the pulse transit time (PTT), as shown in Figure 2, and it is given by

PTT = PAT − PEP. (1)

Hence, finding an accurate PEP temporarily became popular in the research field.

Figure 2. This figure shows waveforms from various measurements and the relation between PAT
and PTT as in Equation (1). ECG = electrocardiography, SCG = seismocardiography, and PPG = pho-
toplethysmography. The letters in the ECG waveforms represent the parts of the waveforms.

To solve the problem aroused by the PEP, the key is to find the timing of the aortic
valve opening. There are investigations on the biological signals from various parts of a
human body, as shown in Figure 3. The authors of [36] adopted impedance cardiography
(ICG), which is a measurement using the first derivative of the thorax impedance change,
to find the time difference between the point Q of ECG and the zero-crossing point of ICG
as the PEP. Some studies also tried to directly find the PTT instead of the PEP. The authors
of [42–44] measured the PTT instead of the PAT for BP estimation. The authors of [45] used
ballistocardiography (BCG), which is a measurement of the reaction forces of the human
body to cardiac ejection of blood into the aorta (instead of ECG) to bypass the calculation
of the PEP and find the more accurate time difference for the PWV. The authors of [46]
demonstrated that PPG waveforms for the foot and BCG can give better performance when
tracking BP than the PAT. the authors of [47] tried to use seismocardiography (SCG), a
noninvasive method developed in 1957 that records measurements of the thoracic vibrations
of the heart [48] through an accelerometer on the chest to bypass the effect of the PEP, but
there can be noises from variability in the morphology and artifacts from movement.
Another method is called gyrocardiography (GCG), which uses the maximum point of the
GCG waveforms in each cardiac cycle to identify the timing of the aortic valve’s opening.
The authors of [49] adopted the GCG waveform from a gyroscope in a smartphone, SCG
waveform from an accelerometer to extract the moments of aortic valve opening, and
found the time difference between the PAT and PTT with the aid of a PPG waveform from
an optical sensor with an audio function. The authors of [50] found the time difference
between the point with a minimum gradient in the waveform and obtained an impedance
phethysmography (IPG), which is a measurement of the amount of blood in blood vessels
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using an electric current passing through body tissues, and the point with the maximum
gradient in a PPG waveform to calculate the PTT. The authors of [51] also adopted this
method to find the PTT.

Figure 3. Biological signals from various parts of the body. This figure was modified and enhanced
from [52]. The abbreviations represent BP measurement signals at various parts on the human body.
BCG = ballistocardiography, PPG = photoplethysmography, IPG = impedance photoplethysmography,
SBS = strain-based sensor, GCG = gyrocardiography, ECG = electrocardiography, SCG = seismocar-
diography, ICG = impedance cardiography, ABP = arterial blood pressure (by invasive measurement
on the arms), and rPPG = remote photoplethysmography (by cameras).

Although there are many viable measurement methods for BP, most of them require
invasive devices or equipment that is inconvenient to carry. This motivates researchers
to investigate whether it is possible to freely measure BP whenever a person wants. One
feasible solution has been the use of remote photoplethysmography (rPPG). rPPG captures
the subtle pixel changes of the light reflected from human skin by a digital camera such as
a standard RGB camera and a webcam as shown in Figure 4. Since 2005, rPPG has being
applied for various vital sign applications ranging from heart rate [53] to BP due to the
outbreaks of SARS [54] and MERS [55]. Additionally, as highlighted in Figure 5, interest in
remote BP measurement has steadily increased since 1996, which may have affected the
rising curiosity in PPG. The necessity to continuously monitor an individual’s biological
status, including BP, while remaining user-friendly was acknowledged more than ever as
mass quarantines took effect globally [56,57].
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Figure 4. A working principle of rPPG. This figure was modified from [53]. The specular component
gives the information on the skin’s surface, which does not have any physiological signals. The
diffused counterpart gives the subtle change in blood flow, which provides physiological information
after meticulous signal processing.
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Figure 5. A timeline of rPPG-related publications every year from 1990 to 2022. For 2022, the number
of publications was recorded up to 26 July 2022.

More recently, researchers developed an iPhone application specifically for blood
pressure monitoring to be used in tandem with the oscillometric finger press method to
avoid the discomfort and potential life endangerment that come with automated cuffs [58].
Smartphones continue to establish themselves as the future of blood pressure monitoring
technology, with online apps being a very convenient and portable sources of information
not only for measuring the patient’s health but also to allow patients to communicate
with clinical staff in order to adjust and personalize their healthcare. The authors of [59]
reported that a research team developed and tested the prototype eyewear “Glabella”,
containing optical sensors and able to operate on 24 h of battery life. The device reads
the wearer’s pulse transit time (PTT) even during exercise or other common physical
activities. Electronics company Samsung has developed their own smartphone applica-
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tion “S Health”, which is able to assess and monitor SpO2 levels using a built-in camera [60].

Because of the fact that there is a multitude of productive research progresses in
BP measurement, it is useful if there are some reviews summarizing the key techniques
and giving prospective future directions to motivate development. In particular, now
that contactless BP measurement has emerged, it offers two options: an opportunity
to (1) summarize what types of contactless BP measurement have been achieved and
(2) examine possible implications for the industry to overcome future challenges. Thus, in
this paper, we review the entire development of BP measurement and offer some insights
for future research directions. We set up a flowchart in Figure 6 summarizing the research
situation in BP measurement. This paper is organized as shown in Figure 7. Section 2
will outline the basic theory of the cardiovascular system, especially for how we can find
BP. Section 3 will present the evaluation methods from PPG, including the non-machine
learning (non-ML), traditional machine learning (TML), and deep learning (DL) methods,
while Section 4 will present the counterparts from rPPG signals. Section 5 will discuss
the strengths and weaknesses of the previous research, while Section 6 will discuss the
perspectives of the research development of BP measurement. Finally, we draw our
conclusions in Section 7.

Video

rPPG

ROI Preprocessing

PPG
shape PTT ECG

Blood
Pressure

noise cleaning
(unknown)

DL

non-ML

TML

DL

non-ML

TML

Figure 6. A flowchart showing the research situation in BP measurement. There are 5, 11 and 30 pieces
of work using non-ML, ML and DL methods respectively to predict BP from PPG signals, while there
are 4, 8 and 7 pieces of work using non-ML, ML and DL methods respectively to predict BP from
rPPG signals. ROI preprocessing means preprocessing of data received from some regions of interest
on a human face recorded on video. The red dotted line means that there are no research papers
talking about the techniques from a video for BP measurement.

Biophysical
theory

(Section 2)

Contact-based
BP measurement

(Section 3)

Contactless
BP measurement

(Section 4)

Discussions
(Section 5)

Future directions
(Section 6)

Conclusions
(Section 7)

Figure 7. A flowchart showing the organization of this review paper.
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2. Biophysical Theory

Investigation of BP has a very long history [61,62]. The first study on the wave nature
of blood originated in [63], which derived the first formula for the pulse wave velocity
(PWV). This concept was widely used afterward, as scientists tried to develop the rela-
tionship between the PWV and the properties of blood and the physiological structure.
Moens [64,65] and Korteweg [66] derived a formula to express the PWV in terms of blood
density ρ, arterial wall thickness h, the internal diameter D, and the Young’s modulus of
the arterial wall E as

PWV =

√
Eh
ρD

, (2)

which is called the Moens–Korteweg formula. (For the other mathematical derivation,
see [67–69].) By assuming negligible elongation of the arteries [70], the PWV can be ex-
pressed by the distance of the artery from the heart to the periphery l divided by the pulse
transit time (PTT), or the time taken for the pulse to travel along that artery (see [71] for a
review on the PTT).

The authors of [72,73] derived a formula for the PWV in terms of the cross-sectional
area of the artery A, the distending BP P, and the blood density ρ as follows:

PWV =
l

PTT
=

√
A
ρ

dP
dA

. (3)

where dA
dP in Equation (3) is the compliance of the arterial wall per unit length, (There is

another term called the Windkessel compliance (CW = leff
dA
dP ), where leff is the effective

length of the artery of the whole arterial system. This represents the sum of the compliance
of the whole arterial system [74]. The value of leff depends on the height and weight of
a patient [74], and the authors of [75] showed that leff = 0.8 m.) which is attributable to
the material properties of the arterial wall. The relationship between A and P was initially
examined in [74,76]. The formula is

A = Amax

[
1
π

tan−1
(

P− PI
PI I

)
+

1
2

]
, (4)

which leads to the first derivative of A with respect to P, expressed as

dA
dP

=
Amax

πPI I

[
1 +

(
P− PI

PI I

)2
]−1

, (5)

where Amax is the maximum cross-sectional area at high BP, PI is the position of the
inflection point of BP, and PI I is the width between points at the one-half and three-
quarters amplitudes of BP, respectively. This is termed Wesseling’s model. By substituting
Equation (5) into Equation (3) and taking into account the condition that the difference
between P and PI is much larger than PI I (i.e., (P− PI) >> PI I) [71,77,78], we can obtain a
simple relation between BP and PTT as follows:

BP =
l

PTT

√
2ρPI I
π + 2

+ PI . (6)

This PTT–BP relationship does not consider a complicated physiology. For instance,
smooth muscle contraction leads to a decrease in arterial compliance (per unit length) and
thus the PTT (i.e., PI I decreases, and thus the coefficient of 1/PTT decreases.). Collagen
fibers gradually replace elastin fibers as one is aging, which causes a fall in the PTT (i.e.,
PR decreases as one’s age increases) [71,79]. However, the change in the PTT due to the
aforementioned physiological reasons are negligible over a short time of measurement,
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which means that aging is only a factor when we consider the change in BP throughout the
whole human life.

