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Abstract: Artificial intelligence (AI) has been described as one of the extremely effective and promis-
ing scientific tools available to mankind. AI and its associated innovations are becoming more popular
in industry and culture, and they are starting to show up in healthcare. Numerous facets of healthcare,
as well as regulatory procedures within providers, payers, and pharmaceutical companies, may be
transformed by these innovations. As a result, the purpose of this review is to identify the potential
machine learning applications in the field of infectious diseases and the general healthcare system.
The literature on this topic was extracted from various databases, such as Google, Google Scholar,
Pubmed, Scopus, and Web of Science. The articles having important information were selected for
this review. The most challenging task for AI in such healthcare sectors is to sustain its adoption in
daily clinical practice, regardless of whether the programs are scalable enough to be useful. Based
on the summarized data, it has been concluded that AI can assist healthcare staff in expanding their
knowledge, allowing them to spend more time providing direct patient care and reducing weariness.
Overall, we might conclude that the future of “conventional medicine” is closer than we realize, with
patients seeing a computer first and subsequently a doctor.

Keywords: infectious disease; healthcare; artificial intelligence; disease treatment; computer methods

1. Introduction

Microorganisms that cause diseases, such as parasites, microbes, viruses, and fungi
induce infectious illnesses and allow symptomatic or asymptomatic disorders to exist.
Specific infectious conditions, for example, the human immunodeficiency virus (HIV),
may be relatively asymptomatic but, if left untreated, may have catastrophic effects after
a few years [1]. Disease-caused infections propagate in different ways depending on the
microorganism. Infectious illnesses caused the greatest percentage of premature deaths
and disabilities in the twentieth century. At the turn of the century, the Spanish flu made its
appearance [2]. During the 1918–1919 pandemic, it is claimed that one-third of all people
in the world (500 million people) were sick and had symptoms (Figure 1) [2]. It was one of
the world’s most dangerous influenza pandemics in the history. At least 50 million people
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died as a result of the outbreak according to estimates [2]. Since then, nearly all outbreaks
of influenza A were generated by mutant forms of the 1918 virus, and the pandemic’s effect
was not limited to the first quarter of the twentieth century.
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AI has been described as one of the extremely effective and successful scientific
methods for humanity among the currently available tools [3]. Huge amounts of data are
required to be washed, organized, and integrated into the input resource for AI. Recent
studies have shown the importance of machine training for image recognition in situations
where traditional technologies were unable to detect early symptoms of the disease [4].
This is especially true in case of the cancer [5], where AI will help with the diagnosis
and treatment. This is also true in developed countries, where finances, healthcare costs,
and other constraints hinder delivering adequate care. Focused on essential imaging and
deep learning, a group of researchers recently demonstrated the feasibility of developing
a reduced-price entrance of treatment for the diagnosis of lymphoma [6]. Numerous
studies have proposed that Bayesian networks (BN) be used to describe dependencies
in the statistics [7]. The BN is a charting framework of mutual multivariate probability
distributions, which preserves conditional independence characteristics among different
parameters [8]. The advancement of effective analytical methods is increasing in the period
of biological systems and personalized drugs. A modern kind of information, known
as recreational data, will become increasingly important in the healthcare field, which is
the Internet of Things (IoT). The IoT is an increasing system of sensors and tools which
gather the data and are used in our everyday lives. Wearable and smart systems are
common examples of devices that produce constant data streams, which may be applied
to have a deeper understanding of our way of life. It is claimed that over 7 billion linked
devices are actually in use around the world, and using this technology will greatly expand
the opportunities for improving our lives. Such datasets, as well as traditional wellness
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datasets, have been used to better understand infectious disorders, infection processes,
treatment tolerance, spread, and vaccine layout (Figure 2) [7,8].
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Figure 2. Infectious disease prevention principles must be followed. The series presents the main
aspects of controlling infection and improving control by protective steps (vaccination and hygiene).
The importance of the artificial intelligence (AI) environment in this effort cannot be overstated.

