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Abstract: Pediatric patients, particularly in neonatal and pediatric intensive care units (NICUs and
PICUs), are typically at an increased risk of fatal decompensation. That being said, any delay in
treatment or minor errors in medication dosage can overcomplicate patient health. Under such an
environment, clinicians are expected to quickly and effectively comprehend large volumes of medical
information to diagnose and develop a treatment plan for any baby. The integration of Artificial
Intelligence (AI) into the clinical workflow can be a potential solution to safeguard pediatric patients
and augment the quality of care. However, before making AI an integral part of pediatric care, it
is essential to evaluate the technology from a human factors perspective, ensuring its readiness
(technology readiness level) and ecological validity. Addressing AI accountability is also critical to
safeguarding clinicians and improving AI acceptance in the clinical workflow. This article summarizes
the application of AI in NICU/PICU and consecutively identifies the existing flaws in AI (from
clinicians’ standpoint), and proposes related recommendations, which, if addressed, can improve AIs’
readiness for a real clinical environment.

Keywords: Artificial Intelligence; technology readiness level; accountability; reliability; liability;
workload; pediatric

1. Artificial Intelligence in Pediatrics

With increasing healthcare infrastructure and connected medical databases, clinicians
have more data to inform clinical decision-making than ever before. However, when
confronted with information beyond the scope of their expertise and in excessive quantities,
they are likely to resort to boundedly rational and, in some cases, incorrect diagnoses.
One way to support complex clinical processes is to leverage Artificial Intelligence (AI)
technologies, often known as AI-based clinical decision support systems. As portrayed by
the media, AI comes with surprising capabilities in healthcare. AI can be broadly defined
as an intelligent system capable of performing human-like activities based on retrospective
data. A typical AI system encompasses predefined rules, if–then statements, or is powered
by dynamic statistical models that are proficient in capturing non-linear relationships
among several variables. More recently, wide arrays of unique AI technologies have been
developed to augment the healthcare system. The US Food and Drug Administration
(FDA) has approved several AI-based products, signaling the gradual integration of AI
into healthcare [1,2].

Pediatric patients are typically at an increased risk of fatal decompensation and
are sensitive to medications. That being said, any delay in treatment or minor errors
in medication dosage can overcomplicate patient health. Under such an environment,
clinicians are expected to quickly and effectively comprehend large volumes of medical
information to diagnose and develop a treatment plan for a given baby. Being one of the
most complex and sensitive healthcare domains, neonatal and pediatric intensive care
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units (NICUs and PICUs) are ideal environments for AI use, where doctors and nurses
can leverage AIs’ computational capabilities to make well-informed and faster clinical
decisions. The use of AI in pediatrics was first recorded in 1968 when Paycha developed
SHELP, a computer-assisted medical decision-making system that diagnosed inborn errors
of metabolism [3]. Soon after, Shortliffe developed an expert system named Mycin and
identified bacteria causing severe blood infections among pediatric patients [4]. Since
then, as AI has developed, several randomized controlled trials have used the technology
for various issues in pediatrics. For instance, a study implemented an automated AI-
based decision support system to control glucose levels effectively and safely among
pediatric patients [5]. Another study developed an AI-based wearable device known as
the Superpower Glass to augment the social outcomes of children with autism [6]. A
study conducted in China successfully developed an AI-based disease risk prediction
model for newborn babies with inherited metabolic diseases [7]. A study reported a
significant improvement in neurocognitive performance among children when an AI-based
cognitive stimulation therapy was implemented [8]. Besides clinical trials, several other AI
technologies have been developed that play an active role in neonatal and pediatric ICUs.
For example, AI-based models have been used in the NICU to predict birth asphyxia [9,10]
and neonatal seizures [11], as well as to diagnose neonatal sepsis [12,13] and respiratory
distress syndrome [14]. Table 1 gives a snapshot of the various applications of AI in NICU
and PICU.

Table 1. State of the art: Artificial Intelligence in PICU and NICU (not an exhaustive list).