Apart from investigating the relation of BP ∝ 1/PTT, most scientists propose models
based on the Moens–Kortweg and Bramwell–Hill equations with an assumption-included
function to relate BP and the PTT. For example, a popular model is

BP = k1 ln (PTT) + k2, (7)

where k1 and k2 are some subject-specific constants. Another physical model, which can
predict asymptotic behavior , is given by [80]

BP =
k′1(

PTT − k′2
)2 + k′3, (8)

where k′1, k′2, and k′3 are some subject-specific constants. The experiments in [81,82] high-
lighted that BP is proportional to the inverse of the PTT instead of linearly related to the
PTT over a wide range of BP. Even though some investigations adopted quadratic and non-
linear functions for the PTT [82–84] due to their great accuracy and reasonable asymptotic
behavior, they require the evaluation of more than two unknown parameters, leading to
more computation between BP and the PTT [71]. Hence, it is more convenient to use a
linear model (Equation (5)) to find the BP.

Conventionally, the PTT is measured using the time delay between the proximal
and distal arterial waveforms, (The authors of [59,85] reviewed different types of BP-
measuring techniques and devices and those commercially available, with some related
important historical developments. The authors of [86] described the principles of cuffless
BP monitors and the current situation regarding BP monitor standards.) which can be
found by calculating the time delay between the trough-to-trough (or foot-to-foot) parts of
the PPG waveform from the two positions. This raised the popularity of investigating PPG
to measure BP.

3. Contact-Based BP Measurement from PPG Signals

A traditional approach to finding BP is to analyze the shape of the PPG waveforms
by extracting the features of the shapes (The authors of [87] conducted a comprehensive
study of PPG-based authentication and discussed these applications’ limitations before
pointing out future research directions. In addition, the authors of [71,88] reviewed the
recent efforts in developing these next-generation blood pressure-monitoring devices and
compared various mathematical models.) [24–28]. Previous studies were categorized into
non-machine learning (non-ML), traditional machine learning (TML), and deep learning
(DL) methods, as listed in Table 2. The corresponding results are listed in Table 2. The
mean absolute error (MAE), root mean square error (RMSE), and mean error (ME) between
the reference BP (BPr, also called the ground truth value or actual value) and predicted BP
(BPp, also called the estimated value) were adopted to evaluate the experimental results.
Unless specified, mathematically speaking, if there are N sets of references and predicted
BP values, then they are defined as [89]

MAE :=
1
N

N

∑
k=1

∣∣BPr(k)− BPp(k)
∣∣, (9)

RMSE :=

√√√√ 1
N

N

∑
k=1

[
BPr(k)− BPp(k)

]2, (10)

ME :=
1
N

N

∑
k=1

[
BPr(k)− BPp(k)

]
. (11)
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However, some scholars think that the error should be evaluated by subtracting the actual
value from the estimated value. Based on this logic, each error should be found by BPp(k)−
BPr(k) for each integer k, which implies that the mean error should be defined as follows:

ME (Another definition) :=
1
N

N

∑
k=1

[
BPp(k)− BPr(k)

]
= −ME. (12)

However, this only differs in that there is a minus sign between the two, and readers
should pay attention to the definition of the error defined in the corresponding references.

In each entry in Table 2, we listed the datasets, their descriptions, the preprocessing
methods, the model names, and their results. Only the preprocessing methods that affected
the input features or model structure were mentioned, and the reduction of noise for the
PPG waveform signals (Multi-various kinds of algorithms were adopted [90], including an
LMS filter [91], moving average filters [92], adaptive filters [93,94], the Kalman filter [95,96],
IMAR [97], wavelet analysis [98–100], median analysis [101–103], and a notch filter [104].)
were excluded. Each method was tagged for three basic principles in BP prediction: (1) the
PPG waveform, (2) PTT, and (3) personal biometric information. A method would be
tagged if it considered the corresponding information.
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Table 2. Non-ML, TML, and DL models using PPG signals as inputs. The units for the SBP and DBP (unless specified) are mmHg. Acc. = accuracy, AE = absolute
error, IQR = inter-quartile range, (1) = waveform features, (2) = PTT features, and (3) = personal information.

Year Ref. Dataset Data Description (1) (2) (3) Preprocessing Models SBP DBP

Non-machine learning (non-ML) methods

2018 [105] Private 32 subjects • Oscillometry Error
= 3.3± 8.8

Error
= −5.6± 7.7

2018 [58] Private 18 subjects • Oscillometry Error
= −4.0± 11.4

Error
= −9.4± 9.7

2016 [106] Test: Private 85 subjects
Smartphone data • - AuraLife [107] AE

= 12.4± 10.5
AE

= 10.1± 8.1

2018 [108] Private 32 pregnant women
Smartphone data - Preventicus Error

= 5.0± 14.5 -

2021 [109] Private 965 subjects
Smartphone data - Preventicus Error

= −0.41± 16.52 -

Traditional machine learning (TML) methods

2012 [110] Private 5 subjects
Smartphone data • • - Regression analysis Acc. = 97.45% Acc. = 97.63%

2013 [111] Private 17 subjects Smartphone data • • - SVM Acc. = 100% Acc. = 99.29%

• • - Linear regression Acc. = 99.7% Acc. = 98.7%

2014 [112]
UQVS [113] 32 subjects • •

MIC feature selection SVM
Acc. = 98.12% Acc. = 97.22%

Private 156 subjects
Smartphone dataset • • Acc. = 98.81% Acc. = 98.21%

2016 [114] Private

65 subjects
(age = 29± 7,

SBP = 109.8± 11.9,
DBP= 70.6± 10.5)

• •
Discrete wavelet

transform, forward
feature selection [115]

Nonlinear
SVM

Error
= 4.9± 4.9

Error
= 4.3± 3.7

2016 [116] UQVS [113] 32 subjects • - SV
Regression

AE
= 4.77± 7.68

AE
= 3.67± 5.69

2017 [117] UQVS [113] 32 subjects • - SVM AE
= 11.64± 8.22

AE
= 7.61± 6.78

2017 [118] Private

68 subjects
(age = 45± 17,
SBP = 129± 20,
DBP = 83± 11)

• - Linear
regression MAPD = 7.4% MAPD = 9.1%
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Table 2. Cont.

Year Ref. Dataset Data Description (1) (2) (3) Preprocessing Models SBP DBP

2018 [119] Private 7 subjects • - Regression analysis - RMSE = 5.2± 2.0

2018 [120] Private
205 subjects

Smartphone data
(independent splitting)

• - Lasso regression AE
= 7.8± 10.4

AE
= 6.1± 7.1

2019 [121] MIMIC 441 subjects • FFT, FFT−1,PCA
A series of 4
regressions

AE
= 3.97± 8.901

AE
= 2.43± 4.173

2020 [122] [122] 15 subjects • • - Regression analysis MAE = 5.1 MAE = 7.5

Deep learning (DL) methods

2013 [123] MIMIC [124] - • - ANN AE
= 3.80± 3.46

AE
= 2.21± 2.09

2013 [125]
Train: MIMIC [124]

Test: private
(phone)

5 test subjects
(SBP ∈ [119, 138],
DBP ∈ [63, 75])

• - ANN MAE = 7.6 MAE = 9

2015 [126] MIMIC-II 4254 records • - ANN AE
= 13.78± 17.46

AE
= 6.86± 8.96

2016 [127] Train: MIMIC-II
Test: private

Train: 69 subjects
Test: 23 subjects • - ANN Error

= −1.67± 2.46
Error

= −1.29± 1.71

2016 [128] MIMIC-II 3000 subjects • - ANN AE
= 3.21± 4.72

AE
= 4.47± 6.85

2018 [129] Private 84 subjects • • - LSTM RMSE = 3.73 RMSE = 2.43

2018 [130] Private No subject description
Exclude BMI > 30 •

Activity features (this
paper also considered
the input features from

the tri-axial
accelerometer and not

pure PPG methods)

LSTM Median± IQR
= 5.95± 2.05

Median± IQR
= 4.95± 1.56

2018 [131] MIMIC 120 subjects • Scalogram from CWT GoogleNet F1 score = 82.95% for hypertension 3

2019 [132] MIMIC [124] 39 subjects • • ANN-LSTM 0.93
r = 0.9986

0.52
r = 0.9975

2019 [133] MIMIC-II
510 patients • ResNet [134]

+GRU
MAE = 15.41 MAE = 12.38

(independent splitting) • • MAE = 9.43 MAE = 6.88
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Table 2. Cont.

