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Abstract: Rare diseases are a group of uncommon diseases in the world population. To date, about
7000 rare diseases have been documented. However, most of them do not have a known treatment.
As a result of the relatively low demand for their treatments caused by their scarce prevalence,
the pharmaceutical industry has not sufficiently encouraged the research to develop drugs to treat
them. This work aims to analyse potential drug-repositioning strategies for this kind of disease.
Drug repositioning seeks to find new uses for existing drugs. In this context, it seeks to discover
if rare diseases could be treated with medicines previously indicated to heal other diseases. Our
approaches tackle the problem by employing computational methods that calculate similarities
between rare and non-rare diseases, considering biological features such as genes, proteins, and
symptoms. Drug candidates for repositioning will be checked against clinical trials found in the
scientific literature. In this study, 13 different rare diseases have been selected for which potential
drugs could be repositioned. By verifying these drugs in the scientific literature, successful cases
were found for 75% of the rare diseases studied. The genetic associations and phenotypical features
of the rare diseases were examined. In addition, the verified drugs were classified according to the
anatomical therapeutic chemical (ATC) code to highlight the types with a higher predisposition to be
repositioned. These promising results open the door for further research in this field of study.

Keywords: rare diseases; biomedical informatics; drug repositioning; DISNET knowledge base

1. Introduction

Rare diseases (RD) are pathologies that have a limited prevalence in the population.
For a disease to be considered rare, in the case of Europe, it must affect fewer than 5 per
10,000 inhabitants. In the United States, a disease is considered rare when it affects fewer
than 200,000 people [1]. There are many people affected by rare diseases around the world;
more than 55 million people suffer from a rare disease only in Europe and the USA [2]. Most
rare diseases have a chronic and frequently disabling nature. They involve a heterogeneous
multisystem complexity in diagnostics and treatment, creating a unique challenge to our
public health [3].

The total number of rare diseases is difficult to specify. According to the Orphanet
(https://www.orpha.net (accessed on 3 February 2021)) database, one of the most powerful
resources about rare diseases, around 7000 diseases are catalogued. Moreover, EURORDIS
(https://www.eurordis.org (accessed on 15 April 2021)) statistics show that every year,
around 250 new ones are described. From these numbers, around 70% of these diseases
have a genetic aetiology [4]. Another problem associated with rare diseases, in addition
to the lack of drugs, is the long average time of diagnosis, which can reach up to seven
years. Furthermore, more than half of all rare diseases affect children, constituting a major
problem for society. It is estimated that over one-third of children with a rare disease will
not live more than five years, and about 35% of these children will die within the first year
of life [5].

Healthcare 2022, 10, 1784. https://doi.org/10.3390/healthcare10091784 https://www.mdpi.com/journal/healthcare

https://doi.org/10.3390/healthcare10091784
https://doi.org/10.3390/healthcare10091784
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/healthcare
https://www.mdpi.com
https://orcid.org/0000-0001-7315-2257
https://orcid.org/0000-0003-1545-3515
https://orcid.org/0000-0003-1450-7518
https://orcid.org/0000-0002-8681-0682
https://orcid.org/0000-0001-8801-4762
https://www.orpha.net
https://www.eurordis.org
https://doi.org/10.3390/healthcare10091784
https://www.mdpi.com/journal/healthcare
https://www.mdpi.com/article/10.3390/healthcare10091784?type=check_update&version=2


Healthcare 2022, 10, 1784 2 of 21

The huge number of rare diseases and the appearance of new ones every year make it
extremely difficult to develop drugs due to the high costs associated with research and de-
velopment processes [6]. EU legislation encourages pharmaceutical companies to develop
drugs for rare diseases, so-called “orphan drugs”, because this status implies incentives for
pharmaceutical companies, including 10 years of market exclusivity, protocol assistance, fee
reductions for the European Medicines Agency (EMA) centralized procedures, and specific
grants for orphan medicinal product (OMP) trials. However, only a small number of OMPs
have been developed [7] since the Orphan Drug Act of 1983, and only 600 treatment options
have been available for rare diseases [5].

One of the main reasons that hinder finding drugs for rare diseases is that developing
a drug de novo is a costly and time-consuming investment, with no guarantee of obtaining
an effective drug for the disease being investigated for treatment. The introduction of a new
compound to the market can cost as much as USD 2.5 billion, with further increasing num-
bers often including high development and manufacturing costs [8]. Merely 5 out of 5000
(0.1%) experimental compounds that enter preclinical testing progress to evaluation. Only
one of these five compounds receives approval from the US Food and Drug Administration
(FDA) for use in humans, noting the failure susceptibility of this process [9].

In this context, it is necessary to find and develop alternatives that can reduce the time
and the cost of de novo drug development. Drug repositioning is a potential alternative,
consisting of identifying a new indication for existing or already-approved drugs, beyond
the scope of their original use [10]. The use of drug repositioning for rare diseases has
gained popularity in recent years. Repurposed drugs can reach the patient as a marketed
treatment in 3–12 years [6]. They have an average cost of USD 300 million and an estimated
success rate ranging from 30% to a potential 75% [11], five times more than the development
of new compounds. Hence, the process of repurposing drugs for new indications, compared
with the development of novel orphan drugs, is a time-saving and cost-efficient method [1].

As it has been indicated, due to the high costs, pharmaceutical companies have
invested a scarce amount in the development of de novo drugs for rare diseases. Some
of the principal reasons are the small number of cases in the population and the lack
information available. Thus, the approximately 3000 drugs that have been approved by at
least one country represent a valuable untapped resource that can be used against other
diseases such as rare ones. Consequently, drug repositioning holds significant promise for
the treatment of rare diseases [12].