AI and its related advances are becoming more widely used in the business and society,
and they are starting to show up in medical treatment. Many facets of healthcare, as well
as the regulatory procedures within providers, payers, and pharmaceutical companies,
may be transformed by these innovations. Various trials have also demonstrated that AI
may perform as well as or better than humans in essential medical treatment activities
such as the diagnosis of diseases. In terms of identifying cancerous cells and educating
researchers on how to grow communities for costly clinical trials, algorithms are already
outperforming radiologists. However, we believe it will be decades before AI replaces
humans in a range of medical procedures for a variety of reasons. Although AI is poised
to make a significant impact in healthcare, there are a few ethical problems to consider
when putting these systems in place and making decisions about them. Accountability and
openness in such systems’ decisions, the risk of team harm due to algorithmic prejudice
and professional duties, and the integrity of therapists are only a few ethical concerns.
As a result, it is critical to think about and analyze the possible benefits of high-quality
healthcare systems with the most precise and cost-effective intelligence calculation at a
very low cost when employing such programs. Furthermore, AI algorithms are capable of
performing predictable computer analysis by filtering, modifying, and searching patterns
on massive databases from several sources in order to make rapid and accurate conclusions.
Therefore, in the present review, we discussed how AI can help with various aspects of
healthcare, as well as some of the barriers to AI’s accelerated acceptance in healthcare, as
described in (Figure 3) [6].
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2. Types of AI Those Are Useful in Healthcare

AI is a group of technologies rather than a single technology. Many of these technolo-
gies are rapidly operating in the healthcare sector, but the specific procedures and functions
they support may vary widely. Some of the most important AI healthcare technologies are
described below.

2.1. Machine Learning and Deep Learning

Among in-depth learning and emotional networks, machine learning is a mathematical
way of incorporating data models and teaching models to ‘learn’ by training them with the
data (Figure 4) [9,10].

According to a 2018 Deloitte survey of 1100 US managers, whose organizations were
already exploring AI, 63 percent of the companies surveyed were employing machine
learning in their operations [9]. The most prevalent application of machine learning
technology in healthcare is accurate medicine, which predicts treatment strategies that
are likely to be beneficial for a patient based on their numerous features and treatment
setting [10]. Most machine learning and accurate medicine applications require supervised
reading, which is a training database with known variables, e.g., illness onset. The neural
network is the most advanced kind of machine learning that has been accessible since the
1960s and has been well-established in the healthcare research for several decades [11].
It is used for isolated applications such as predicting whether a patient would become
infected with a given disease. It searches for issues with inputs, outputs, and changeable
weights or ‘features’ that connect outputs and inputs. It has been compared to how
neurons process impulses, although the brain function parallel is not as strong. One of the
most complicated techniques for machine learning is in-depth learning, which involves
neural network models with several degrees of variability or variability that predicts
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the outcomes. The quick processing of contemporary image processing units and cloud
architectures may reveal thousands of hidden elements in such models. A frequent in-
depth research program in healthcare involves identifying probable malignant tumors in
radiology imaging [12]. Radiomics, or the discovery of crucial clinical aspects in imaging
data that is beyond the human eye’s purview, is increasingly used in in-depth studies [13].
In oncology-focused image analysis, both radiomics and in-depth learning are often used.
Their combination appears to offer better diagnostic precision than the previous generation
of image analysis technologies, known as computer-assisted detection (CAD). In-depth
learning is also becoming more popular for speech recognition, and as a result, it is a
type of natural language processing (NLP), which is covered further below. In contrast to
the previous forms of mathematical analysis, each element in an in-depth reading model
usually has little meaning for the observer. As a result, interpreting the model results may
be too difficult or impossible. Recently, machine learning algorithms have been explored
significantly in medical and public health diseases [14–16]. Machine learning algorithms
are important in analyzing multiple and complex variable in clinical datasets [17–19]. The
wide range of machine learning algorithms with different characters and design goals are
available. Some advanced machine learning algorithms such as deep neural networks
(DNN) and support vector machines (SVM) utilize complex nonlinear transformations in
order achieve superior prediction accuracy [16,20,21]. However, it is not possible to figure
out how these algorithms make predictions due to their complex nonlinear transformations.
On the other hand, some machine learning algorithms such as decision trees (DT) and
naïve Bayesian classifiers (NBC) follow highly interpretable decision processes to achieve
the predictions [22–25]. DT and NBC offer inferior prediction accuracy compared to the
DNN and SVM algorithms due to the absence of complex nonlinear transformations. All
these algorithms are helpful in the prediction of accuracy in various infectious diseases.
Several prediction models have also been developed for the identification of new COVID-
19-infected patients [26–28].
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2.2. Natural Language Processing

Since the 1950s, AI researchers have sought to understand human language. Speech
recognition, text analysis, translation, and other language-related applications are all
examples of NLP applications. There are two types of NLP: mathematical and semantic.
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Mathematical NLP is based on machine learning (particularly in-depth studies of neural
networks) and has contributed to recent improvements in visual accuracy. You need to
have a large ‘corpus’ or a language course in which you can learn. The most common use
of NLP in healthcare involves the creation, understanding, and classification of clinical
literature and published research. NLP systems can analyze randomized clinical notes on
patients, prepare reports (for example, by radiology tests), record patient interactions, and
conduct AI dialogue [11,29–32].