Year Ref. Dataset Data Description (1) (2) (3) Preprocessing Models SBP DBP

2019 [135] MIMIC-II [126] 942 subjects (independent splitting)

•

- CNN

AE
= 10.86± 9.54

AE
= 5.96± 5.60

• • AE
= 9.30± 8.85

AE
= 5.12± 5.52

• • • AE
= 5.32± 5.54

AE
= 3.38± 3.82

2020 [136] MIMIC-II 500 records

•

-

GRU AE
= 3.25± 4.76

AE
= 1.43± 1.77

• LSTM AE
= 3.23± 4.74

AE
= 1.59± 1.96

2020 [137] Private
26 subjects

Smartphone data
(various conditions)

• - CNN AE
= 4.92± 2.42

AE
= 5.28± 1.80

2020 [138] Figshare [139]
116 subjects

(independent splitting,
uniform subject distribution)

• • CNN F1 score = 40% for hypertension 3

2020 [140] UCI, MIMIC-II 1557 subjects • • - LRCN AE
= 3.97± 0.064

AE
= 2.30± 0.196

2020 [141] MIMIC-II [35] 942 subjects • - PPG2ABP MAE = 5.73 MAE = 3.45

2021 [142] MIMIC-III 200,000 records
(no description) • • - CNN-LSTM AE

= 4.41± 6.11
AE

= 2.91± 4.23

2021 [143] MIMIC-II
200 subjects

(114 men, 86 women,
age = 61.6± 14.6)

• • - VGG19-LSTM AE
= 1.73± 4.96

AE
= 0.78± 2.77

2021 [144] Train [126]
Test: UQVS [113]

5 train records
(no description)

1 test subject
(no description)

• • - T2T-GAN Error of AP = 2.54± 23.70

2021 [145] MIMIC-II
UQVS [113]

20 subjects
32 subjects

(subject independent
splitting)

• - CNN-LSTM AE = 3.70± 3.07
AE = 3.91± 4.78

AE = 2.02± 1.76
AE = 1.99± 2.45

2021 [146] MIMIC [124] 48 subjects
test split: 20% of total • • - CNN-LSTM AE = 1.2± 1.6 AE = 1.0± 1.3
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Table 2. Cont.

Year Ref. Dataset Data Description (1) (2) (3) Preprocessing Models SBP DBP

2021 [147] MIMIC-III Mixed: (12,000) records
Non-mixed: (4000) records • - AlexNet 2 [148]

MAE = 8.8
MAE = 16.6

MAE = 4.9
MAE = 8.7

2021 [147] MIMIC-III Mixed: (12,000) records
Non-mixed: (4000) records 1 • - ResNet 2 [134]

MAE = 7.7
MAE = 16.4

MAE = 4.4
MAE = 8.5

2021 [147] MIMIC-III Mixed: (12,000) records
Non-mixed: (4000) records 1 • - LSTM MAE = 11.6

MAE = 16.4
MAE = 6.7
MAE = 8.6

2021 [149] MIMIC I, III 100 subjects • - U-Net AE
= 3.68± 4.42

AE
= 1.97± 2.92

2021 [150] MIMIC II [35] 942 subjects • - U-Net MAE = 5.16 MAE = 2.89

2021 [151] (dataset) (subjects) - LASSO-LSTM MAE = 4.95 MAE = 3.15

2021 [152] MIMIC-II [126] 5289 subjects • - LSTM Autoencoder AE
= 4.05± 5.25

AE
= 2.41± 3.17

2022 [89]
Train: MIMIC-II
Test: MIMIC-II

Test: UQVS [113]

MIMIC-II: (12,000) records
Test: random, 3000 records

UQVS: 32 subjects
• • MFMC filter MLPlstm-BP AE = 3.52± 5.09

AE = 4.39± 6.43
AE = 2.13± 3.07
AE = 2.54± 3.76

2022 [89]
train:MIMIC-II
test: MIMIC-II

test: UQVS [113]

MIMIC-II: (12000) records
Test: random 3000 records

UQVS: 32 subjects
• • MFMC filter gMLP-BP AE = 4.18± 5.87

AE = 4.73± 7.11
AE = 2.47± 3.52
AE = 2.69± 4.10

2022 [153] [147] Non-mixed
[126]

[147]: 1,250,000 samples 1

[147]: subject uniform
distribution

[126]: 4254 records

• - InfoGAN 2 [154]
enc-dec

MAE = 14.26
AE = 10.59± 9.07

MAE = 7.11
AE = 5.95± 5.76

1 For the non-mixed dataset, the train and test splitting is subject independent, where each subject contributed no more than 2000 samples, and there were approximately 150 million
samples in total. 2 Modified architecture. 3 Result of non-HT vs. HT classification.
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3.1. Non-Machine Learning (Non-ML) Methods
3.1.1. Mathematical Modeling

To date, there are some areas of research that have specifically focused on mathe-
matically studying BP. The first trial involved in the study of BP and blood flow was the
Windkessel model (This model is also called the lumped parameter model. See [155–162] for
extensions of the model and [163] for a review.) [164], which adopted the concept of electric
currents to stimulate the cardiovascular system (CVS) of the human body. The circuits con-
sidered in [164] contained a constant resistor representing the resistance of the peripheral
artery and a capacitor representing the compliance of aortas. The authors of [165] extended
the model in [164] by adding an extra resistor to model the characteristic impedance of the
aortas in order to obtain the behavior of the systemic input impedance from medium to
high frequencies. The authors of [166,167] highlighted that the four-element Windkessel
model with an inertial term in parallel with the characteristic impedance is better than the
three-element counterpart (There are two versions of the three-element counterpart raised
in [168] and [169], respectively.) for describing the behavior of the entire systemic tree and
modeling the vascular properties via estimating the suitable parameters.

However, several Windkessel models failed to explain the phenomena of pulse wave
propagation and reflection throughout the arterial system, which meant that new models
with pulse wave propagation were necessary. The first contribution toward mathematical
modeling with pulse wave propagation was from Womersley [170], who first investigated
the PWV profile in a rigid tube filled with a viscous fluid. The authors of [171] examined the
PWV profile through an elastic tube with a finite viscosity and developed a mathematical
analysis of blood flow in the arteries. The authors of [172] tested various materials that
are possible to use for mimicking the textures of blood vessels and arteries, as well as the
effects of stress and temperature on the textures. The authors of [173] found that elastic
tubes with a nonlinear stress/strain ratio obtained the most similar performance to that of
real arteries and blood vessels.

After investigating the properties of blood vessels, researchers endeavored to model
the blood vessel system with fluid mechanics equations. The authors of [174] modeled the
small arteries and arterioles as a structured tree to derive the mathematical expression of the
root impedance of the structured tree in the frequency domain based on a linearixed Navier–
Stokes equation. The study of blood flow and BP was carried out by using a nonlinear
one-dimensional (1D) model [175–178], a three-dimensional (3D) model [179,180], and
other mathematical and physical models [174,181–183]. The authors of [68] proposed a
mathematical model for BP for different age groups. The authors of [184] developed a
biophysical model of CVS simulating blood flow in the upright position of the body in
order to investigate the effect of gravity on the PWV. The authors of [69] investigated
the propagation of pulses through an elastic tube filled with viscous fluid under initial
pressure using Navier–Stokes equations. In addition, the authors of [185] proposed pulse
decomposition analysis using hyperbolic secant (sech) waves and suggested that hyperbolic
secant wave decomposition gives more accurate blood pressure values than the Gaussian
function.

3.1.2. Direct Verification Methods

Apart from the mathematical models, there have been further studies directly ex-
amining the feasibility of BP measurement with the use of some specific mobile apps
and smartphones. In these cases, researchers were unaware of the algorithms due to a
range of confidential reasons. The authors of [186] utilized two contact-based cameras for
simultaneous acquisition of PPG from the fingertip of the index finger and the forehead
temple, and they revealed that the correlation between the PTT and OFP (OFP is the time
interval between the minimum PPG from the temple and the maximum PPG from the
fingertip.) was 0.86± 0.06. The authors of [187] presented algorithms that can be executed
directly on current smartphones to obtain clean and robust heart sound signals and to
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extract the pulse wave characteristics. The authors of [106] examined the instant blood
pressure (IBP) estimation app AuraLife [107] and pointed out that its sensitivity for hyper-
tensive BPs was only 0.22. The authors of [105] indicated the results of BP measurement
by pressing one’s fingers against a smartphone. The errors for the SBP and DBP were
3.3± 8.8 mmHg and −5.6± 7.7 mmHg, respectively. The authors of [58] performed the
same verification with an iPhone instead of a smartphone. The errors for the SBP and
DBP were −4.0± 11.4 mmHg and −9.4± 9.7 mmHg, respectively. The authors of [119]
developed and evaluated a smartphone-based BP-monitoring application called Seismo,
which measures the time between the opening of the aortic valve and the pulse reaching
the peripheral artery. The RMSE of the DBP was 5.2± 2.0 mmHg. The authors of [122]
estimated BP using the PTT calculated from PPG and a phonocardiogram (PCG) recorded
using a microphone. (This experiment originally used the rear camera of a smartphone
to record the HR and SpO2 and a microphone to record PPG and the phonocardiogram
(PCG).) The authors of [108,109] studied the app Preventicus for BP measurement.

Thus, we note that mathematical methods involve solving various differential equa-
tions and assuming the material properties of the arteries, while direct verification methods
check the feasibility of the algorithms in BP measurement without knowing the algorithms.
Next, we will discuss the data-driven methods, and given the data we obtained before, we
are going to find what the model will be. Initially, we will examine the TML methods of
PPG.