Study Institution(s) Patients Data Source
and Type Model Compared

with Clinicians Conclusion

[15]
Autism Brain Imaging

Data Exchange
Database

28 Research
database: Images

Artificial Neural
Network No

The study accurately predicted
cognitive deficits/function in

individual very preterm infants
soon after birth. However, larger
data size is required to achieve

the clinical gold standard.

[16] Italian Neonatal
Network 23,747

Research
database:

Numerical

Artificial Neural
Network No

The study shows that using the
only limited information

available up to 5 min after birth.
AI can have a significant
advantage over current

approaches in predicting the
survival of preterm infants.

[17] German Tertiary
Care PICU 296 EHR: Numerical Random Forest No

The study shows that AI can
facilitate the early detection of

sepsis with an accuracy superior
to traditional biomarkers.

It can also potentially reduce
antibiotic use by 30% in

non-infectious cases.

[18] Cambridge
University 94 EHR: Numerical Support Vector

Machine No

The study shows how AI
algorithms can predict severe

traumatic injury outcomes at six
months using just the three most

informative parameters.

[19]
Severance Hospital

and Samsung
Medical Center

1723 EHR: Numerical
Convolutional

Neural
Network

No

The study demonstrated that the
machine learning-based model,
the Pediatric Risk of Mortality

Prediction Tool, can outperform
the conventional Pediatric Index
of Mortality scoring system in

predictive ability.
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Table 1. Cont.

Study Institution(s) Patients Data Source
and Type Model Compared

with Clinicians Conclusion

[20] University Hospital
EHR 93 EHR: Numerical Naïve Bayesian

models Yes

The study demonstrates the
capability of AI models in

augmenting clinicians’ ability to
identify infants with

single-ventricle physiology at
high risk of critical events.

The study also reports that the
early prediction of critical events

may improve the overall care
quality and minimize health

care expenses.

[21] University of
Pittsburgh 37

Research
database: EEG

signals

Long Short-Term
Memory No

The algorithm proposed in the
study gave promising results in
automatic sleep stage scoring in

neonatal sleep signals.

[22] St. Louis Children’s
Hospital 285 EHR: Numerical Novel Deep

Learning Model No

The novel AI model developed
in the study demonstrated
efficacy in predicting the
real-time mortality risk of

preterm infants in initial NICU
hospitalization. The proposed
model also outperformed the
existing clinical risk index II

scoring system for babies

EHR = electronic health records; EEG = electroencephalogram; AUROC = area under the receiver operating
characteristic curve.

Overall, different studies have used AI either to directly improve patient health by
allowing physicians “spend more time in direct patient care [while reducing provider
burnout]” [23] or to augment clinical processes thus improving patient health indirectly.
For instance, a study conducted in California reported AI’s efficiency in identifying critically
ill PICU patients with an underlying genetic disorder [24]. A study in Spain used AI-driven
music to reduce stress levels among neonates [25]. Several studies used AI algorithms to
develop an early warning system that provided a timely detection of changes in health
status and the development of critical illness [12,15,17,19,26–28] and pathologic eye disease
progression in preterm infants [29]. A recent review also reported several ‘indirect impacts’
of AI on the pediatric patient [30,31], where AI was noted to augment clinical decision-
making and diagnostic accuracy in the pediatric setting [21,24,28].

2. Current Challenges Preventing AI Application

Despite all the evidence supporting AI in pediatrics, its use and adoption have been
limited. Even though no studies thus far have associated AI with worsened health outcomes
or patient harm in a pediatric, why do doctors and healthcare management hesitate to integrate
AI into their clinical workload? Of all possible reasons hindering the acceptance of AI in
pediatrics, (a) the lack of ecological validity, and (b) low technology readiness level, two
inter-related factors, along with the (c) lack of AIs’ accountability, seem to be prominent
determinants that have not been sufficiently acknowledged in the literature.

