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Abstract: Tuberculosis (TB) is an infectious disease affecting humans’ lungs and is currently ranked
the 13th leading cause of death globally. Due to advancements in technology and the availability of
medical datasets, automatic analysis and classification of chest X-rays (CXRs) into TB and non-TB
can be a reliable alternative for early TB screening. We propose an automatic TB detection system
using advanced deep learning (DL) models. A substantial part of a CXR image is dark, with no
relevant information for diagnosis and potentially confusing DL models. In this work, the U-Net
model extracts the region of interest from CXRs and the segmented images are fed to the DL models
for feature extraction. Eight different convolutional neural networks (CNN) models are employed in
our experiments, and their classification performance is compared based on three publicly available
CXR datasets. The U-Net model achieves segmentation accuracy of 98.58%, intersection over union
(IoU) of 93.10, and a Dice coefficient score of 96.50. Our proposed stacked ensemble algorithm
performed better by achieving accuracy, sensitivity, and specificity values of 98.38%, 98.89%, and
98.70%, respectively. Experimental results confirm that segmented lung CXR images with ensemble
learning produce a better result than un-segmented lung CXR images.

Keywords: tuberculosis detection; deep learning; transfer learning; ensemble learning; lung segmen-
tation; medical image analysis

1. Introduction

Tuberculosis (TB) is a contagious disease caused by Mycobacterium, which affects the
lungs of humans (pulmonary TB) but can also affect other parts of the body (extrapulmonary
TB). In 2019, about 10 million people contracted the disease, out of which 1.4 million died.
Tuberculosis was ranked the 13th leading cause of death worldwide and the first single
infectious agent ranking above HIV/AIDS [1]. The number of people newly diagnosed with
TB in 2020 declined compared to the previous years. The decline was due to COVID-19
protocols, such as wearing face masks and social distancing, among people. The new TB
case count was reduced by 18% between 2019 and 2020, from 7.1 million to 5.8 million.
On the other hand, the number of people who died from TB increased in 2020 due to the
COVID-19 pandemic. In 2020, TB ranked as the second leading cause of death from a single
infectious agent after COVID-19 [2]. It is contagious and can spread through sneezing or
coughing from infected persons. The most prevalent TB regions are Africa and Southeast
Asia, mainly due to limited resources and relatively high poverty rates. TB is most prevalent
in South-East Asia (43%), Africa (25%), and the Western Pacific (18%), with smaller shares in
the Eastern Mediterranean (8.3%), the Americas (3.0%), and Europe (2.3%) [2].

TB can be combated or eradicated through early detection, based on testing methods
such as culture tests, chest radiography, sputum smear microscopy, and nucleic acid
amplification. Chest computed tomography, histopathological examination of biopsy
samples, and new molecular diagnostic tests can also improve diagnoses [3]. Amongst
these tests, sputum smear microscopy and chest X-ray are the most widely used techniques
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for TB detection [4-9]. X-ray is less invasive, making it one of the best medical imaging
modalities [10] for diagnosing fractures, luxation, bone and lung disease, location of foreign
matters [11] and molecular drug discovery [12,13].

TB comes in many manifestations (infiltrates, consolidation, and cavitation), and di-
agnosing it through a chest X-ray requires the services of an expert. These experts are not
readily available in these high-burden TB countries, hence the need to employ computa-
tional techniques to detect the disease early. Artificial intelligence in healthcare delivery has
become an essential parameter in the modern healthcare system. Much research has gone
into the development of computer-aided diagnosis (CAD) systems [14-18] to augment the
decision-making of physicians and radiologists to render effective health care to patients.

This study focused on developing a robust system based on CNN and pre-trained
CNN:s for automatic TB detection from chest X-ray images. Accordingly, this study pro-
poses a customized CNN model based on global average pooling at the last layer before
classification with a support vector machine (SVM) as the classifier. The methodology
includes seven pre-trained CNN models for feature extraction and classification based on
the X-ray images adapted for the study. The U-Net [19] architecture for image segmentation
is utilized to segment X-ray images and produce corresponding lung masks.

The segmented images serve as input data for the customized CNN and the pre-
trained models for TB classification. On the other hand, the proposed CNN models were
trained on the un-segmented X-ray datasets for TB classification. Training, testing, and
validation of the models were based on X-ray images from different populations. This
enhances the generalization of the models on an unseen dataset presented to the model for
classification. Further, the proposed approach reduces the variance in classification models
due to lesser datasets for training. Ensemble learning is employed to handle this drawback
and also increase model performance. The outputs from the various individual models are
combined to form a CNN ensemble classifier for TB detection. The main contributions of
this study are summarized below:

e A robust framework for automatic lung segmentation and TB classification based on
chest X-ray images is proposed for the early detection of tuberculosis.

e A combined result from a customized CNN and pre-trained CNN models through
stacking ensemble learning is deployed to boost classification accuracy.

e  The proposed framework achieved a higher accuracy rate than other state-of-the-art
TB detection models, which suggests that our model is better for mass TB screening in
regions where TB is much more predominant.

The rest of the paper is structured as follows: Section 1.1 is the background of the
study. Section 2 is related to reviewed literature. Section 3 is the proposed methodology
and materials employed for the study. Experimental investigations and analysis of results
obtained through the proposed approach are presented in Section 4. A detailed discussion
of experimental results is conducted in Section 5. Finally, a summary of the study is shown
in the Conclusion section.