3.2. Traditional Machine Learning (TML) Methods

Previous research on BP measurement in TML is mainly feature-based, as shown in
Figure 8. Those algorithms extract specific features of the signal (PPG) based on physiologi-
cal motivations or nontrivial statistical metrics and combine them as linear or nonlinear
regression and SVM models to predict BP. The authors of [188] examined the relationships
between arterial blood pressure (ABP) and certain features of PPG signals obtained from
15 young healthy subjects under 3 experimental phases: rest, a step-climbing exercise, and
recovery from the exercise. They investigated four features of PPG, namely the width
of a 2

3 pulse’s amplitude, width of a 1
2 pulse’s amplitude, systolic upstroke time (SUT),

and diastolic time (DT), to find the feature that possessed the highest mean correlation
coefficient with BP and then set up a simple linear regression connecting that feature and BP
to estimate the BP. It was found that the DT had the highest correlation with BP. The mean
differences for SBP were 0.21± 7.32 mmHg, and those of DBP were 0.02± 4.39 mmHg. The
authors of [189] presumed that there are some cardiovascular peculiarities in old age. To
verify this point, they first separated their data into two groups: a group with patients aged
60 and over and a group with patients younger than 60 years. Then, they estimated the
SBP of different groups by multiple regression analysis from the information and features
of the PPG signals of each subject. It was shown that the SD of the classified data can be
5.5 mmHg better than that of the non-classified data. The authors of [110] introduced two
methods to record the PTT. (This paper uses the vascular time interval (VTT), which is
the time difference between the first heart sound of a phonocardiogram (PCG) and the
systolic peak in PPG after time synchronization of all considered vital signals.) A regression
analysis was built to estimate the SBP and DBP with parametrization by personalized
factors, such as weight and height. The authors of [111] adopted 14 time domain features
of the PPG waveform in addition to those personalized factors, such as height, weight, and
age, as inputs to train a model which mixed linear regression and SVM for classifying BP at
different levels.
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Figure 8. A pipeline of traditional machine learning (TML) methods for PPG signals. Features inside
training data are extracted based on various author-preferred criteria (e.g., highest correlation with
the ground truth BP) to train their studied TML models and give the predictions for SBP and DBP.

Later, researchers started to find useful features based on statistical metrics and signal
processing methods instead of the shape features of PPG. In order to reduce the dimension-
ality of input data and cut down the resource requirements, the authors of [112] adopted the
maximal information coefficient (MIC) to select 12 time domain features and 7 frequency
domain features of the PPG waveform and trained an SVM to classify the BP values into
various bins. The authors of [190] proposed an SVM to estimate continuous BP from the
heart sound signals obtained by the microphone of a smartphone. The absolute errors (AEs)
of the SBP and DBP were 4.339± 6.121 mmHg and 3.171± 4.471 mmHg, respectively. The
authors of [114] extracted the frequency features by a discrete wavelet transform (DWT)
and fed them into a linear SVM to predict the BP. The absolute error (AE) of the DBP was
4.6± 4.3 mmHg, while that of the SBP was 5.1± 4.3 mmHg. The authors of [116] applied
several analytical techniques, including random error elimination, adaptive outlier removal,
MIC, and Pearson’s correlation coefficient-based feature assessment. The optimum results
were 4.77± 7.68, 3.67± 5.69, and 3.85± 5.87 mmHg for SBP, DBP, and MBP, respectively.
The authors of [191] validated pulse wave analysis (PWA) based on a multi-parameter
model by using MIMIC physiological data and comparing the corresponding results with
the pulse arrival time (PAT) method. Those experimental data of 23 subjects over a day
were sent to a regression model for BP prediction, which gave 10.6± 3.3 mmHg (PAT) and
8.7± 3.2 mmHg (PWA) for SBP and 6.0± 2.3 mmHg (PAT) and 4.4± 1.6 mmHg (PWA) for
DBP, respectively.

Researchers also proceeded to increase the number of features as much as possible
to fine-tune the accuracy. The authors of [117] extracted more than 7000 heartbeats and
9 parameters as the input vector for training the SVM. It demonstrated better accuracy
than the linear regression method and better accuracy than the ANN method for DBP. The
authors of [118] used five features in total—the ratio of PPG features, SUT, the inverse of
SUT squared, age, and body mass index—to train a gradient descent learning-based linear
regression with a series of post-processing methods to reduce the unsuitable data, leading
to minimum absolute percentage differences (MAPDs) of 7.4% (SBP) and 9.1% (DBP),
respectively. The authors of [120] integrated 233 features in the time and frequency domains
to train an ensemble of models based on demographic and physiological partitioning. The
AE of DBP was 5 mmHg, and that of SBP was 6.9 mmHg. The authors of [192] developed a
far simpler cuffless method using only the heart rate (HR) and modified normalized pulse
volume (mNPV), which can be measured using a smartphone, based on the fact that BP is
equal to the product of the cardiac output (CO) and total peripheral resistance (TPR), where
the CO and TPR are correlated with the HR and mNPV, respectively. The SBP and DBP are
estimated by nonlinear regression. The errors of the SBP and DBP were 0.67± 12.7 mmHg
and 0.45± 8.6 mmHg, respectively.

The authors of [121] estimated BP based on a series of four regressions (decision tree
regression, support vector regression, adaptive boosting regression, and random forest
regression) of whole-based feature extraction, leading to the AEs of SBP and DBP being
2.43± 4.173 and 3.97± 8.901 mmHg, respectively, on the MIMIC-II dataset. The authors
of [193] used the PTT to estimate one’s SBP and DBP by linear regression after using
filtering and peak detection algorithms in order to reduce the noise of PPG. The AEs of
the SBP and DBP were 2.07± 2.06 mmHg and 2.12± 1.85 mmHg, respectively, which are
lower than the BP estimation standard (5± 8 mmHg). The authors of [194] adopted the
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time, frequency, and the time–frequency domain features of PPG signals from 219 subjects,
undergoing preprocessing and feature extraction steps to feed the regression models to
predict the SBP and DBP. The RMSEs of SBP and DBP were 6.74 mmHg and 3.59 mmHg,
respectively.

Up to this point, we can see that TML methods have mainly been feature-based. Those
features closely related to the blood pumping mechanism or having high correlations with
BP are frequently selected as inputs. The models are mainly linear or nonlinear regression
and an SVM. Regression is mostly used for finding the values of BP, while an SVM is mostly
used for finding the categories of BP. Next, we will review how BP is measured based on
deep neural network (DNN) methods.

3.3. Deep Learning (DL) Methods

There are many suggestions for DNN models, and the corresponding results satisfy
the standards of the British Hypertension Society (BHS) [195], Association for the Advance-
ment of Medical Instrumentation (AAMI) [196], and Institute of Electrical and Electronics
Engineers (IEEE) for blood pressure measurement devices. The BHS standard assigns a
grade by the percentage of test samples which have an absolute error less than 5 mmHg,
10 mmHg, and 15 mmHg. The criteria are presented in the Table 3. The AAMI standard is
passed when the mean error (ME) and SD of the error are within±5 mmHg and±8 mmHg,
respectively.

Table 3. BHS standard. The percentage represents the cumulative frequency of error.

Cumulative Frequency of Error ≤5 mmHg ≤10 mmHg ≤15 mmHg

Grade A 60% 85% 95%
Grade B 50% 75% 90%
Grade C 40% 65% 85%

3.3.1. PPG Waveform-Based Methods

Passing the human-defined features to a basic, fully connected neural network (PCNN)
(This network is also known as a fully connected neural network (FCNN) and multilayer
perceptrons (MLPs).) was a common early approach to applying neural networks to BP
predictions. The input features usually describe the waveform patterns of PPG signals. The
output layer usually contains two real-valued outputs: the predicted SBP and the DBP. This
approach is similar to the regression method, which also utilizes human-defined features
to perform regression analysis. The upper part of Figure 9 represented the structure of
these methods. Better performance is expected when replacing the regression model with
an ANN. The authors of [197] compared the results for BP predictions between an ANN
and different regression methods, and the ANN reported the best performance.

The authors of [123] defined 21 features of the PPG waveform and passed them
through an ANN. The features included the systolic and diastolic width at every 25% and
33% of the pulse height, respectively, as well as the cardiac period (CP), SUT, and DT. The
AAMI standard was met with mean errors of 3.80± 3.46 and 2.21± 2.09 mmHg for SBP
and DBP, respectively. As an application of this work, the authors of [125] utilized an ANN
to deal with smartphone PPG with the aid of a preprocessing algorithm. However, their
results were above the AAMI standard. Other researchers also followed this approach to
utilize ANNs with different feature definitions. The authors of [127] used a fast Fourier
transform to extract the frequency domain features, which should be more stable than the
time domain features since they do not require alignments. The properties in the derivatives
of the PPG waveform and differences between the PPG cycles were considered [128].
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Figure 9. The flowchart of general PPG waveform-based methods. (upper flowchart) [123,125,127,128,136].
Features inside training data of raw PPG signals are manually extracted to train their studied models
and give the predictions for SBP and DBP. (lower flowchart) [133,135,137,145]. The whole waveform
profiles of raw PPG signals are put into models, which automatically pick up useful features and give
predictions for SBP and DBP.

The feature extraction strategies for ANN models usually consider a cycle of the PPG
signal or average several cycles to represent the signal. The authors of [128] mentioned
the importance of the difference between cycles, which the ANN model may overlook.
Recurrent neural networks (RNNs), including GRU and LSTM, are capable of taking into
account the difference between cycles as well as the time domain variation of the input
features. The authors of [136] compared the results between multiple linear regression, an
ANN, GRU, and LSTM for BP estimation from seven selected PPG waveform features and
indicated that GRU and LSTM adequately outperformed the non-recurrent models.