2.3. Robotic Process Automation

These technologies perform organized digital control tasks, such as those integrating
information systems, as if human users are following a text or set of rules. It is less
expensive, easier to configure, and more transparent in its behaviors than other types of AI.
Robotic process automation (RPA) is a type of automation that uses computer programs that
run on servers rather than robots. It employs workflow, business rules, and a combination of
‘presentation layer’ and information systems to function as a less intelligent programming
user. They are used in healthcare to perform repetitive tasks such as prior authorization,
updating patient records, and billing. When combined with other technologies such as
image recognition, it can be used to extract the data from faxed images, for example, and
be integrated into transaction systems [33]. These technologies are explained separately,
but they are becoming increasingly intertwined: Robots are receiving sophisticated AI
“brains,” while image recognition and RPA are merging. In the future, these technologies
may become so intertwined that integrated solutions will become more or less feasible.

2.4. Explainable and Interpretable AI

Scientists often believe the terms explainability and interpretability to be interchange-
able, but they have practical distinctions [34,35]. Although there is no formal mathematical
definition for explainability or interpretability, several attempts to distinguish these two
notions have been attempted [36–38]. The most common definition of explainability is the
ability to communicate with humans in understandable terms [37]. The interpretability
of a model’s outputs, on the other hand, is largely related to the intuition underlying the
model’s outputs [39]. Explainable AI (XAI) aids in the communication of automated choices
to affected patients in a clear and intelligible manner [34]. In the fields of healthcare and
biomedical sciences, XAI is garnering more scientific interest [35]. The core logics and
mechanics of a machine learning system are related to XAI. The more understandable
model may lead to a deeper knowledge of human disorders. Humans may not be able to
understand the internal logics or underlying mechanisms of an interpretable model [34,35].
Hence, when it comes to machine learning systems, interpretability does not imply ex-
plainability or vice versa. As a result, it has been suggested that interpretability alone is
insufficient, and that the presence of explainability is also essential [37]. For a thorough
grasp of XAI, a variety of models are provided [40–44]. Interpretable and interactive
machine learning modeling approaches that engage both domain experts and machine
learning experts simultaneously have also been utilized in healthcare systems [42,43].

2.5. Administrative Applications

There are various management applications in healthcare. In this domain, the use
of AI has less flexibility than inpatient care but can provide significant efficiency. This
is required in healthcare because the average US nurse, for example, spends 25% of her
time on the job on administrative duties [44]. RPA technology is most likely related to this
goal. It has applications in a number of healthcare systems, including applicant processing,
clinical recording, income cycle management, and medical records management [45,46]. In
addition to the patient interaction, mental health and wellness, telehealth, and chatbots
have been employed in additional healthcare settings. These NLP-based applications can
help with tasks as easy as filling out a prescription or keeping track of a schedule. In a study
of 500 US users of the top 5 health interviews, patients expressed concerns about disclosing
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private information, dealing with complex health circumstances, and misuse [47]. Machine
learning is another AI technology associated with claims and payment management because
it can be used to match possible data across the different websites. Insurance brokers are
responsible for verifying the accuracy of the millions of the claims. Identifying, analyzing,
and correcting incorrect coding problems and claims saves time, money, and effort for all
stakeholders—health insurance, governments, and providers alike. Negative claims that
slip through the gaps represent the enormous revenue opportunity that data comparisons
and application evaluation tests can provide.