2.1. Ecological Validity—Can the User Use AI Effectively and Safely?

As depicted in several studies, AI systems and technologies may facilitate a person-
alized approach to pediatric care by augmentation of diagnostic processes. The AI-based
solution has the power to reinvigorate clinical practices. Although the advent of personal-
ized patient treatment is provocative and often crucial in a pediatric environment, there
is a need to assess the true potential of AI when implemented in a real, uncontrolled, and
chaotic healthcare scenario. In all the studies published around this topic, the experiments
were either conducted retrospectively or by experts in a controlled setting, therefore lacking
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ecological validity. Recent systematic reviews [32,33] analyzing AIs’ role and performance
in healthcare acknowledged that AI systems or models were often evaluated under unreal-
istic conditions (controlled research environment) that had minimal relevance to routine
clinical practice (workload, chaos, and time constraints). Therefore, there is a lack of
evidence exhibiting AIs’ efficacy in a real clinical environment.

It is essential to understand that the working environment and cognitive workload
are significant determinants of technology use. In a pediatric setting, clinicians are often
assigned several patients with unique needs and health statuses. Given the global shortage
of staff and the increasing burden on the healthcare industry, clinicians often experience
burnout and fatigue. Individuals under such stress and discomfort might not be efficient
in utilizing AI devices and comprehending its outcome in the same way as reported in
several research articles. Therefore, studies must evaluate AI systems under a real scenario
to ensure effective use when integrated into a clinical workflow.

2.2. Technology Readiness Level

Recently, several innovations around medical AI have been associated with excellent
performance in the literature. However, research breakthroughs do not necessarily translate
into a technology that is ready to use in a high-risk environment such as healthcare [32,33].
That said, most AIs featuring prominent abilities in research and literature, for the most part,
would not be executable in a clinical environment. According to the Technology Readiness
Level (TRL), most AI systems, at least in pediatric and neonatal intensive critical care
(PICU and NICU), if not all, do not qualify for implementation. TRL is a gauging system
developed to assess the maturity level of a particular technology [34]. TRL consists of nine
categories (readiness levels), where a score of TRL 1 is the lowest, and TRL 9 is the highest
(see Box 1). By applying the TRL system to the articles involving AI in pediatrics, we can
observe that most published articles are prototype testing in an operational environment
with near-implementation readiness (TRL 7). Few to none of the AI systems discussed in
the literature have been deployed into a real ICU setting and evaluated longitudinally over
a significant duration.

Box 1. Technology Readiness Levels (1–9).
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2.3. AI Accountability—Who Is Responsible for Technology Error?

How does the absence of AIs’ accountability impact clinicians’ intention to use the
technology? This chapter explains ‘accountability’ as a process in which healthcare practi-
tioners have potential responsibilities to justify their ‘clinical actions’ to patients (or families)
and are held liable for any impending positive or negative impact on patient health. While
using an AI-based decision support system, only clinicians are held accountable if they
decide to follow an AI-based treatment, resulting in patient harm. Additionally, clinicians
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are also held responsible if they deviate from the standard protocols [1]. This may be
worrisome because, under such circumstances, clinicians will only follow AI if it matches
their judgment and aligns with the standard protocol—making the AI underused.

Furthermore, it might be difficult for clinicians, who are not necessarily trained in the
subject, to effectively comprehend AIs’ functioning under an existing burnout state and
identify any technological flaw. One way to address the problem of ‘accountability’ is by
training doctors and nurses to understand when to rely upon or not on AI recommendations.
However, training or educating practitioners on AI will require substantial effort. The AI
accountability issue solution will require a systematic approach involving stakeholders
from the law, policymakers, computer scientists, human factors researchers, healthcare
organizations, healthcare practitioners, insurance agencies, and patients.