The predefined feature may not capture all the details in the signal. With the pro-
gression of deep learning, DNNs give outstanding performance when acting as a feature
extractor. The authors of [133] directly passed the raw PPG signal and its first and second
derivatives to a model combined with the ResNet block and GRU. Convolutional neural
networks (CNNs) such as ResNet usually act as a feature extractor to automatically obtain
the waveform features from the raw signal input. The lower part of Figure 9 represents the
structure of the models that support end-to-end BP estimation from raw PPG signals. Many
recent works use a CNN or the popular CNN-RNN architecture to estimate BP from raw
PPG signals. Baek et al. [135] proposed a model utilizing dilated and strided convolution to
extract the time and frequency features of PPG. They also applied the model to smartphone
PPG data [137], and the result passed the AAMI standard and was comparable to the
method using the PPG sensor dataset. The authors of [145] proposed a CNN-LSTM model
for PPG-based BP estimation. Their results obtained a Grade A rating on the BHS standard
and passed the AAMI standard for SBP and DBP.

Because one of the primary goals of BP prediction is to identify hypertension (HT)
patients, some research works evaluated their methods in classification approaches and
focused on hypertension sensitivity. The authors of [131] entered a 2D scalogram into
GoogLeNet and performed BP classification using the continuous wavelet transform (CWT),
as shown in Figure 10. The authors of [138] proposed a novel CNN model which performs
BP estimation and classification simultaneously. The estimated BP would contribute to
correcting the final predicted BP class. They reported a 90% F1 score on the non-HT versus
HT binary classification task. The F1 score for NT, PHT, and HT classification was 40%,
which was already the best result among the related works. The model also considers
personal biometric features, which we will focus on in Section 3.3.3.
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Figure 10. The structure of the algorithm in [131]. PPG signals are preprocessed by continuous
wavelet transform (CWT) to produce two dimensional scalograms for identifying the low-frequency
or fast-changing frequency components. These scalograms are converted into RGB images for the
convolutional neural network pretrained by GoogLeNet. This model automatically extracts features
in the scalograms to predict the BP categories: normotension (NT), prehypertension (PHT), and
hypertension (HT).

Some recent research has focused on the specific area of continuous BP waveform
prediction. This task aims to transform the PPG waveform into an ABP waveform. In 2020,
the authors of [141] proposed PPG2ABP, the first algorithm to predict continuous BP. Their
method is composed of two networks: a U-Net-based approximation network to transform
the PPG to ABP and a MultiResNet model for refinement (Figure 11). PPG2ABP obtained a
grade of A for DBP and a grade of B for SBP according to the BHS standard. The authors
of [149] proposed a model that can be implemented on wearable devices in the extended
works that used the U-Net structure for signal translation, and the authors of [150] used
self-supervised learning to reduce the training computation cost. Apart from the CNN-
based architecture, researchers also adopted generative models for the signal translation
task. Inspired by CycleGAN, the authors of [144] proposed the T2T-GAN model. Their
work is capable of bidirectional signal translation between PPG and ABP signals. The
authors of [152] proposed an LSTM-based autoencoder model which replaces the ANN in
the original autoencoder model with LSTM. The encoder was pretrained and unsupervised,
as with the original autoencoder, and then the decoder was trained for ABP prediction.
Their model obtained a grade of A according to the BHS standard and passed the AAMI
standard for both SBP and DBP, making it the most accurate model for continuous BP
predictions currently.

Raw PPG
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Model

ABP Waveform
Refinement

Model
Refined ABP

Waveform

SBP

DBP

(for evaluation)

max
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Figure 11. The structure of the algorithm in [141]. PPG signals are preprocessed by the wavelet
transform with the removal of the very low and very high frequency components, the soft Rigrsure
thresholding [198,199], and the normalization. The filtered PPG signals are processed through the
approximation network (one-dimensional deep supervised U-net model), which estimates the ABP
based on the inputs, and then refined by the refinement network. The maximum and minimum of
the refined ABP signals are taken as SBP and DBP, respectively.

3.3.2. PTT-Based Method

As the PTT has been proven to be very effective for increasing the accuracy of tradi-
tional BP prediction methods, it is intuitive to construct a deep learning model that can
consider the PTT. Therefore, many items of research input both PPG and ECG signals to
models for BP prediction. This approach can not only extract the waveform features for
both signals but also capture the time difference between the two signals, which implies the
PTT features. The authors of [129] selected seven predefined features from ECG and PPG,
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including the PTT as measured from two signals, and passed them into a deep bidirectional
LSTM network. Unlike traditional PTT-based methods, their model can get rid of the
long calibration period. Their best RMSEs for SBP and DBP were 3.73 and 2.43 mmHg,
respectively, outperforming the only PPG-based method in the same period.

With the rise of CNNs and feature learning, the CNN-RNN structure was also widely
adopted in PTT-based methods. Figure 12 represents the structure of PTT-based methods
that can automatically extract both waveform features and PTT information from ECG
and PPG signals. The authors of [132] proposed an ANN-LSTM network with PPG and
ECG as the inputs, where an ANN acts as the feature extractor. The mean absolute error
(MAE) was 1.10 and 0.58 for SBP and DBP, respectively, largely outperforming all the
PPG-based methods. Later, there were different variants or advanced models in the CNN-
LSTM architecture [140,142,143,146]. Jeong et al. [146] reported AEs of 1.2 ± 1.6 and
1.0± 1.3 mmHg for SBP and DBP, respectively, which are extremely close to the ground
truth.

Raw PPG

ECG

Model

Extractor Predictor

SBP

DBP

Figure 12. The flowchart of general PTT-based DL methods adopted in [132,140,142,143,146]. After
preprocessing, PPG and ECG signals are fed into the models, which automatically extract the relevant
features from the input signals and predict SBP and DBP.

There are also some models other than that in the CNN-RNN architecture for PTT-
based BP prediction. Inspired by the MLP-Mixer in computer vision, the authors of [89]
proposed MLP-BP. The ECG and PPG signals are preprocessed by a novel multi-filter-to-
multi-channel (MFMC) algorithm, which stacks 12 differently filtered signals as the input.
They also implemented different variants of MLP-BP. Two of the variants containing the
LSTM layer, MLlstm-BP and gMLP-BP, reported better accuracy.

3.3.3. Personalization Factors in Deep Learning Methods

For the TML methods of BP prediction, it was common to consider personal biometric
features in the regression model or predefined features, such as age and BMI. Among the
TML methods we have introduced, the authors of [111,112,114] gave the waveform-based
methods that include biometric features, and the authors of [110,122] presented the PTT-
based methods that include biometric features. For the DL methods, the models always
focus on extracting the features from the signal waveform, and fewer researchers would
take into account the personal information. As one of the few DL methods that consider
personal factors, the authors of [138] packed the BMI information with the embedding after
the convolutional layers and before the prediction layers (MLP) as shown in Figure 13. This
method shares an idea with TML methods, since BMI is regarded as one of the features for
the predictor. Figure 14 shows the whole structure of their model, including the integrated
class assessment algorithm. Recently, fine-tuning the model using subject-specific data has
been used as a personalization technique in some DL methods [133,135,147], which we will
introduce in Section 6.
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Figure 13. The structure of the algorithm in [138]. The PPG signals are directly put into the CNN
part of the model for feature extraction. The model uses the MLP part with the aid of the BMI of
the corresponding subjects to predict SBP, DBP, and the hypertension classes. Here, clspred is the
predicted class from the model, clscvt is the converted class from the regression result, and clsoutput is
the final output class of the algorithm.

4. Contactless BP Measurement from rPPG Signals

Remote photoplethysmography (rPPG) is a technique that adopts the specular and dif-
fused components of incident light to measure physiological signals, as shown in Figure 4.
Since the diffused component of incident light carries information on subtle blood flow
volume changes under human skin, it is possible to analyze that component to find the
small light variations in blood flow so as to obtain live data of vital signs such as the heart
rate [53], respiration rate [200], blood pressure [201,202], and oxygen saturation [200]. How-
ever, remote BP prediction also has susceptibilities in handling noise and artifacts unrelated
to the hemoglobin signals, such as makeup [203], skin tone [204,205], illumination [206,207],
camera distance [208,209], camera specification [210,211], and subject motion [212,213].
Considering the pros and cons of using rPPG signals, several remote techniques have been
developed to manipulate deficiencies using a sophisticated solution to estiTNLmate BP
from the rPPG signal. Previous studies are categorised in non-machine learning (non-ML),
traditional machine learning (TML) and deep learning (DL) methods, as listed in Table 4,
and the corresponding results are also listed in this table.
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Table 4. Non-ML, TML, and DL models using rPPG signals as inputs. The units of SBP and DBP (unless specified) are mmHg. AER = average error rate,
AE = aboslute error, (1) = waveform features, (2) = PTT features, and (3) = personal information.