3. Diagnosis and Treatment Applications

MYCIN has been used to detect plasma infections since the 1970s when this was
developed at Stanford [48]. The priority of AI has been on illness detection and therapy.
Although, AI and many other early schemes built on rules have seen potential in terms of
correctly diagnosing and illness treatment, they were never used in medical care. They were
little different than human doctors and surgeons, and their processes and medical informa-
tion processes were seriously organized. Numerous healthcare entities are having difficulty
in implementing AI. While rule-based systems incorporated in electronic health record
(EHR) systems are widely used, they lack the precision of more algorithmic frameworks
based on machine learning [49]. More currently, IBM’s Watson has received a lot of press for
their emphasis relating to precision medicine, especially tumor detection and medical care.
Watson uses a mixture of AI and NLP. Nonetheless, the consumers’ support for the use
of engineering has waned when they realize how difficult it is to educate Watson on how
to deal with specific forms of cancer, as well as how difficult it is to integrate Watson into
the treatment procedures and programs. Watson is a set of “cognitive resources” offered
via the application programming interfaces (APIs), including speech and language vision,
as well as data analysis and machine learning algorithms [50]. Based on the rules, the
medical choice support mechanisms are complex to manage when medical science evolves,
and they are frequently incapable of handling the avalanche of evidence and information
resulting from genetic, proteomic, biochemical, and other ‘omics-based’ approaches to
the treatment. Most of the certain conclusions are centered on the radiological image
processing [51], while some use other kinds of photographs, such as retinal scanning [52] or
precision medicine based on genomic data [53]. These kinds of results that are founded on
computer-focused statistical techniques for study are being announced in a phase of proof-
and probability-based science, which is widely viewed as optimistic but poses numerous
ethical issues in medicine and relationships between the patients and doctors [54]. The com-
panies in the technology sector and entrepreneurs are now concentrating their energies on
the same issues. For example, Google is collaborating with healthcare providers channels
to develop big-data predictive models that would alert physicians to elevated conditions
such as sepsis and heart disease [55]. Image-understanding algorithms based on Google,
Enlitic, and a host of other firms are working on AI. Jvion developed a “clinical progress
machine” that recognizes the patients who are the most in danger and those that are most
expected to react to treatment protocols. Each of these may help physicians make better
decisions when it comes to determining the right diagnosis and care for their patients [54].

4. Applications for Patient Involvement and Adherence

Patient involvement and compliance have long been considered the “last mile” barrier
in the healthcare industry, the last line of defense between poor and good health outcomes.
The better the outcomes—utilization, cost, and member experience—the more patients take
an active role in their health and care. In a study of more than 300 physician healthcare
executives and legislators, more than 70% of those who responded claimed that fewer
than half of their patients were actively interested, and 42% said that less than a quarter
of their customers were deeply connected [56]. Can AI-based abilities be successful in
enhancing and contextualizing treatment if better patient engagement results in improved
healthcare results? Machine learning and workflow engines are increasingly being used to
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guide complex interventions across the healthcare spectrum [57]. Messaging warnings and
associated, tailored material that motivates behavior at critical moments is an attractive
field of research.

5. Implications for the Healthcare Workforce

The concern about how AI might lead to process advancement and major job losses
has received a lot of press, as per a Deloitte–Oxford Martin Institute collaboration [58]. AI
might generate 35 percent of UK jobs in the next 10 to 20 years. Multiple surveys have
found that, while certain tasks can be automated, several other factors, such as the cost of
robotics advancements, labor sector advancement and cost, automation has several benefits,
and approval on a national and social level may help to prevent job losses [59]. Automation
has several benefits, beyond simple labor substitution, and approval on a national and
social level may help to prevent job losses. Jobs that count losses can be restricted to 5%
or minute due to these causes. Rather than actual patient touch, the healthcare jobs that
include dealing with electronic signatures tend to be most probably to be automated, for
example, radiography and pathology [60]. There is also a chance that new positions will
be developed to support and improve AI technology. However, AI systems are unlikely
to significantly decrease the rates of clinical diagnosis and care throughout the period if
individual jobs remain stable or increase. On the other hand, bias is one of the major issues
of AI systems, which cannot be ignored. The details of bias with respect to AI systems are
described below.

5.1. Bias

This is not a new problem, but a “bias as old as a human civilization”; it is human na-
ture that most members of the ruling party ignore the experience of other parties. However,
AI-based decision-making has the potential to magnify the existing biases and transform
new categories and conditions, which may lead to new types of bias. These ever-increasing
concerns have led to the re-evaluation of AI-based programs to implement new approaches
that address the impartiality of their decisions. The latest technologies for bias in AI-based
decision-making systems, as well as open challenges and guidelines for AI solutions for
the public good, are discussed. Bias is divided into three broad categories.