3. Recommendations and Future Steps

Concerns regarding Ecological Validity and TRL can be associated with AIs’ usability.
There is a lack of studies evaluating the usability or user-centeredness of any AI technol-
ogy in a pediatric setting. As acknowledged earlier in this chapter, clinicians are often
overwhelmed with clinical responsibilities. Therefore, to ensure the adoption of AI in
pediatrics, it is essential to develop systems that are easy to use and that fulfill pediatric
nurses’ and doctors’ requirements. AI developers also need to consider the end-user of
their products. Since most bedside tasks are performed by nurses, the AI system im-
plemented at the bedside should be designed for nurses, as their digital literacy can be
substantially different from other physicians or researchers (study participants) and may
vary across demographics.

Future studies should include pediatric populations with multiple chronic complexi-
ties in randomized controlled trials. Current approaches to pediatric AI usually emphasize
single diseases, which may have minimal relevance to a real complex scenario. Another
consideration is to have an adaptive algorithm that can gauge patients’ health status and
evolve over time. Therefore, future research efforts to integrate AI systems into pediatric
settings need to match the measure and underlying disease trajectory to patients’ situations.

Until now, all studies have been focused on the patient. What’s missing in the literature
is the use of AI to address clinicians’ concerns. Addressing clinicians’ problems can not only
improve their clinical performance but also augment care quality. The pediatric unit (PICU
and NICU) is one of the most critical departments within any healthcare establishment. For
example, while dealing with a pediatric patient, particularly in a NICU or PICU setting,
the clinicians need to consider the body size differences between every pediatric patient
and consecutively be aware of all the continuous physical and cognitive development of
their patients. That being said, the medication dosage (which largely depends on the body
weight) might change over time for a pediatric patient (depending on their rate of physical
growth). Additionally, clinicians need to have special consideration while intubating
pediatric patients as they have larger tongues and a uniquely positioned epiglottis and
larynx. Pediatric patients also have subtle cardiovascular differences, making heart rate a
critical clinical factor. They are also prone to pathogens and neurological disorders from
poisoning. In other words, pediatric patients have a very low tolerance to any error, and
therefore, clinicians are required to pay for extra care and personalized treatment.

Apart from caring for patients, pediatric clinicians also have to dedicate a significant
amount of time and effort to educating patients’ parents. Such a work demand often takes
a heavy toll on their cognitive workload, and AI technologies can be developed to identify
clinicians undergoing excessive cognitive load or burnout. Since clinicians in a burnout
state are prone to human errors, identifying and providing them with timely assistance can
help ensure patient safety. Identifying cognitive workload will also help the floor manager
to better schedule their staff and designate appropriate resources.

Night nurses, particularly those who are new in the profession, may feel exhausted
during their shifts. In a setting where nurses have to keep a continuous watch on patient
monitors (a critical aspect in NICU and PICU settings), performing efficiently often becomes
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challenging. In such a scenario, AI, in conjunction with eye trackers, can be leveraged to
measure nurses’ attention span and to identify the zone in the screen where they gaze. AI
can then optimize the information being displayed on the clinical monitors to highlight the
essential data in real-time.

AI technology can be used to identify and record clinicians’ behavior leading to near
misses so that it can generate an alert in the future. It is essential to acknowledge that in
healthcare, outcomes are reasonable because clinicians make educated and just-in-time
adjustments according to the fluctuating health condition. Future work should train AI on
the critical adjustments made by clinicians, so that AI can adapt in real-time in the same
manner as experienced clinicians do. Please note that the views present in this article can
differ from those of experts in AI and across different healthcare settings; hence it should
be considered with caution.

4. Major Takeaways

• Artificial Intelligence has great potential, but the consideration of human factors is
essential for its sustainability in pediatrics.

• The lack of AIs’ ecological validity hinders its adoption and usage in the clinical workflow.
• The lack of AIs’ accountability can be a significant hurdle in AI acceptance among clinicians.
• Artificial Intelligence, if used appropriately, can improve clinical workflow and, in

turn, augment the quality of care.
• All AI-based decision support systems should be exclusively designed for their end-

users (doctors and nurses) to safeguard the technology as well as patient safety.
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