Year Ref. Dataset Data Description (1) (2) (3) Preprocessing Models SBP DBP

Non-machine learning (non-ML) methods

2015 [214] Private 10 subjects • - - r̄ = −0.879 -

2016 [215] Private 7 subjects • iPTT correlation
estimation r̄ = −0.80± 0.12 -

2019 [216] Private 20 subjects • -
Time difference

between 2 waveforms
from a palm

r̄ ≈ 0.6 -

2020 [217] Private 6 subjects •

Modeling
rPPG by
Gaussian

curves,
pair filtering

Regression AE = 8.32± 8.81 AE = 12.34± 7.10

Traditional machine learning (TML) methods

2016 [218] Private 45 subjects • PCA [219] Regression AE = 3.90± 5.37 AE = 3.72± 5.08

2016 [220] Private 3 subjects • ICA Linear
regression AE = 9.48± 7.13 AE = 4.48± 3.29

2017 [221] Private
13 subjects

(SBP = 110.03± 11.05,
DBP = 72.78± 7.50

• iPTT KNN model with
transfer learning RMSE = 14.02 RMSE = 7.38

2017 [222] Private 45 subjects • PWV
formula

2nd order
polynomial
regression

AE = 4.22± 5.15 AE = 3.24± 2.21

2018 [223] Private 8 subjects having
individual models • • ICA Linear regression MAE of MBP ∈ [1.50, 4.15]

2019 [224] Private 10 subjects • Pulse wave
detection

Lasso
regression Error of BP = −1.0± 5.6

2019 [225] Private

100 subjects
(70 men and
30 women,

age ∈ [22, 50])

• • JADE algorithm
[226,227]

multiple linear
regression RMSE = 4.1665 RMSE = 2.8531



Healthcare 2022, 10, 2113 24 of 42

Table 4. Cont.

Year Ref. Dataset Data Description (1) (2) (3) Preprocessing Models SBP DBP

2021 [228] Private

191 subjects
(141 men and

50 women,
age ∈ [20, 61])

•

Green channel,
cheek and nose areas,

Mallat algorithm,
peak extraction

Support vector
regression AE = 9.97± 3.35 AE = 7.59± 2.58

Deep learning (DL) methods

2017 [229] Private
20 subjects without

known blood
pressure disease

• ICA Feedforward
neural network

AER (afternoon)
= 9.62%

AER (evening)
= 8.4%

AER (afternoon)
= 11.63%

AER (evening)
= 11.18%

2019 [230] Private
1328 subjects

(SBP ∈ [100, 139],
DBP ∈ [60, 89])

• • • TOI, PCA ANN Error
= 0.39± 7.30

Error
= −0.20± 6.00

2021 [147] Private
50 subjects,

subject independent
splitting

• • Pretrained
by PPG AlexNet 1 [148] MAE = 14.2 MAE = 10.7

2021 [147] Private
50 subjects,

subject independent
splitting

• • Pretrained
by PPG ResNet 1 [134] MAE = 12.7 MAE = 10.8

2021 [147] Private
50 subjects,

subject independent
splitting

• • Pretrained
by PPG LSTM MAE = 14.4 MAE = 10.5

2022 [153] Private Train: 961 subjects
Test: 177 subjects • • CHROM [231] InfoGAN 1 [154]

Encoder-decoder
AE = 9.13± 8.18 AE = 8.76± 6.13

2022 [232] Private
10 subjects,

subject mixed
splitting

• 2 spatial
descriptors

ResNet [134]
+CBAM [233] 1

MAE = 6.7
r = 0.81

MAE = 5.4
r = 0.84

1 Modified architecture.
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Figure 14. A pipeline of a deep learning model for rPPG singals proposed in [147,229,230]. The pixels
of the ROIs of face images are preprocessed and then extracted to form rPPG signals. These rPPG
signals are then preprocessed, and those features of preprocessed rPPG signals are extracted to feed
the respective models for training to predict SBP and DBP signals.

4.1. Non-Machine Learning (Non-ML) Methods

To take advantage of the remote methods, multiple areas of the body are used to predict
BP. The authors of [215] revealed that SBP has a strong correlation with the PTT through
sequential images of faces and hands obtained by a high-speed camera (420 fps). Another
study that utilized the PTT to estimate BP is [214]. The authors of [234] proposed a
non-contact technique to estimate the BP variability using a pulse wave obtained via
imaging photoplethysmography (iPPG) to find the phase differences (PDs) between two
iPPG waveforms. The cross-correlation between SBP and PD was calculated, and it was
demonstrated that the PD had a higher correlation with SP compared with a time difference
method. However, the phase difference was distorted by the skin’s surface and may not be
a truly accurate prediction for BP.

A disadvantage of the PTT is the restriction to maintain the relative position of the two
skin regions during video recording. To overcome this disadvantage, the authors of [216]
aimed to estimate BP from a region of interest (ROI) in a skin area. They calculated the new
index (tBH), which is a time difference between a corner point of the raw waveform from
videos of the palm and a minimum point of a band-pass-filtered signal’s minimum values
in a band-pass filtered waveform from the same video. Here, tBH has similar accuracy to
the PTT approach; however, tBH can overcome the video restriction in the PTT approach.

Since face motion artifacts can cause the poor quality of rPPG, the authors of [217]
developed pair filtering to choose two rPPG waveforms from different regions of the
face and hand to estimate the PTT. After choosing the suitable rPPG, the authors of [217]
proposed a model to estimate PPG from rPPG by using two Gaussian curves. This model
used for calculating the PTT. This study showed that the proposed model with a filter pair
can improve the correlation between the PTT and BP. It used a machine learning model to
stimulate PPG instead of estimate the BP.

4.2. Traditional Machine Learning (TML) Methods

To continue from Section 4.1, applying traditional machine learning techniques to
calculating BP is one of the interesting topics in the research field. To take advantage of the
correlation between PTT and SBP, there are some investigations that apply the principle
of PTT with a lightweight machine learning model to calculate BP. The authors of [221]
proposed a KNN model to calculate BP by using the PTT from the rPPG waveform of the
face and palm. The model was trained by transfer learning with the MIMIC II dataset
first, followed by training with a private rPPG dataset. The RMSEs of SBP and DBP were
14.02 mmHg and 7.38 mmHg, respectively. Since it was illustrated in [222] that the PWV is
strongly correlated with BP by the Moens–Korteweg equation, second-order polynomial
regression using the PWV as the input layer was applied. Instead of inputting the PTT
directly into the model, the PTT is measured to calculate the PWV, and the PWV is taken
into account for calculating BP. The AEs of SBP and DBP were 4.22± 5.15 mmHg and
3.24± 2.21 mmHg, respectively.
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Since the optical absorption of the human skin depends on the hemoglobin, melanin,
and shading components, the rPPG waveform is affected by noise. To make rPPG more
effective, it is better to separate the noise and the rPPG signal. The authors of [235]
introduced a cleaning method as a linear combination of all three color channels of RPG
and defined three independent signals with independent component analysis (ICA). The
authors of [220] proposed a linear regression for predicting BP, as shown in Figure 15. It
used ICA to clean the noise and applied PTT techniques as the input layer of the regression
model. It obtained AEs of 9.48± 7.13 mmHg for SBP and 4.48± 3.29 mmHg for DBP. The
authors of [223] also applied ICA in the preprocessing method. Instead of using the PTT,
they introduced a regression model which uses the rPPG waveform feature indices and
facial skin temperature as inputs for estimating BP (see Figure 15 for reference as well).
This method acquired an MAE for MBP in a range of [1.72, 4.09] mmHg.

Training
data Preprocessing Feature

extraction
TML

model

SBP

DBP

Figure 15. A pipeline of traditional machine learning (TML) methods for rPPG signals adopted
in [220,223]. Those rPPG training data are initially preprocessed. Those relevant features of the
filtered signals are extracted manually to feed their target models to predict SBP and DBP.

The authors of [218] estimated BP by extracting the PPG waveform through principal
component analysis (PCA) [236]. They used PCA to calculate the component that carries
signal intensity variation of the red channel in the video frames. They defined the PPG
signal as the difference between the component of PCA and the raw video data in the red
channel. The basic regression model with 20 features in the time and frequency domains
as inputs was proposed to estimate BP. The AE was 3.72 ± 5.08 mmHg for DBP and
3.90± 5.37 mmHg for SBP. The authors of [225] stated that, in accord with Hooke’s law for
calculating the fluid pressure of a wall, pressure waves are related to the peaks and valleys
of the acquired signals. The body mass index (BMI) was used as a correction coefficient.
They used one-channel processing on the green channel and the blind signal separation
procedure of the JADE algorithm. The JADE algorithm separates the components which
are the random estimates of the source signals in random order. Finally, they proposed
a regression model based on the peaks and valleys of the signal processed by the JADE
algorithm. The RMSE was 4.1665 for SBP and 2.8531 for DBP. Another study [224] derived
a mathematical model to calculate the effects of hemoglobin, melanin, and light shadowing
in sequential pictures. They removed the melanin and lighting effects from the video to
extract the hemoglobin signal as an rPPG waveform by using knowledge of the melanin
light absorption spectrum and camera spectral sensitivity. The waveform shape and PTT
were collected from the rPPG signal to be the features to estimate BP. BP was estimated
under two conditions: with and without body movement. The errors for SBP with and
without body movement were −0.1± 12.2 mmHg and −1.0± 5.6 mmHg, respectively,
while the errors for DBP with and without body movement were not estimated.