1.1. Background

Deep learning models are widely used in modern healthcare systems. Their imple-
mentation ranges from diagnosis, treatment, drug discoveries, precision medicine, and
sequence to sequence analysis [16-19]. Medical image analysis [20-22] is a vital area in
which deep learning models augment decision-making on patients through feature extrac-
tion relating to treatment, drug prescription, and prognosis by physicians. Deep learning’s
wide patronage by researchers is due to its ability to extract inherent features from the
images, contrary to machine learning models that depend on hand-crafted features. TB
is considered one of the leading causes of death globally, and early screening based on
automatic DL models is required. Segmentation of infected regions, severity analysis, and
many more are carried out using DL models [22,23]. With the presence of computers with
high processing powers and big data, state-of-the-art deep learning models produce good
results in terms of classification and prediction.
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1.1.1. Deep Learning

Deep learning is a branch of machine learning that involves algorithms, inspired
by the structure and function of the brain, called artificial neural networks [24]. Deep
learning algorithms have several hidden layers and neurons to extract low-level to high-
level features from input data. The lower-level features such as dots, edges, and lines
are extracted at the initial layers. High-level features are extracted at the upper layers. A
neural network with more than two hidden layers is considered a deep network. In deep
learning, extracted features progressively transform through the layers until the output for
predictions. Deep learning algorithms proposed in the healthcare domain include:

Convolutional neural networks (CNN) [25], recurrent neural networks (RNN) [26],
generative adversarial networks (GAN) [27] and transformer neural networks [28]. Figure 1
depicts deep learning algorithms. CNN is the proven algorithm for computer vision
problems such as image processing and medical image analysis. A CNN'’s ability to
extract low, mid, and high-level feature maps from input data for classification, detection,
segmentation, and retrieval tasks makes it superior to other DL algorithms. A CNN is a
layer-wise network consisting of an input layer, hidden layers, and an output layer. The
hidden layer consists of the convolution layer, pooling layer, non-linear activation function,
and fully connected (FC) layer.

Deep learning structure

v r .
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learning learning leaming (RL})
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Convolutional Recurrent neural Generative Auto Self organized | |Model based Model free
neural network network (RNN) adversarial mapping (SOM) RL based RL
(CNN) network (GAN) | | encoders Lh . /

Deep convolutional
neural network
(DCNM)

Long short term Transformer
memory (LSTM) networks

Restricted

Eoltzmann
nebwork

Gated recurrent units

(GRUs)

Figure 1. Deep learning algorithms.

A convolutional layer operates on the following characteristics: input and output
channels, convolution filters for feature extraction, padding to maintain input dimension at
the output layer, and stride for stepping through the input image. The extracted features
from the input images are called feature maps. The extracted feature maps from the input
layer are passed to the subsequent hidden layers as input until the classification layer. The
pooling layer reduces the dimensionality of the feature maps to reduce computational costs.
This process reduces the height and width of the feature maps but not the depth. Max
pooling and average pooling are examples used in CNN models. The FC layer is the last in
the CNN architecture, with a flattened vector built from the output of the preceding layers.
A basic CNN architecture is shown in Figure 2.
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Figure 2. CNN architecture.
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1.1.2. Support Vector Machine

A support vector machine (SVM) is a leading regression and image classification
algorithm for multiple continuous and categorical variables. SVM separates a set of train-
ing images into two separate classes, for example, TB positive or TB negative. Given an
input, (x1, y1), (x2, y2), ..., (xn, yn) where xi in Rd, d-dimensional feature space, and yi in
{—1, +1}, the class labels,i=1... n, [29]. A hyper-plane is created in the multidimensional
space to separate the classes based on a kernel function (K). The SVM classifier is em-
ployed to classify images as TB positive or negative because of its performance on binary
classification tasks compared to other classifiers.

1.1.3. Deep Transfer Learning

Transfer learning is a machine learning algorithm where a model built for a domain
serves as the beginning point for a model on a second domain. It is a general approach in
deep learning where pre-trained models form the starting point for computer vision and
natural language processing tasks. In situations where the training data is less, an already
pre-trained model is engaged, and the knowledge gained in that pre-trained model is
transferred to the new task. This process is called transfer learning (TL). Transfer learning’s
implementation is in two ways. In the first instance, a pre-trained model is engaged for
feature extraction, and the model uses a new classifier that trains on a smaller dataset for
classification. In the second instance, the architecture of the adopted pre-trained network
is modified to improve the classification performance of the new domain. Mostly the
modification happens at the FC layer by replacing a different one with randomly initialized
weights, which learn new discriminating patterns from the features.

In [30], the authors used a transfer learning approach based on VGG-16 for COVID-19
detection from chest radiographs. VGG-16 is a pre-trained CNN model with 13 convolu-
tional layers, three fully connected layers, and five max-pooling layers. In their experiment,
the last dense layer of the network has two classes (COVID and non-COVID). The second
experiment has three categories (COVID, non-COVID pneumonia, and normal) at the
output layer. The proposed transfer learning model achieves 96% and 92.5% accuracy in
two and three output class cases.

A VGG-16 pre-trained model coupled with an attention mechanism is proposed for
COVID-19 detection [31]. The proposed model learns using the COVID-19 CXR image
datasets [32,33] for classification. The model’s performance was outstanding compared to
other existing methods, making it prudent for COVID-19 screening.

Inception_v3, Xception, ResNet50, VGG19, and VGG16 are utilized in [34] or TB clas-
sification. The target dataset serves as input data for the pre-trained models for feature
extraction. Training of the target dataset only happens at the classification layer, and the
weights at the convolutional layers are frozen and do not contribute to training. Among all
the models, Exception, ResNet50, and VGG16 provided the highest classification perfor-
mance of automated TB classification with precision, sensitivity, F1-score, AUC of 91.0%,
and 90.0% accuracy. A further literature review of transfer learning techniques used for TB
classification is in Section 2.

1.1.4. U-Net

U-Net is an architecture purposely designed for biomedical image segmentation and
localization tasks in 2015 [19]. Its backbone is the traditional convolutional neural network
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used for image classification tasks which takes an image as input and produces an output
label. U-Net goes further from classification to localization, where an area with an abnormal-
ity is detected or localized. It can localize because it classifies every pixel. The architecture
is symmetrical and consists of a contracting path (left) and an expansive path (right). The
base architecture is shown in Figure 3. The contracting path consists of two 3 x 3 convolu-
tional layers with a rectified linear unit (Relu) and moving channels from 1 to 64 because
of an increase in the depth of the image. The input image of size 572 x 572 is reduced to
570 x 570 and then further reduced to 568 x 568. There is a 2 x 2 max pooling with a stride
of 2 to halve the size of the input image.

Conv 3x3, Relu

Max pool 2x2

Up-Conv. 2x2

Copy and crop

Conv 1x1

Figure 3. U-Net segmentation and localization network architecture.