5.1.1. Understanding Bias

Methods that can be adjusted and explicitly described to aid in understanding how bias
is formed in society and to integrate into our sociotechnical systems manifest themselves in
data utilizing AI algorithms and can be modeled and formally defined.

Mitigating Bias

Pre-processing, processed, and post-processing strategies addressed bias in the various
stages of AI decision making, with pre-processing, processed, and post-processing methods
focusing on data entry, learning algorithms, and model results, respectively.

Accounting for Bias

Methods that introduce bias either in the present, as a result of data collecting bias,
or in the past, as a result of interpreting AI judgments in human terms. We know that
bias and prejudice are not limited to AI and that technology can be used (consciously or
unconsciously) to reflect, enhance, or distort the real-world perspective. As a result, it
is naive to believe that technological fixes will suffice, because the core causes of these
issues are not limited to technology. To ensure the long-term well-being of all parties, more
technological solutions are needed, including socially acceptable definitions of fairness and
reasonable interventions. Fairness is critical machine learning in AI [61]. It is well known
that algorithms are not fair in minority sub-populations [62]. Fairness has important role
in bias. The fairness in multiaccurcay boost could reduce the chances of different kind of
bias [62]. Because bias and discrimination are multifaceted and flexible, these challenges
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require multidisciplinary perspectives and ongoing dialogue with the society [63]. However,
as AI technology enters our lives, it is important for technology creators to recognize bias
and prejudice and ensure responsible technology use, keeping in mind that technology
alone is not the solution to all forms of bias and AI problems [64].

5.2. Various Implications for the Healthcare Workforce

In the healthcare, the circular data processing is used to produce sound communicable
decisions. The increasing growth in clinical data has added to the stress of healthcare
employees’ jobs, limiting their capacity to offer high-quality and efficient care. Healthcare
organizations should reconsider their tactics to ensure that staff are completely satisfied and
supported in their work. The use of AI has the potential to improve operator performance.
The use of AI in healthcare is not new, but it has made the great strides in the field in
recent years. This has been made possible in part by substantial advancements in big data
analysis, which have been supported by the increasing access to healthcare data. When
used in conjunction with proper analytical methodologies, such as machine learning tools,
AI has the potential to alter many aspects of the healthcare.

5.3. AI to the Rescue

AI may alter the function of healthcare providers and, as a result, the interaction
between them and their patients. On the one hand, as automation grows in power, there
is fear about the future, but there is also concern that increased technological output
would render some healthcare services obsolete [65]. While much remains unknown about
how AI will be implemented, there are signs that AI has the ability to improve provider
performance in terms of providing effective, efficient, and high-quality care.

5.4. Productivity

Administrative duties, data extraction from health records, treatment plan design, and
consulting are just a few of the applications where AI is applied. Some time-consuming
repetitive processes can be performed quickly and effectively using AI. This allows health-
care practitioners to dedicate more time to the treatments that are tailored to the clinical
conditions and demands of their patients. Furthermore, AI enables healthcare providers to
oversee the care of huge groups of the patients. The adoption of AI-enabled tools in nursing
has been shown to enhance the productivity by 30–50 percent [66]. A strong technique to
meet the basic goal of healthcare has been suggested: combining AI and human intellect,
or ‘extended intelligence’ [67].

5.5. Workload

Work stress, which impacts the quality of care and patient outcomes, accounts for a
large portion of the workload [68,69]. Previous research has revealed that administrative
responsibilities have a significant impact on worker turnover and time constraints [68]. In
ambulatory settings, for example, physicians spend 49 percent of their time on electronic
and desktop health data, whereas only 33 percent of their time is spent on direct clinical
contact with the patients and staffs [70,71]. AI has the ability to dramatically reduce the
administrative load by automatically filling in structured data fields from open clinical
notes, accessing essential data from previous clinical records, and collecting recorded
patient encounters. According to a recent study [72], voice-to-text writing will save doctors
17 percent of their time and registered nurses 51 percent of their time. Amazon is working
on a new machine learning solution that will extract useful information from unstructured
EHR data and unstructured clinical notes. Amazon’s medical comprehension enables the
extraction of essential clinical terminology relating to patient diagnosis, drugs, symptoms,
treatment, and other interactions with the healthcare system from unstructured EHR
data [73].
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5.6. Performance