4.3. Deep Learning (DL) Methods

There are papers that propose models to predict BP, and most of them are based on
waveform methods. Some of them use both waveform and PTT methods. A deep learning
model can select features, and hence, most papers input several features, and the models
take part in weighting the features. One study [229] performed ICA as the preprocessing
method for rPPG and subsequently extracted the features from rPPG waveforms, including
the systolic amplitude, pulse interval, systolic slope, diastolic slope, peak interval, crest
time, and delta time (a3 − a2). The authors proposed a feedforward neural network model
which had one hidden layer for BP estimation. In the training phase, the extracted features
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were used as inputs. The experiment was set up with 2 phases—afternoon and evening—
and was conducted with 20 human subjects. The error rate for SBP was 9.62% in the
afternoon phase and 8.4% in the evening phase, and the error rate for DBP was 11.63% in
the afternoon phase and 11.18% in the evening phase.

One study [230] selected the ROI by performing transdermal optical imaging (TOI).
Since the color value can be in a range from 0 to 255, each channel from the three color
channels contained 8 bitplanes which were 0 or 1. TOI is the technique for training a model
to select bitplanes corresponding to hemodynamic changes. To calculate BP, 17 different
facial regions were selected with the TOI method. The experiment was set up with over
1300 subjects, and 126 features related to transdermal blood flow were extracted from
17 different ROIs in the videos, such as the pulse amplitude, heart rate, pulse transit time,
and pulse shape. As for the additional “meta-features”, 29 features were extracted to
account for different imaging conditions and handle ambient room temperature and the
demographic characteristics of the subjects. Then, 30 eigenvectors from conducting PCA to
reduce the data dimensions were put into a multi-layer perceptron to calculate the BP. The
errors for SBP and DBP were 0.39± 7.30 mmHg and −0.20± 6.00 mmHg, respectively.

BP is related to some physical characteristics, and some papers endeavored to extract
the physical characteristics as the input features. To illustrate this, the authors of [230]
personalized the model by inputting the meta-features, and the authors of [225] personal-
ized the model by inputting the BMI. One study [147] compared models with and without
personalization. The models were AlexNet, ResNet, and LSTM trained on PPG data. The
models were fine-tuned with rPPG data and a leave-two-out cross-validation scheme. They
conducted three training scenarios. The first scenario, which fine-tuned the model without
personalization, was to use 15 out of 17 subjects for fine-tuning the model, while the remain-
ing two were conducted for validation and testing. Secondly, they fine-tuned the model
with personalization by using the first 20% of the measurement samples of the subjects
for testing. In the last training scenario, 20% of the samples from the whole measurement
in testing were drawn randomly for fine-tuning. Consequently, fine-tuning models by
using rPPG yielded a significant improvement in the MAE, especially regarding SBP but
also DBP. Personalizing the training caused a moderate improvement in the MAE for
some model architectures. For AlexNet, the MAEs of SBP and DBP were 14.2 mmHg and
10.7 mmHg, respectively. For ResNet, the MAE for SBP was 12.7 mmHg, and that of DBP
was 10.8 mmHg. For LSTM, the MAE for SBP was 14.4 mmHg, and the MAE for DBP was
10.5 mmHg. However, personalization makes the training costs expensive when the subject
size is huge because the model has to be trained with all the subject samples.

To dominate the disadvantage of personalization, one study [153] proposed a model
selector by mapping the BMIs and ages of subjects to their SBP (see Figure 16). A model
selector would select the responding model from 10 trained models for each subject by using
BMI and age. Hence, the authors trained 10 models instead of 1 model per subject. Since
the lack of data is an obstacle to the training procedure and evaluation, they proposed
synthetic data generation with InfoGAN by learning the information about the samples’
noise and features. The model is an encoder-decoder architecture whose features are the
chrominance-based (CHROM) [231] rPPG signals of the upper and lower face. The obtained
AE was 9.13± 8.18 mmHg for SBP, and the AE was 8.76± 6.13 mmHg for DBP. Another
study [232] calculated the continuous BP by frequently tracking the spatial information of
facial pulse waves (see Figure 17). Transformers from the extracted hemoglobin videos to
spatial information, pulse contour descriptors, and spatial pulse contour descriptors were
created. The authors proposed a CNN for estimating BP from the spatial information of
facial pulse waves. They obtained an MAE for SBP of 6.7 mmHg and an MAE for DBP of
5.4 mmHg.
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Figure 16. A pipeline of a deep learning model for rPPG signals proposed in [153]. On one hand,
pixels from the ROIs of face images are extracted by CHROM as the rPPG signals. On the other hand,
age and BMI are fed into another model selector to promote the model training to predict SBP and
DBP.
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Figure 17. A pipeline of a deep learning model for rPPG signals proposed in [232]. Pixels from
RGB face images are extracted to form intensity maps of melanin, hemoglobin (Hem), and shading
(residual information). Those extracted signals are used for constructing the pulse contour descriptor,
which does not include spatial information, and the spatial pulse contour descriptor, which includes
spatial details, in order to preserve spatial phase relationship of the rPPG signals. Both descriptors
are used as inputs for the model for prediction of SBP and DBP.

5. Discussion

Based on the above investigations, several innovations have been forthcoming in the
area of BP measurement. On the analytical side, it initially started from modeling with an
electric circuit and modeling by Navier–Stokes and continuity equations and progressed
to modeling by the same equations with the material properties of blood vessels and the
topology of the vessel system. On the data-driven side, it commenced with the PTT by
simple regression due to a biological relationship between the PWV and BP, through DNN
models of PPG, and to the same ML development on rPPG.

In the measurement from PPG signals, a CNN-LSTM model appeared to achieve
acceptable performance, but it requires complex preprocessing to extract the PAT calculated
from ECG and PPG waveforms as one of the inputs in the training phase of the model,
because the PAT contains patient-specific body characteristics and pathological conditions.
If we only consider the PPG waveforms and BP as the available data source, a U-Net
model can achieve sound performance. However, the number of subjects in both models is
relatively small compared with other models, which were verified by a larger number of
subjects and yielded just a little bit worse accuracy. On the other hand, in the measurement
from rPPG signals, regressions in traditional machine learning with adequate preprocessing
can give satisfactory results. Although the features of rPPG waveforms are only used
to train the models, the number of subjects for the experiments is relatively small for
verification. In the deep learning attempt, a CNN model trained by the spatial patterns of
facial pulse waves appears to be good, but the number of testing subjects is still very small.
Hence, if one really wants to adopt those models, one should make sure of the robustness
of the datasets and verify their feasibility if necessary.

6. Future Directions

Based on the previous work, we can propose that BP measurement via rPPG will be
the common trend. We suggest some useful directions, which are as follows.
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6.1. Satisfactory Signal Quality

The quality of rPPG should be improved, because better quality rPPG signals will
ensure a more accurate BP measurement [201]. A suitable optimized algorithm should be
found to transfer rPPG to PPG, because most of the features used for model establishment
originate from PPG and are selected based on the physiological motivation. The authors
of [237–239] noted that to extract stronger rPPG signals from the pixels of videos, the areas
near the cheeks and forehead should be chosen. After the normalization of the pixel values,
one of the useful denoising techniques is to extract all the frequency bands (including
all their corresponding harmonic frequencies) related to the human body, as these can
be relied upon to locate vital signs. A research issue that can be posited is how large the
chosen bandwidths should be so as to obtain sharper rPPG signals comparable to the
corresponding PPG signals. Since the models using PPG signals to measure BP were better
studied than those models using rPPG signals to measure BP, it will be beneficial to the
development of the research field if it is possible to change noisy rPPG signals into PPG
signals.

6.2. Public Dataset Enlargement

Public standardized datasets should be enlarged. Here, “standardized” can be defined
as collecting as much information on patients as possible, including but not limited to
height, weight, age, PPG waveforms, and habits. To date, there have been five available
public datasets, as shown in Table 5. First, the MIMIC dataset [124], created under the
auspices of the National Center for Research Resources of the National Institutes of Health,
includes data recorded from over 90 ICU patients and 121 records, and it has enough
information for studying BP, including ECG, PPG, and heart rate. Second, the MIMIC-III
dataset [240] collected the clinical data of patients who were admitted to a medical center
in Boston, Massachusetts. It incorporates the data contained in MIMIC-II and augments
MIMIC-II with 621 newly collected data between 2008 and 2012. The dataset covers
38,597 adult patients and 49,785 hospital admissions. For statistical information, the median
age of the patients was 65.8 years (Q1−Q3 : 52.8− 77.8), and 55.9% of the patients are men.
The number of samples per subject spans a broad range from just a few hundred to over
500,000 [147]. Moreover, another study [147] provided a subset of the MIMIC-III dataset
called MIMIC-B, which denotes the number of samples for every subject. MIMIC-B has a
total pool of 4000 records and approximately 150 million samples. The authors of [35,126]
provided a preprocessed MIMIC-II dataset. They smoothed the PPG and ECG signals and
discarded the unacceptable signals. It is freely available on both Kaggle (the hyperlink to the
Kaggle dataset is https://www.kaggle.com/datasets/mkachuee/BloodPressureDataset?
resource=download (accessed on 15 September 2022)) and from the UCI Machine Learning
Repository [144]. The third dataset is the UQVS dataset (the hyperlink to the UQVS dataset
is https://outbox.eait.uq.edu.au/uqdliu3/uqvitalsignsdataset/index.html (accessed on
15 September 2022).) [113], which contains 32 subjects (25 general anesthetics, 3 spinal
anesthetics, and 4 sedations). Its monitoring data is in a range from 13 min to 5 h (the
median duration is 1 h and 45 min). The next dataset, the Figshare dataset [139], contains
219 subjects and a total of 657 PPG waveform segments. It provides detailed individual
information including the age, sex, height, weight, heart rate, and BMI for each subject.
However, the original MIMIC dataset [138] does not provide that general information.
Lastly, the authors of [122] provided HR, SpO2, and BP data from 22 subjects (13 females
and 9 males) aged between 18 and 78 years old, weighing between 50 and 94 kg, and with
heights from 160 to 195 cm.

https://www.kaggle.com/datasets/mkachuee/BloodPressureDataset?resource=download
https://www.kaggle.com/datasets/mkachuee/BloodPressureDataset?resource=download
https://outbox.eait.uq.edu.au/uqdliu3/uqvitalsignsdataset/index.html
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Table 5. Datasets used for verification of models in BP.