This process gets repeated three times. At the bottom are two convolutional layers
without max pooling. Here, the image is resized to 28 x 28 x 1024. The expansive path is a
2 x 2 transposed convolution that up-samples the feature maps by half and concatenates with
the corresponding cropped feature map from the contracting path. The final layerisa 1l x 1
convolution that maps each 64-component feature vector to the required number of classes.

2. Related Work

Computer-aided diagnosis (CADx) [20] is a go-to approach for early screening and
automatic detection of TB from chest X-ray radiographs, of which samples are shown
in Figure 4 [21]. A typical CAD system consists of three main parts. (i) Data or image
segmentation, which is dividing an image into distinct regions, where a region of interest is
extracted for analysis [22,23]. (ii) Feature extraction, to produce accurate or exact informa-
tion such as the shape, texture, and volume of diverse sections of an image. The features
are in two classes: geometric features, which extract elements such as points, lines, curves,
and surfaces. The other one is appearance features that extract shape-related elements.
(iii) Classification methods such as support vector machine (SVM), random forest (RF), and
neural networks (NN) have all been used to classify images as normal or diseased [35-37].
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(A) Sample images from the Shenzhen dataset (B) Sample images from the Montgomery dataset

- v 5
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Normal X-ray image
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TB infected Normal X-ray image TB infected
(C) Some TB manifestations identified by I‘alelOngtS

Cavitation Infiltrate Ancillary TB

Figure 4. Image samples from both Shenzhen (A) and Montgomery (B) datasets as well as TB
manifestations (C).

CAD systems can play a vital role in the analysis of X-ray images for TB detection.
It has become possible due to the availability of large-scale labeled datasets, deep learn-
ing algorithms, and higher computer graphics processing units (GPUs). In recent years,
researchers have shifted the attention from traditional machine learning approaches in
developing CAD systems for TB detection [38—42] to deep learning techniques. A convo-
lutional neural network (CNN) is one of the deep learning algorithms that has produced
promising results in computer vision tasks. Deep learning is a data-driven technique, but
medical images are less in quantity, which poses a threat to effective and robust CAD
systems. Knowledge gained from CNN models pre-trained on ImageNet datasets can be
transferred through transfer learning to another domain where there is fewer data to learn.
Using pre-trained networks to develop CAD systems [43—48] produced good results com-
pared to CNN models trained from scratch. A model developed in [49] for TB identification
was trained and tested using the Montgomery County chest X-ray (MC) and Shenzhen
chest X-ray sets. It achieved an accuracy of 90% and 80%, respectively.

A deep learning-based automatic detection (DLAD) model with a CNN backbone is
developed for TB detection based on chest X-ray images [38]. The model had 27 layers
with 12 residual connections and operated via a semi-supervised localization approach,
as only a fraction of the dataset was annotated. The final layer is split into two, an image-
wise classification layer and a lesion-wise localization layer. It recorded sensitivities and
specificities for classification, 94.3-100% and 91.1-100% using the high-sensitivity cut-off
and 84.1-99.0% and 99.1-100% using the high-septicity cut-off.

Deep convolutional models, such as VGG16 and InceptionV3, combined with a
contrast-enhanced canny edge-detected (CEED-Canny) algorithm with an ensemble learn-
ing technique are used to classify the images as TB positive or negative [39]. The model
achieved accuracy, sensitivity, and specificity values of 93.59%, 92.31%, and 94.87%, respec-
tively. In [50], the authors proposed a CheXNet [51], a deep CNN model, and CNN with
an SVM classifier to detect pneumoconiosis from X-ray images. The dataset is from the
National Institute for Occupational Safety and Health (NIOSH) [52]. The experimental
results showed that the proposed framework was better than other earlier models. SVM
performed well, with an accuracy of 92.68%. Despite the success of deep learning models
in CAD implementation, it suffers from a problem known as over-fitting. Over-fitting
arises as a result of less quantity of data for training a model. Data augmentation is one
technique that addresses this problem. In [53], the authors employed data augmentation
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techniques to detect TB reliably from chest X-ray images. The proposed framework is in
Figure 5. Some public databases are combined into one database of 3500 TB infected and
3500 un-infected chest X-ray images for the study.

Segmented image

| U-Net and Modified |

b

“Pre-frained models

L-MNet FesMet1s
fSelmerttnr] ResNet50
ChesMet
ResMet101 — Mormal /
Tuberculogis

Input image

Inception'V3
VGG19
Image
preprocessing DenseMet201

Classification

SgueszeMet

MobileMetv2

Figure 5. Simplified architecture of proposed framework [53].

Already pre-trained networks including ResNet18, ResNet50, ResNet101, ChexNet,
InceptionV3, Vgg19, DenseNet201, and SqueezeNet [54-59] are adopted for transfer learning.
The images are segmented based on U-Net [19] and a modified U-Net architecture. The
model achieved accuracy, precision, sensitivity, F1-score, and specificities of DenseNet201 are
98.6%, 98.57%, 98.56%, 98.56%, and 98.54% for the segmented lung images.

The authors in [60] proposed a three-step approach for TB detection from X-ray im-
ages. Step (a) modified the CNN model structures, step (b) fine-tuned via an artificial
bee colony algorithm, and step (c) implemented a linear average-based ensemble method.
The model was trained and validated on the Shenzhen dataset and could segregate seven
TB-related manifestations (consolidation, effusion, fibrosis, infiltration, mass, nodule, and
pleural thickening). A Bayesian-based convolutional neural network (B-CNN) was de-
ployed in [61] to deal with the SoftMax inference problem. The B-CNN model dealt with
model uncertainty well, improving the accuracy to 96.42% and 86.46% for both datasets
(i.e., Montgomery and Shenzhen [21]).