AI systems have the potential to improve the diagnostic and treatment decisions, while
reducing medical errors. In the fields of medical imaging and diagnostics, AI has made
great progress. In-depth learning techniques aid in the prevention of diagnostic errors and
the improvement of test results. For example, AI has been shown to improve the clinical
imaging investigations in the detection of cancer and diabetic retinopathy [74,75]. Many
healthcare providers are incorporating AI into their everyday routines in order to obtain
knowledge on an increasing amount of clinical data and therefore reduce patient risk. AI
can also be utilized to update clinical records automatically, retrieve quality reporting
data, and insert diagnostic codes [76]. Furthermore, technology companies such as Google
(DeepMind), IBM (Watson), and others are investigating the possibility of AI-enabled
surgical robots that use machine learning skills. The use of AI-enabled robots is intended
to increase accuracy, reduce harm, and accelerate therapeutic recovery.

5.7. Teamwork

The current status of healthcare necessitates cooperation and collaboration between
healthcare providers. To promote collaborative decision making, coordinated activities,
and progress tracking, excellent communication is required. AI may combine the data from
a variety of formal and informal sources to provide the integrated, quick, and consistent
access to the patient data across the numerous settings and instructions. Chatbots have
been used to arrange and coordinate the therapy sessions, provide reminders, and educate
the physicians on the patient’s condition based on the symptoms in some cases.

5.8. Newer Challenges

AI has the potential to significantly improve the quality and efficiency of healthcare,
resulting in increased productivity, provider satisfaction, and user experience, as well as
better outcomes. Policymakers, industry, healthcare providers, and patients must all face
new obstacles in order to fully grasp AI’s potential.

5.9. Professional Liability

Traditionally, clinical decision making has been the purview of the licensed healthcare
specialists. Because AI is frequently utilized to aid with clinical operations, AI decision
support systems may have an impact on the professional obligations of healthcare practi-
tioners in each patient. Given AI’s ability to make incorrect conclusions, the legal obligation
of AI-assisted decisions is frequently misinterpreted. This is complicated further by the
fact that developing relevant legal concepts and guidelines takes longer than developing
technological skills. Another fear is that AI may deter healthcare providers, preventing
them from double-checking results and challenging inaccuracies [77].

5.10. Labour Market Implications

The skills and competence required by healthcare providers are anticipated to alter
as a result of the introduction of various new technologies. In some cases, AI may be able
to perform tasks that humans previously performed. Furthermore, as AI progresses in
healthcare, new skill sets, such as informatics, may become more in demand. To satisfy the
needs of the labor market, education, and training programs, it will need to be adjusted.
There are also concerns that AI systems will be used to justify the hiring of low-skilled
personnel. If technology fails and staff are unable to spot the mistakes or accomplish
needed duties without the assistance of computers, this might be troublesome [78,79].

5.11. Provider Competencies

The skills and competence required by the healthcare providers are anticipated to alter
as a result of the introduction of various new technologies. In some cases, AI may be able
to perform tasks that humans previously performed. Furthermore, as AI progresses in
healthcare, new skill sets, such as informatics, may become more in demand. To satisfy the
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needs of the labor market, education, and training programs will need to be adjusted. There
are also concerns that AI systems will be used to justify the hiring of low-skilled personnel.

6. Ethical Implications

Finally, AI’s application in healthcare creates a slew of legal issues. Humans used to
make almost all healthcare decisions, so having smart technologies produce or assist with
them raises issues of accountability, transparency, consensus, and secrecy [80]. With today’s
technology, the most difficult problem to tackle is transparency. Most AI algorithms, in
particular machine training algorithms utilized during image manipulation, are nearly
inaccessible to understand or interpret [81]. If a person told that a picture contributed to the
detection of a tumor, she or he would almost certainly want to know why. Extreme thinking
algorithms, as well as doctors with a basic understanding of how they work, may be unable
to offer an interpretation. Inpatient treatment and diagnosis will almost certainly be messed
up by AI software, and holding them accountable could be tough. Patients are more likely
to receive care records from AI systems than from a knowledgeable physician. Machine
learning models in healthcare may be prone to algorithmic bias, such as predicting a higher
risk of disease based on sex or ethnicity when such elements are not causal factors [80,81].