Dataset Ref. Year Number of
Subjects

Number of
Subjects
(Male)

Number of
Subjects
(Female)

Age Race Remarks

MIMIC I [124] 2000 90 - - - - ICU
patients

MIMIC III [240] 2016 53,423 27,983
(55.9%)

25,440
(44.1%)

median = 65.8
(Q1 −Q3 : 52.8–77.8) - Includes

MIMIC II

Figshare
dataset [139] 2018 219 48% 52%

21–86,
61 subjects
∈ [50–59]

- 23.7% =
hypertension

UQVS [113] 2012 32 - - - - -

Dataset
without
a name

[241] 2019 22 9 13 18–78 - Weight: 50–94 kg,
height: 160–195 cm

However, None of these datasets have videos of human faces for the extraction of rPPG
signals. Even though there are two public datasets, the HCI-tagging database and MAH-
NOB database (This dataset contains videos of 30 subjects with 6 video cameras, a head-
worn microphone, an eye gaze tracker, as well as physiological sensors measuring ECG,
EEG (32 channels), the respiration amplitude, and skin temperature. For details, browse the
website https://mahnob-db.eu/hci-tagging/ (accessed on 15 September 2022). We did not
include this dataset in Table 5 either, since it does not have BP data.) [242] and UBFC-RPPG
Dataset (This dataset provides videos of human faces for rPPG signals, PPG signals, HR and
SpO2. For details, browse the website https://sites.google.com/view/ybenezeth/ubfcrppg
(accessed on 15 September 2022). We do not put it into Table 5 since it does not include BP
data.) [243], for the verification of models between rPPG and PPG, they do not have BP
data. Thus, in order to easily verify models from rPPG to BP and further studies among
rPPG, PPG, and BP, a dataset with videos of human faces, PPG signals, and BP data with
plenty of subjects should be prepared. In particular, personal data including but not limited
to race, gender, age, and medical history should also be collected, since PPG waveforms of
patients in various categories may have some differences. (For differences in PPG pulses,
see [244].) Furthermore, it is highly recommended that videos of faces, PPG signals, and the
vital signs of each subject during each follow-up medication check be sustainably recorded
because they are useful for personal calibration in BP measurement. Of course, the privacy
problem is the first paramount issue that researchers need to solve before obtaining such
valuable and specific data.

6.3. Effective Calibration by Personalization

Apart from the above, an effective model with calibration and personalization should
be developed. Recent works have started to study this. For PTT calibration, the authors
of [245] performed a calibration experiment with a 24-h interval. Their results show that
models involving the photoplethysmogram intensity ratio (PIR) have less of a difference
in error between calibrations. The authors of [51] mentioned the necessity to calibrate the
phase shifts on different PPG sensors for PTT calculation. As for other calibration examples,
the authors of [246] introduced five equations for calibrating SBP and DBP measured by
a random zero sphygmomanometer (RZS) BP measurement device and an oscillometric
device (OD), respectively, in the Jackson Heart Study (JHS): ignoring the change, ordinary
least squares (OLS) regression, adding the average difference, Deming regression, and
robust regression. It was demonstrated that robust regression gives a higher R2 statistic in
the JHS. The authors of [59] introduced the calibration methods of BP devices. The authors
of [247] reviewed the linear approximation of BP calibration. It was mentioned that the
short-term validity of linear PTT models and the calibration need to be updated frequently
under various conditions. The authors of [248] proposed a nonlinear ML-GPR model to

https://mahnob-db.eu/hci-tagging/
https://sites.google.com/view/ybenezeth/ubfcrppg
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estimate the regression between BP values and PPG features by grouping the age range of
a user. They pointed out that calibrations can be implemented in an embedded system for
personalized measurement and be adapted to different environments and health statuses.
Thus, from the above, most of the calibration focuses on the fine-tuning of coefficients in
regression equations, which depends on the datasets.

Another type of calibration that has captured a lot of attention is called personalization,
which means fine-tuning the models by subject-specific data. Some works have been
carried out for personalization. For example, the authors of [249] proposed a transfer
learning technique (called BP-CRNN-Transfer) that personalizes specific layers of a network
pretrained with abundant data from other patients. The MAE of SBP was 3.52 mmHg, and
that of DBP was 2.20 mmHg. The authors of [147] used 20 percent of the non-mixed test set
to fine-tune the pretrained neural architecture of the main model and validated the model
with the remaining 80% of the test set. This highlightd that persionalization significantly
reduced the prediction errors. The authors of [133] also conducted the same experiment on
PPG and ECG previously. The authors of [250] investigated the effect of selective single-
parameter personalization on the performance of multi-parameter models for pulse arrival
time (PAT)-based blood and found that parameter personalization is key to enhancing
tracking performance. Most of them require high computing power, which is costly if the
calculation neural network is put in the cloud or on a smartphone, and privacy is another
issue for personalization. The authors of [251] raised an idea called federated learning
(FL) to solve the privacy issue and achieve personalization, which means exchanging the
weights applied on the training model across multivarious users via a central server, while
users’ data are stored on their own local devices without sharing. Thus, a privacy-protected
model with correct inputs and parameters and personalized calibration is more applicable
to the reality of the ML industry.

7. Conclusions

To summarize, this review discussed the historical development of BP measurement,
starting from biophysical theory, through contact-based BP measurement from PPG signals,
and to contactless BP measurement from rPPG signals. Since the ultimate goal of this
research field is to predict BP accurately based on rPPG signals, using the above discussions,
we offer a range of proposals in model training from rPPG signals in the future. Initially,
we suggest that we can still train neural networks with adequate preprocessing of rPPG
signals to predict BP, since many DNN models have not yet been examined. A further
recommendation is that we adopt personal information to assist with model training. From
the experience of using the PAT, we note that the PAT originated from specific personal
body characteristics which are strongly correlated with personal information, including
but not limited to, age, BMI, and habits. This information allows us to gain increased
accuracy in readings. However, the verification and accuracy of a large dataset are very
important. Although contactless BP measurement development is still emerging, it will
continue to be a contentious area of research, especially in the post-pandemic era.
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Abbreviations
The following abbreviations are used in this paper:

Abbreviation(s) Full name(s)
AAMI Association for the Advancement of Medical Instrumentation
ABP Arterial blood pressure
Acc. Accuracy
AE Absolute error
ANN Artificial neural network
ANSI American National Standards Institute
BCG Ballistocardiography
BHS British Hypertension Society
BMI Body mass index
BP Blood pressure
CHD Coronary heart disease
CNN Convolutional neural network
CO Cardiac output
CP Cardiac period
CV Cardiovascular
CVD Cardiovascular disease
CWT Continuous wavelet transform
DBP Diastolic blood pressure
DL Deep learning
DNN Deep neural network
DT Diastolic time
DWT Discrete wavelet transform
ECG Electrocardiography
FCNN Fully connected neural network
FFT Fast Fourier transform
FFT−1 An inverse of the fast Fourier transform
GAN Generative adversarial network
GCG Gyrocardiography
GRU Gated recurrent unit
HT Hypertension
IBP Instant blood pressure
ICG Impedance cardiography
IEEE Institute of Electrical and Electronics Engineers
IMAR Iterative metal artifact reduction
IPG Impedance photoplethysmography
iPPG Imaging photoplethysmography
IR Infrared
JADE Joint Approximation Diagonalisation of Eigen-matrices
JHS Jackson Heart Study
LASSO Least absolute shrinkage and selection operator
LMS filter Least mean squares filter
LSTM Long short-term memory
MAE Mean absolute error
MAP Mean arterial pressure
MAPD Minimum absolute percentage difference
ME Mean error
MERS Middle East respiratory syndrome
MI Myocardial infarction
MIC Maximal information coefficient
MIMIC Medical Information Mart for Intensive Care
ML Machine learning
mNPV Modified normalised pulse volume
NT Normotension
OD Oscillometric device
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OLE Ordinary least squares
PAT Pulse arrival time
PCA Principal component analysis
PCG Phonocardiogram
PD Phase difference
PEP Pulse ejection period
PHT Prehypertension
PIR Photoplethysmogram intensity ratio
PPG Photoplethysmography
PTT Pulse transit time
PWA Pulse wave analysis
PWV Pulse wave velocity
RMSE Root mean square error
RNN Recurrent neural network
ROI Regions of interest
rPPG Remote photoplethysmography
RZS Random zero sphygmomanometer
SARS Severe acute respiratory syndrome
SBP Systolic blood pressure
SBS Strain-based sensor
SCG Seismocardiography
SpO2 Oxygen saturation
SUT Systolic upstroke time
SV Support vector
SVM Support vector machine
TML Traditional machine learning
TOI Transdermal optical imaging
TPR Total peripheral resistance
UQVS The University of Queensland vital signs
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