To further increase the performance of CNNs in TB detection, a spatial pyramid
pooling (SPP) technique was employed [8]. Three pre-trained models, AlexNet, GoogLeNet,
and ResNet50, are for feature extraction and classification. GoogLeNet and GoogLeNet-SPP
emerged as the best performing models with an accuracy of 97.0% and 98.0%. Deep learning
models performed better than traditional machine learning or image processing algorithms.
In the study proposed by the authors in [62], TB detection was from computer tomography
(CT) images. Four three-dimensional (3D) CNN models, DENSEVOXNET-RPN, 3DUNET-
RPN, and VNET-RPN, are trained and evaluated on 501 pulmonary tuberculosis CT images.
The model annotated lesions into miliary, infiltrative, caseous, tuberculoma, and cavitary
types. Recall and precision detection rates from the model are 98.7% and 93.7%, respectively.
A hybrid method [63] for tuberculosis classification was carried out using Shenzhen and
Dataset 2 X-ray images datasets. MobileNet and artificial ecosystem-based optimization
(AEO) algorithms extract relevant features from the dataset. The algorithm improved the
classification performance of the model. The proposed model performed well by attaining
an accuracy value of 90.2% and 94.1% for the Shenzhen dataset and Dataset-2, respectively.

Medical images contain sensitive information about the internal organs of a human,
aiding doctors in decision-making on the kind of therapy to recommend for a patient. These
images captured by different equipment with different resolutions create a problem for
CAD systems. To deal with the challenges [64], three image enhancement algorithms called
unsharp masking (UM), high-frequency emphasis filtering (HEF), and contrast limited
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adaptive histogram equalization (CLAHE) are used to boost the quality of the Shenzhen
dataset before being trained with EfficientNet and ResNet. The model achieved 89.92% and
94.8% of classification accuracy and AUC (area under curve) scores, respectively.
Ensemble learning is one technique used for TB classification problems. Ensemble
learning is a combination of several classifiers to improve the overall classification perfor-
mance of a model. With this approach, the output from each model is combined to train
a new classifier to achieve better accuracy. In the study conducted in [65], an ensemble
model with feature descriptors and pre-trained CNN classifier predicted the Shenzhen and
Montgomery datasets [21] as containing TB or not. The outcomes from three pre-trained
networks, VGGNet, Resnet, and GoogleNet, are combined for further classification [66]
using a support vector machine (SVM) classifier. The ensemble classifier achieved accuracy
values of 82.6% on the Montgomery dataset and 84.7% on the Shenzhen dataset, respectively.
Feature extraction is based on hand-crafted techniques combined with Inception v3, Incep-
tionResnetv2, VGGNet, MobileNet, ResNet50, and Xception, which are employed for feature
extraction for TB detection [67]. The experiment was conducted based on the Montgomery
and Shenzhen datasets. Predictions from these models are combined for final prediction with
a logistic regression classifier through ensemble learning. The proposed model is shown in
Figure 6, and it achieved AUC and accuracy scores of 0.99 and 97.59%, respectively.

Feature extraction

i
[}
i - Level 0
! GaborFiter |—» 5 ——————» Prediction
! L@ l
i I [
| -
q i E Ensembile leaming
i | =
i i 2 l l
i b
Input Data ! LR
i I, o0
i Pretrained ! 5 Logistic regression Level 1
1 models ! model training predictions
Figure 6. Block diagram of the proposed method [67].

The above-reviewed related work indicates that deep learning models produce ex-
cellent results in TB screening, suggesting that they can be adopted for mass screening,
especially in prevalent TB regions. The Montgomery and Shenzhen dataset [21], which
is publicly available, is widely adopted by most researchers, even though there were
some privately collected datasets. Despite the excellent performances of DL models in TB
classification, some limitations have been identified and summarized in Table 1.

Table 1. Summary of deep learning methods proposed in literature for TB classification.
Reference Module Dataset Classification Highlights Limitations
. Presents a methodology
Konya Education and o
CNN, AlexNet, Research Hospital, that 1.1t1hZGS jche. DCNN Less training dataset
Msonda . SVM in classifying .
GoogLeNet Turkey dataset (Private). e ; which affects model
etal. [8] CNN classifier TB-affected patients
ResNet50 Montgomery and . performance
Shenzhen dataset [21] using Chest
X-Rays (CXR)
TB classification from ..
Akbar CNN Montgomery and CNN classifier chest X-ray images Leasrsl(;r‘:avlir;lnﬁ d;’:}czet,
et al. [49] Shenzhen [21] classtie based on the N

CNN model

augmentation
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Reference Module Dataset Classification Highlights Limitations
Bayesian-based CNN for .
uncertain cases with low Evaluation

Abideen  AlexNet, VGG16, Montgomery and SVM discernibility amon performance is less
etal. [61] VGG19, CNN Shenzhen datasets [21] y & due to less training
TB and non-TB dataset
manifested CXRs. ’
Less training dataset
Hooda Montgomery and e Pure CNN model for TB and further
et al. [38] CNN Shenzhen datasets [21] CNN classifier classification verification through
a clinical study
DL-based algorithm for ~ There is uncertainty
Datasets from Seoul active pulmonary TB about the model’s
Hwan National University detection with ability to identify
otal [3g9] CNN (Private) Hospital. CNN classifier lesion-wise localization different TB
’ Montgomery and and image-wise manifestations and
Shenzhen datasets information for other pulmonary
detection. abnormalities.
ResNet, ChexNet, DL model for TB The CAM score
- Kaggle Chest X-ray e shows that the
InceptionV3, . classification and .
images [68], RSNA . . . model sometimes
Rahman DenseNet201, o visualization of learning
CXR dataset [69]. CNN classifier learns from the
etal. [53] Vggl9 features based on class
Montgomery and - wrong parts of the
SqueezeNet, Shenzhen datasets [21] activation map image, which affects
MobileNet (CAM) score. ge !
prediction accuracy.
Linear Proposed CNN models The model can bias
Guo et al. average-based for TB classification and due to uneven
[60] CNN Shenzhen datasets [21] ensemble localization from distribution in class
classifier CXR images datasets.
Ir.lc%lana School of . Developed a CNN
Medicine and Academic The proposed
AlexNet, - 1 model through ensemble :
. Model Providing Access . o model is not
Rajaraman GoogLeNet, SVM ensemble learning that classifies -
to Healthcare oo . computationally
etal. [65] VGG-16 and classifier hand-engineered .
(AMPATH) dataset. . efficient but rather
ResNet-50 features for TB detection . .
Montgomery and from Xerav images memory intensive.
Shenzhen datasets [21] y 8es:
1?1 i:oii(f)lrlfsg’ TB detection technique  The training dataset
p ! Linear regression that combines is less, and the
Ayaz et al. VGG-Net Montgomery and
. ensemble hand-crafted features model needs to be
[67] MobileNet, Shenzhen datasets [21] i .
ResNet50 classifier with DCNN through evaluated on a
Xcep tion, ensemble learning. larger dataset.
Presents three image The model’s
. enhancement algorithms accuracy can be
elz/[;n?&l] E f(}isi\iI:; t?\?gc Shenzhen datasets [21] CNN classifier for TB detection based improved since
' on pre-trained some earlier with a
CNN models. larger dataset.
Only five types of
CNN, 3D pulmonary lesions
Lietal. = DENSEVOXNET- . o Deyeloped DL model to were considered for
Private dataset CNN classifier diagnose pulmonary .
[62] RPN, tuberculosis (PTB) the study while
3DUNET-RPN Creuiosts ignoring the