Computer systems are an important branch of ethics that began to emerge in the late
1950s and early 1960s. It arose as a result of the introduction of computers and the moral
implications that resulted. Computer ethics is about the effects of ethical behavior on
the existence and use of computers. In healthcare, AI has many behavioral effects. The
first behavioral problem is that of AI’s ethical responsibility. A moral obligation is an
obligation to accept responsibility for one’s actions. Some may argue that they have no
moral obligation because AI is sensitive. It is important to note, however, that AI may be
morally responsible. For example, the computer program used in medical examinations
is not emotional, but it has the moral obligation to do so. The second moral error is
the responsibility of the AI developer. It is responsible for ensuring that AI is able to
meet people’s needs. The third difficulty of behavior is the responsibility that comes with
using AI. It is our responsibility to ensure that AI is not used for unethical purposes.
Responsibility related to people affected by AI is the fourth behavioral problem. AI is
responsible for ensuring that it does not have a negative impact on a particular group of
people or society. The fifth meaning of ethics is the responsibility that comes with using AI.
It is our responsibility to ensure that AI is not used in ways that infringe on the rights of
others. The responsibility associated with the ethics used to guide AI design is the sixth
ethical riddle. These principles are used to help AI developers ensure that AI works.

6.1. Six Principles to Ensure that AI Serves the Public Interest in All Countries

The WHO provides the following principles as the basis for AI control and governance
in order to limit the risks and maximize the potential for the use of AI in healthcare [82]:

6.1.1. Protecting Human Autonomy

This means that people should govern healthcare systems and medical decisions;
privacy and confidentiality must be safeguarded, and patients must give informed consent
utilizing proper legal frameworks for data protection. Information sharing agreements
could be utilized to provide the institutions access to the health information of the pa-
tients [83]. It is known that some public–private partnerships for implementing machine
learning have resulted in the poor protection of privacy [84]. Therefore, the privacy aspects
of healthcare in AI and machine learning must be safeguarded [83,84].

6.1.2. Promoting Human Well-Being and Safety, as well as the Public Interest

Regulatory standards for the safety, accuracy, and efficacy of well-defined application
cases or indicators must be met by AI technology designers. Measures to increase the
quality of AI use and control practice performance should be in place [83].
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6.1.3. Importance of Transparency, Explainability, and Intelligibility

To demonstrate this, sufficient material must be published or written prior to the
invention or deployment of AI technology. Such data should be readily available to allow
for real public participation and debate regarding how technology is built and how it
should or should not be utilized [84].

6.1.4. Fostering Responsibility and Accountability

Although AI technology is capable of performing certain functions, it is the respon-
sibility of participants to ensure that it is used under the right conditions and properly
trained people. Individuals and groups affected by algorithm-based decisions should have
access to effective question-and-answer methods [82].

6.1.5. Ensuring Inclusiveness and Equity

Involvement requires that AI health is designed to promote the use and access to
equity as broadly as possible, regardless of age, gender, sex, income, race, ethnicity, sexual
orientation, ability, or other aspects protected by human rights [84].

6.1.6. Promoting AI that Is both Responsive and Sustainable

Designers, engineers, and users should evaluate AI systems on a regular basis and in
public to see if it responds adequately and effectively to expectations and requirements. AI
algorithms should also be designed to have the least amount of environmental impact and
to use as little energy as feasible. Governments and businesses should plan for potential
workplace disruptions, such as the training of healthcare personnel to adapt to AI systems
and the potential loss of jobs as a result of automated systems. These principles will guide
future WHO efforts to guarantee that AI’s full promise for healthcare and public health is
realized [82].

7. AI in Disaster Management

In today’s world, AI has exploded in popularity. The use of AI as a tool could help
to lower the danger of death, environmental damage, and societal impact, as well as
respond to disasters more intelligently [85]. The function of AI in disaster management
is critical for predicting scenarios and determining disaster solutions. By minimizing
the risk of human life during disasters, AI fosters technological growth and stimulates
development [86]. It has been suggested that AI be used in order to offer reliable results
based on the algorithms stored in the AI technology database. It is critical to acquire
data from previous catastrophes in order to conduct an analysis and design efficient
disaster mitigation strategies [85–87]. Various AI difficulties have been identified, as a
machine cannot possess all of the characteristics of a human. The expenses, protection of
human life, environmental protection, and incorrect data are among the challenges. The
development of AI comes at a high cost [85,86]. Advanced technologies, strong companies,
professional expertise, and extensive testing are all required. Testing vulnerabilities for
disaster management takes time and money in the creation of drones and robotics [85].
Both animal and human life are affected by disasters. As a result, programming in AI
technologies must be precise in order to predict any impending danger. At the same time,
it is critical to preserve lives and prevent deaths during a disaster [85,86]. AI is designed to
maintain the ecosystem, and protecting the entire environment on such a large scale during
a disaster is tough. Before adopting any corrective efforts, the disaster-affected area must
be examined, and infrastructure, society, and the environment will all suffer losses. The
aim is to conserve and remodel everything that has been impacted following a calamity,
which necessitates advanced AI skills. Real-time data can save lives, but it is difficult to
obtain such data, and any erroneous information can be fatal [85]. Erroneous information
has negative implications for catastrophe preparedness and response. The actual crowd is
represented by the data collected from multiple sources, which includes both purposeful
and unintentional misleading data [85,86].
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8. Conclusions