other signs.
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Table 1. Cont.

Reference Module Dataset Classification Highlights Limitations

Proposed a hybrid
method based on
MobileNet and artificial

A larger dataset is

Sahol MobileNet Montgomery and K-Nearest ccosvstem-based required for the
etal. [63] Shenzhen datasets [21] Neighbor (KNN) osyster evaluation of the
optimization (AEO) roposed model
algorithm for TB prop
classification.
Devnath NIOSH CNN model for TB A larger dataset is
etal. [50] CNN dataset [41] CNN classifier classification required for further

evaluation.

3. Materials and Methods

This section explains the methods and datasets used in the study. Steps such as data
pre-processing and feature extraction are used based on supervised learning. Figure 7
illustrates the framework for the proposed system. In this study, we conducted three
experiments for enhanced automatic TB detection. In experiment one, the Kaggle dataset
consisting of chest X-ray images with corresponding lung masks was segmented with the
U-Net model. A new dataset (Chest X-ray Images for Tuberculosis dataset) is fed to the
trained U-Net model for segmentation and generation of corresponding lung masks.

Model B (Image ' |Model C (Pre-trained

i [segmentation with U-Net)|: CNN)

; . .

CNN (Feature E U-Net for lung | Pre-trained DCNN for
extr{aciicn} <= segmentation ™ feature extraction
¥ i i v
| Predictions
v
[ Model D (Stacked ensemble learning for TB classification)
Segmented = Base Models .
X-ray image | CNN Output > Meta Model |
VGG 16 Prediction
VGGE19
InceptionResMetv2
—» Xception Stacked classifier
DenseMet 201
InceptionV3 wlv
MoblieMet TB Megative TE Positive
EfficientMet
ResNets0

Figure 7. Simplified block diagram of proposed framework.

A
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Experiment two is the feature extraction and TB classification with our customized
CNN and the seven other pre-trained CNN models. This part is also subdivided into two
phases. In phase one, un-segmented datasets, Chest X-ray Images for Tuberculosis dataset,
Shenzhen dataset, and Montgomery County chest X-ray dataset, from different population
sets, are used to train, test, and validate all the CNN models for TB detection. In phase
two, the segmented Chest X-ray Images for Tuberculosis dataset produced by the U-Net
model are fed as input to both customized CNN and pre-trained CNN models for TB
detection. The customized CNN model is developed from scratch, whereas the pretrained
CNNs are already trained models with the ImageNet dataset. Training the models with
datasets from different populations makes the model generalize well on unseen data. Before
training, data preprocessing is performed to increase the quality of the dataset. The input
dimensions of the dataset were reduced to enhance the computations by reducing the
amount of processing power needed. Rescaling was also applied to keep the pixels in the
range of 0 and 1. The third experiment used ensemble learning, which combines the results
from all the pre-trained models and the customized CNN model for final classification.

3.1. Dataset

In this paper, three different chest X-ray datasets that are publicly available are con-
sidered for the experiments. The first is the National Library of Medicine (NLM) dataset,
which consists of a pair of datasets (the Montgomery County chest X-ray dataset (MC) and
the Shenzhen dataset (5Z) [21]. The Montgomery dataset was collected by the Department
of Health and Human Services, Montgomery County, Maryland, USA. The dataset consists
of 138 frontal chest X-rays, of which 80 are typical cases and 58 with TB manifestations. The
image size is either 4020 x 4892 or 4892 x 4020 pixels. The Shenzhen dataset was collected
by Shenzhen No.3 People’s Hospital, Guangdong Medical College, Shenzhen, China. The
dataset contains 662 frontal chest X-rays, of which 326 are un-infected, whereas 336 are
TB-infected. The sizes can vary but are approximately 3000 x 3000 pixels. The second
dataset (Chest X-ray Images for Tuberculosis) was obtained from the Kaggle website [70]
with the help of researchers from Qatar University, Doha, Qatar, and the University of
Dhaka, Bangladesh, and other collaborators from Malaysia. Chest X-ray images consisting
of 800 TB negative and 700 TB positive images are used in this study. The third dataset is
the Kaggle dataset, which has 704 chest images with corresponding masks [68].

3.2. Image Pre-Processing

The datasets used in this work are frontal chest X-ray images which also contain other
regions outside of the lungs and interfere with the detection of TB. These regions can harm
the performance of the model. The U-Net architecture was adopted to segment the images
to eliminate external features. Resizing the input data was needed since all the adopted
pretrained networks had different dimensions. With U-Net architecture, the default input
size is 256 x 256 pixels. The input sizes for the CNN models are in Table 2.

Table 2. Parameters and input size of adopted pre-trained CNN networks.

Pretrained Input Size No. of Trainable Non-Trainable
Model P Parameters Parameters Parameters
VGG 16 224 x 224 14,764,866 50,178 14,714,688
VGG19 224 x 224 20,074,562 50,178 20,024,384

InceptionResnetv2 299 x 299 54,413,538 76,802 54,336,736
MobileNet 224 x 224 3,090,434 94,082 2,996,352
Xception 299 x 299 21,271,082 409,602 20,861,480
DenseNet201 224 x 224 18,510,146 188,162 18,321,984
InceptionV3 299 x 299 21,905,186 102,402 21,802,784
EfficientNetB1 224 x 224 6,700,681 125,442 6,575,239

ResNet50 224 x 224 23,788,418 200,706 23,587,712
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3.3. Lung Segmentation

The U-net architecture for medical image segmentation is employed for this study.
U-Net was selected based on its efficiency and robustness in segmenting medical images.

U-Net consists of two parts, the contracting path, and an expanding path. The con-
tracting or encoding path has two 3 x 3 unpadded convolutions, followed by Relu and
2 x 2 max-pooling layers with stride 2 for down-sampling. The expanding or decoding
path contains a 2 x 2 convolution to up-sample the feature maps from the encoder part of
the network. The number of features is split and joined with a cropped feature map from
the encoder path having two 3 x 3 convolutions and a Relu. Figure 8 shows the samples
of the original X-ray image, segmented mask, and the segmented lung generated from
the U-Net model. The Kaggle dataset of 704 chest X-ray images, with their corresponding
lung masks, was used to train the U-Net model. The dataset is split into 70% training, 20%
testing, and 10% validation. The experiment was carried out in the cloud using the Google
Colaboratory platform with 12GB NVIDIA Tesla K80 GPU, TensorFlow with Keras library,
and Python programming language. The training epoch is set at 30 using Adam optimizer
and Dice loss with a batch size of 32.

A\

X-ray image Segmented mask Segmented lung

Figure 8. Sample of segmented mask and segmented lung from the base X-ray images.

3.4. Feature Extraction Based on CNN and Pre-Trained CNN Models

The customized CNN model has four convolution layers, shown in Figure 9. Each
convolutional layer followed a batch normalization layer, a pooling layer, a Relu activation
function, and a dropout layer. Zero padding is performed on the input image to maintain
the input dimensions even after classification. The kernel size at the first convolutional
layer was kept at 64 and later increased by a scaler of 2 in the preceding convolutional
layers. A (5 x 5) kernel was used to convolve with the input image for feature extraction.
Batch normalization is then applied to each layer to avoid a common problem in deep
learning and ensure that the model generalizes well on unseen data.

The dimensionality of the feature maps generated by the kernels is reduced by spatially
averaging the feature maps to a single feature map using global average pooling (GAP).
The global average pooling served as an intermediary between the last convolution layer
and the fully connected layer, with the Adam optimizer minimizing the categorical cross-
entropic loss. The output of the GAP layer is fed to the support vector machine (SVM)
for classification. With the help of the ImageNet dataset, seven different pre-trained CNN
models extract features from the X-ray images for classification. The weights or parameters
in the pre-trained models are kept constant without being trained again to save time and
computation power during model training. The extracted features are passed to a SoftMax
activation function that classifies an image as clean or TB-infected. The performance of
each feature pre-trained model is evaluated based on the individual classifier output.
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Figure 9. The architecture of the customized CNN model.

3.5. Classification

Nine pre-trained CNN and customized CNN models are developed for automatic
TB detection. Training, testing, and validation datasets are from three databases. The
dataset used for classification was in three folds (training, validation, and testing). Data
augmentation techniques such as rotation, rescale, shear, zooming, width and height
shift, and horizontal flipping helped deal with over-fitting and better generalization. The
classification is in two phases. In the first phase, the customized CNN and the pretrained
CNNs were trained, validated, and tested on the un-segmented chest images.

Two categories of data, segmented and un-segmented chest X-rays from the chest
X-ray images for the tuberculosis dataset, are used to train the models. The feature maps
extracted with our customized CNN model are classified as TB positive or negative using
the support vector machine (SVM). On the other hand, the SoftMax activation function
classifies features extracted by the pretrained models as TB positive or negative.

The outputs from the pretrained models are combined for second-level classification
based on the stack ensemble algorithm, [Algorithm 1]. With this algorithm, a meta-model
learns how to best combine predictions from all the ten CNN models (base models) pro-
posed in this study. The layers in the base models are frozen to prevent parameter updates
when training the stack ensemble classifier for prediction. The predictions from the base
models are interpreted to the meta-model with a CNN classifier for final predictions. The
proposed stacked ensemble algorithm is below:

Algorithm 1. Stack Ensemble

Input: Segmented images () = {(x; y;) | x; € X, y; € Y}
Output: Ensemble classifier (Ec)
Step 1: Train base - models (@) from segmented images ()
Forp <~ 1Pdo
Train base model ¢ base on o
Aggregate obtained predictions from all 8 base models
Step 2: Create a new dataset () from base model predictions.
Forn <~ 1tozdo
Create new dataset comprising {x; y;}, where x; = {B; (x;) forj=1 — 8}
Step 3: Train a second-level meta learner
Learn a new classifier Ec based on newly created dataset
Return Es(x) = es(es1(x), esy(x) ... esg (x))

Table 3 depicts the breakdown of all datasets used in this study. All ten models are
implemented in the cloud using the Google Colaboratory platform with 12GB NVIDIA
Tesla K80 GPU, TensorFlow with Keras library, and Python 3.7. Each model was trained
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for 20 epochs. The final classification outputs from the individual models are combined
through ensemble learning for better accuracy.

Table 3. Un-segmented chest X-ray images from different populations for training, validation and

testing.
Training Total No. of Images Normal Images  TB Infected
(Chest X-ray Images for TB Dataset) 1500 800 700
Validation (Montgomery dataset) 138 80 58
Testing (Shenzhen dataset) 662 326 336

4. Results and Analysis

This study proposes a robust system for automatic TB detection from three publicly
accessible chest X-ray image datasets using deep learning models. The datasets are of
different populations, to train, validate and test the model. In the first step, a U-Net model
was trained on the Kaggle dataset for lung segmentation. The metrics below evaluated the
performance of the segmentation model.

(TP)

Iol =
oY = (TP+FN + EP)

M

(2x TP)
(2x TP+ FN + FP)

The model achieved a segmentation accuracy of 98.58%, an intersection over union
(IoU) of 93.10, and a Dice coefficient score of 96.50. The already trained U-Net model was
then used to segment the chest X-ray images shown in Figure 10. The dataset included
800 uninfected images and 700 TB infected images. This was done to prove the robustness
of the segmentation model with unseen data. The segmentation model performed very
well on the unseen dataset by achieving a segmentation accuracy of 97.99%, IoU of 91.78,
and a Dice coefficient score of 95.89.