We believe that AI will play a significant role in the healthcare industry. Precision
medicine, which is widely known for much improvement in healthcare, is fueled by this
capability. Though early attempts at diagnosis and therapy guidance proved challenging,
we expect that AI can now master the domain as well. Thanks to significant improvements
in AI for imaging science, many radiology and pathology images are projected to be
evaluated by a device at some point. Voice and text analytics are increasingly used for tasks
such as patient communication and diagnostic report collection, and this pattern is expected
to continue. The most challenging challenge for AI in such health domains is maintaining its
acceptance in ordinary clinical practice, rather than whether the technologies are competent
enough to be effective. AI programs should be licensed by governing bodies, capable of
EHR systems, standardized to the point that identical devices function in the same way,
trained by physicians, financed by either public or commercial payers, and modified in the
long run in the sector for universal acceptance to occur. These obstacles will be solved in the
end, but they will require even more than that for the maturation of the technology itself.
As a result, within the next five years, we expect to see minimal AI application in clinical
practice, with more widespread use by the next decade. It can increase the productivity
and efficiency of care delivery and allow healthcare systems to provide more and better
care for more people. Compared to previously reported articles on AI, this review focused
on the applications of AI in healthcare systems especially in the diagnosis and treatment of
infectious diseases (Table 1). Based on the summarized data, it has been inferred that the
AI can help in improving the knowledge of healthcare workers, enabling them to spend
more time in direct patient care and reduce fatigue. Overall, we might conclude that the
future of ‘traditional medicine’ may be closer than we think, with patients first seeing a
computer and then a doctor.

Table 1. Application of different kinds of artificial intelligence (AI) in the prevention and diagnosis of
different diseases.

S.N. Type of AI Application Reference

1 AI Clinical oncology [5]
2 Machine learning Lymphoma [6]
3 Machine learning Myeloid leukemia [10]
4 Deep learning Cancer [13]
5 AI COVID-19 [14]
6 Machine learning Dengue [15]
7 Machine learning Cardiovascular diseases [16]
8 Deep learning Pulmonary infection [19]
9 Deep learning COVID-19 [27]
10 Machine learning Venous thromboembolism [40]
11 Machine learning Neovascular macular degeneration [53]

9. The Future of AI in Healthcare

We believe that AI will play an important role in future healthcare delivery. A critical
talent in the development of precise medicine, which is universally recognized as a much-
needed advance in healthcare. Although early attempts to make diagnostic and therapeutic
advice proved tough, we believe AI will finally grasp the subject. Given the rapid develop-
ment of imaging techniques, it appears that most radiology and pathology images will be
scanned by machines at some point. Speech and text recognition are currently in use for
things such as patient communication and clinical photography, and they will continue
to grow in popularity. The most difficult challenge for AI in various healthcare settings is
assuring its availability in day-to-day clinic operations, not whether the technology will be
useful. To achieve widespread acquisition, AI programs must be approved by regulators,
integrated with EHR systems, standardized until the same products do the same, trained
by physicians, paid for by public or private organizations, and updated in the field over
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time. These obstacles will be solved eventually, but it will take longer for the technology
to evolve. As a result, we anticipate modest AI applications in clinical practice during the
next five years, followed by widespread adoption over the next decade. It is also evident
that AI algorithms will not, on a big scale, replace human doctors but will instead intensify
their efforts to care for patients. Human physicians may eventually switch to careers that
require specialized human skills such as empathy, persuasion, and the integration of large
images. Those healthcare providers who refuse to cooperate with AI may be the only ones
who lose their jobs over the time.
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