Dice Coef ficient (F — Score) =

@

Figure 10. Sample of unseen data with generated mask and segmented lung.

After segmentation, a qualitative evaluation was performed on the generated mask
and the corresponding segmented lung since there was no ground truth mask available in
the dataset. This was done to determine how correctly the model had segmented the images.
In the second experiment, the customized CNN model and the seven other pre-trained CNN
models were trained on the segmented and un-segmented images for TB identification. The
chest X-ray images for the tuberculosis dataset were for training, the Shenzhen dataset for
testing, and the Montgomery County dataset for validation. Training parameters were set:
batch size = 32, learning rate = 0.001, Adam optimizer, training epoch = 20. The proposed
model’s performance was evaluated based on accuracy, sensitivity, and specificity. The
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evaluation metrics for this study are below. TP, TN, FP, and FN denote true positive, true
negative, and false positive.

B (TP + TN)
Aceuracy = G5 TENY + (FP+ TN) ©)
L TP
Sensitivity = (Tlg—i—l)-"N) 4)
e TN
Specificity = (TI(\H—;—"P) ®)

It is important to note that all the pre-trained CNNs and the customized CNN models
have different architectures and parameters that cause variation in the results. The results
obtained from the individual trained networks on X-ray images without segmentation indi-
cate that VGG19 performed better for classifying the X-ray images by achieving accuracy,
sensitivity, and specificity values of 92.86%, 92.86%, and 92.70%, respectively. MobileNet
had the lowest sensitivity value of 90% the customized CNN model had the lowest accuracy
value of 90.04%. The evaluation results are in Table 4.

Table 4. Performance metrics obtained based on un-segmented X-ray images.

Model Accuracy Sensitivity Specificity
Customized CNN 90.04 91.03 90.01
VGG 16 92.38 91.42 92.57
VGG19 92.86 92.86 92.7
InceptionResnetv2 92.62 90.02 93.14
MobileNet 92.3 90 92.71

Xception 91.04 92.14 90

DenseNet 92.38 92.57 91.42
InceptionV3 91.67 92.86 91.43
EfficientNetB1 91.93 91.98 91.67
ResNet50 91.58 91 91.03

The second classification was with the segmented Chest X-ray Images for Tuberculosis
dataset. The obtained results increased across all the models compared to the results from
the un-segmented images. Even though the performance of all the models increased, the
VGG19 model outperformed the remaining models in the TB classification. The VGG19 network
achieved accuracy, sensitivity, and specificity values of 97.02%, 97.14%, and 97.14%, respectively.

The customized CNN model had the lowest accuracy values compared to the other
models used in this study. Despite the low performance of the CNN model, compared
to other existing deep learning models [46], our model performed better by achieving an
accuracy of 93.78% on the segmented Chest X-ray Images for Tuberculosis dataset. The
obtained results are in Table 5.

In the final study, our proposed stacking ensemble learning technique enhances
classification performance. The stack meta-model was trained on the predictions from the
individual base models obtained from the segmented lung images. The stacking ensemble
performed well because the meta-model learned to correct the variance of the base models
by differentially weighing their predictions to produce the best predictions compared to
the base models. The stacking ensemble method achieved a maximum accuracy of 98.38%.
Classification results obtained from different models for TB detection using segmented
images are compared in Table 5.
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Table 5. Performance metrics based on segmented X-ray images.

Model Accuracy Sensitivity Specificity
Customized CNN 93.78 91.2 92.24
VGG 16 96.43 95.96 96.71
VGG19 97.02 97.14 97.14
InceptionResnetV2 96.55 96.43 96.57
MobileNet 95.36 95.57 93.01
Xception 95.95 95 96.61
Densenet 96.43 95.71 96.57
EfficientNetB1 96.3 95.21 95.2
ResNet50 95.3 95.5 95.3
InceptionV3 95.76 95.14 92.81
Ensemble Technique 98.38 98.89 98.7

5. Discussion

In this study, the customized CNN model developed for TB detection from datasets of
different populations produced a good result. The use of hyperparameter optimization,
regularization techniques, batch normalization, and dropout ensured better generalization.
On the other hand, all the pre-trained CNN models used in this study performed better
than the customized CNN with random weight initializations. Image segmentation was
performed on the chest X-ray dataset to exclude unwanted parts in the images with the U-
Net model. This was to test the robustness of the segmentation on new datasets. The model
achieved an accuracy of 97.99%, an IoU of 91.78, and a Dice coefficient score of 95.89%
on the new dataset. The segmented lung images served as input data for classification
for both the pre-trained CNNs and the customized CNN models for TB classification.
The proposed method is evaluated on three standard metrics accuracy, sensitivity, and
specificity. The accuracy values increased across all the models signifying that image
segmentation enhances classification. The pre-trained models again performed better than
the customized CNN due to the limited dataset for training and testing.

This confirms that deep learning models require a large amount of data to achieve
better and acceptable results. Even though all the CNN models performed better in TB
classification on segmented and un-segmented images, VGG19 was shown to be the most
outstanding model, followed by DenseNet201 in TB detection. VGG19 achieved accuracy,
sensitivity, and specificity values of 97.02%, 97.14%, and 97.14% on the segmented chest X-
ray images. On the other hand, DenseNet201 achieved accuracy, sensitivity, and specificity
values of 96.43%, 95.71%, and 96.57% on the segmented chest X-ray images.

The loss values for training and validation on segmented images are low compared to
un-segmented images. The time to train the segmented images also increased compared to
un-segmented images. The training and validation loss obtained for these two outstanding
models on both segmented and non-segmented chest X-ray images are in Figure 11. From
the training and validation loss curves, some variances are identified and resolved through
ensemble learning. All the outcomes from the pre-trained CNN and customized CNN
models are combined for further classification using the stacked ensemble classifier.

Different kinds of ensemble techniques, such as majority voting, simple averaging,
weighted averaging, and logistic regression, are proposed for TB detection. The stacking
ensemble algorithm is adopted for this study because it has a meta-learner, which learns
to combine predictions from base models. The output predictions from the base models
serve as input, and a meta-learner combines the predictions of the base models for the final
prediction. Our proposed stacked ensemble algorithm performed well compared to the
logistic regression ensemble technique proposed in [67]. The stacking ensemble learning
reduced models” prediction variance and ambiguity by combining the predictions and
delivering optimum performance. The best result in our proposed method was obtained
from lung-segmented images using a stacking ensemble classifier. The ensemble classifier
achieved an accuracy score of 98.38%. The importance of lung segmentation gave the
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model cutting-edge over other state-of-the-art models in automatic TB detection from X-ray
images. Our proposed methodology confirmed a substantial improvement in automatic TB
detection from chest X-ray images by comparing our results to other existing works.

(A) Training and validation loss versus epochs for non-segmented chest X-ray images
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(B) Training and validation loss versus epochs for segmented chest X-ray images
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Figure 11. Training and validation losses versus epochs for non-segmented (A) and segmented chest

e-ray images (B).

In summary, all the pre-trained CNN models performed well on both segmented
images, which indicates that segmented images increase the performance of the deep CNN
model compared to the customized CNN. The ensemble classifier achieved the highest
accuracy value for TB classification despite being a computationally expensive technique.
The performance results obtained from some recently proposed CAD systems for automatic
TB detection are compared with the proposed method in Table 6.

Table 6. Performance comparison of different computer-aided diagnostic systems proposed for TB

classification.

Reference Feature Extraction Training and Evaluation Data Classifier Evaluation Metrics (%)
Msonda AlexNet, GoogLeNet Kon%’fr Ej;;ifsr; ta Iﬁoiisgiar;cel;?;;gltal' SVM Acc =98, Sens = 97
etal. [8] ResNet50, CNN Shenzhen dataset [21] CNN classifier Spec =99

Akbar o

et al, [49] CNN Montgomery and Shenzhen [21] CNN classifier Acc =92
Abideen AlexNet, VGG16, _
etal. [61] VGG19, CNN Montgomery and Shenzhen datasets [21] SVM Acc =96.42

Hooda i
CNN Montgomery and Shenzhen datasets CNN classifier Acc=94.73

et al. [38]
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Table 6. Cont.

Reference Feature Extraction Training and Evaluation Data Classifier Evaluation Metrics (%)
Datasets from Seoul
eIt_IXa[g%] CNN National University Hospital. CNN classifier Acc ;32? 2%118_ %
' Montgomery and Shenzhen datasets o
Rahman Reill\lzt’ t?(;e\);l;]et, Kaggle Chest X-ray images [68], RSNA Acc=98.6
P ! CXR dataset [69]. Montgomery and CNN classifier Sen = 98.56
etal. [53] DenseNet201, Vggl9 Shenzhen datasets [21] Spec = 98.54
SqueezeNet, MobileNet pec =2o.
Linear average
Guo et al. Acc =98.46 Sens = 98.76
[60] CNN Shenzhen datasets [21] enserp‘ple AUC = 99
classifier
Dataset from Indiana School of Medicine
Rajaraman  AlexNet, GoogLeNet, and Academic Model Providing Access to ~ SVM ensemble Acc=96.0
etal. [65] VGG-16 and ResNet-50 Healthcare (AMPATH). Montgomery and classifier AUC =96.5
Shenzhen datasets
Gabor filter, Linear
Ayazetal, Inceptionv3, VGG-Net regression _
[67] MobileNet, ResNet50, Montgomery and Shenzhen datasets encemble AUC =99
Xception classifier
Munadi ResNet and - Acc =89.92
etal. [64] EfficientNet Shenzhen datasets CNN classifier AUC =948
. CNN, 3D B
Ll[g]al' DENSEVOXNET-RPN, Private dataset CNN classifier I}e:au_‘;;;
3DUNET-RPN ec=e
Sahol et al. . K-nearest
[63] MobileNet Montgomery and Shenzhen datasets neighbor (KNN) Acc=94.1
Devnath CNN NIOSH dataset [41] CNN classifier Acc=87.29
etal. [50]
CNN’ VGG, Chest X-ray images for tuberculosis [70] Stacked Acc =98.38
Prposed InceptionResnetV2, K
; . aggle dataset [68] ensemble Sen =98.89
model MobileNet, Xception, Montgomery and Shenzhen datasets [21] classifier Spec =98.70
DenseNet, InceptionV3 & y pec=20.

6. Conclusions

A supervised deep learning model trained on a dataset from one population may not
always have the same detection performance when presented with data from another popula-
tion set. This paper presents a robust deep learning system based on a heterogeneous dataset
for automatic TB screening using frontal chest X-ray radiographs. Tuberculosis manifests
in many ways, hence the need for a model to automatically classify an X-ray image as TB
positive or negative. A U-Net model was used to segment chest X-ray images, which served
as input data for our customized CNN and pre-trained CNN models for feature extraction
through transfer learning. Through segmentation, classification accuracy improved across
all models compared to classification values from un-segmented images. Variance in the
output values of the individual models was reduced through stacking ensemble learning. The
outcomes from these eight models combined through stacking ensemble learning achieved an
accuracy value of 98.38%. This state-of-the-art performance suggests that our proposed model
can be used for mass TB screening, especially in areas where TB is much more prevalent. The
performance of DL models largely depends on big data.

Future Work

The performance of DL models depends on a larger dataset, which is not the case
with medical images affecting the performance of DL models in a real-time scenario. The
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performance and robustness of the proposed work can improve by evaluating it on a larger
dataset. New augmentation techniques can be developed to introduce more diversity in
the dataset to avoid model overfitting. Supervised learning depends on a labeled dataset,
which is an expensive and time-consuming task. We recommend that future works focus on
unsupervised learning approaches capable of self-generating labels for unlabeled medical
datasets for classification. Finally, we recommend the implementation of transformer
networks with a self-attention mechanism for visual tasks such as TB detection from X-ray
images instead of the already-known CNN models.
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