The progress in computer science and artificial intelligence is increasing exponentially,
which has favoured the research on drug-repositioning processes using computational-
based techniques over the years, having developed new hypotheses through them. One
of the most remarkable advances in recent years has been the development of a new
methodological pathway capable of producing potential new drug-repositioning hypothe-
ses through integrated knowledge based on biomedicine [13]. Cancer is one of the diseases
that has benefited most from these studies, which outline different potential therapies to
treat this disease [14,15].

Nevertheless, the disease that has stood out par excellence in the field of drug repo-
sitioning has been COVID-19. In the last two years, many scientific papers have been
published based on these ideas [16–18]. Within COVID-19, we can emphasize a study
based on the creation of different information paths to find 13 potential drugs to treat the
symptoms of COVID-19 and targeting SARS-CoV-2-related genes [19]. In the work by Gysi
et al. [17], deployed algorithms relying on artificial intelligence, network diffusion, and
network proximity, tasking each of them to rank drugs for their expected efficacy against
SARS-CoV-2.

Studies based on drug repositioning in rare diseases are scarcer. This is mainly due to
the small number of people affected, which makes it more difficult to obtain information on
these diseases. Despite this problem, one of the most relevant studies found in the scientific
literature is based on the discovery of potential new treatments for adrenocortical carcinoma
(ACC) through a model named Heter-LP that identifies innovative putative drug–disease,
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drug–target, and disease–target relationships for ACC [20]. Additionally, noteworthy are
the studies focused on finding a possible treatment for Alzheimer’s disease based mostly
on consensus methodologies and reviews focusing on prioritisation processes [21,22].
Another study was based on the use of networks (SAveRUNNER) for drug repositioning in
amyotrophic lateral sclerosis disease [23].

Since, as mentioned above, studies based on rare diseases are very hard to find, the
creation of new computational methods for the discovery of potential treatments for these
diseases is essential. Thus, this will be the main objective of the study that we present
in the following sections. In this work, we propose a method for the identification of
potential drug-repurposing hypotheses in rare diseases by using the data available at
the DISNET (https://disnet.ctb.upm.es (accessed on 8 May 2021)) platform [24]. DISNET
contains information of symptoms, genes, drugs, protein interactions, among other features,
related to more than 24,000 diseases. In addition, it contains the relationships that exist
between these features and the diseases, which is a great driving force for the prioritisation
of new repurposing cases. Different computational drug-repositioning methods have
been developed to find potential treatments for rare diseases. These drugs will be further
validated in the scientific literature. Furthermore, specific information about rare diseases
has been collected from the Orphanet database in order to obtain the global prevalence and
the prevalence value of these diseases.

2. Materials and Methods

In this section, the materials and methods carried out throughout the study will be
explained, differentiating two important subsections. On the one hand, materials, where
the data acquisition and integration processes will be described. Furthermore, the selection
of the rare diseases that have been considered in this work will be discussed. On the other
hand, methods, focused on the explanation of the different drug-repositioning compu-
tational methods that have been developed. The validation procedure of the potential
drugs and their classification according to the ATC (https://www.who.int/tools/atc-ddd-
toolkit/atc-classification (accessed on 19 May 2022)) will be defined. Consecutively, we will
turn our attention to the phenotypical similarity comparison between the rare and non-rare
diseases. Finally, the disease–gene associations between the genes of the rare diseases and
the genes that encode the targets of the potential drugs will be analysed.

2.1. Materials
2.1.1. Data Acquisition and Integration

The integration and acquisition of the data for this study have been carried out using,
mainly, two data sources. The first source of data was DISNET. DISNET is a database that
collects relevant biological information about diverse pathologies by extracting such data
in a textual and structured format from public sources [24]. This platform consists of three
different layers: the biological layer (containing diseases’ associations to genes and proteins,
among others), the phenotypical layer (containing primarily disease–symptoms associa-
tions), and the drugs layer (which stores drug-related data, including their associations to
diseases and the drugs targets). From this platform, the genes and symptoms associated
with the rare diseases considered for the study were retrieved. Since DISNET updates its
data on a regular basis (phenotypical data from at least two sources are updated every
15 days), it is necessary to specify that the extraction of the data that will be used in this
analysis was carried out on 8 May 2021.

The second one was Orphanet, which is a network of 37 countries, co-founded by
the European Commission, whose aim is to increase knowledge about rare diseases to
improve the diagnosis, care, and treatment of people with these diseases [4]. This database
collects information on treatments, clinical trials, and prevalence, among many other data,
for all rare diseases existing to date. The relevant information on this database for the
study performed on this work was the rare disease name, geographical prevalence, and its
associated prevalence value.

https://disnet.ctb.upm.es
https://www.who.int/tools/atc-ddd-toolkit/atc-classification
https://www.who.int/tools/atc-ddd-toolkit/atc-classification
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The epidemiological data were obtained from XML epidemiological data in Orphadata.
They contained a total of 6043 diseases with 15,439 prevalence records associated with the
diseases, as the same disease can have different prevalent values in different countries or
areas of the world.

The prevalence value of diseases according to the criteria used in Orphanet is divided
into nine groups. Within these groups, three refer to unknown data (Null, Unknown, and
Not yet documented) and which are grouped into a single group for the graphical represen-
tation (Figure 1) of the prevalence values found in the rare diseases present in this database.
The other six groups present, ordered from highest to lowest prevalence are: >1/1000,
6–9/10,000, 1–5/10,000, 1–9/100,000, 1–9/1,000,000 and <1/1,000,000. The classification of
diseases according to geographical prevalence is distributed into 133 different locations
where global prevalence and division by continent stand out.
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Figure 1. Representation of the distribution of the different prevalence values in the set of rare
diseases present in Orphanet.

A total of 6043 rare diseases were collected from the Orphanet database. However,
the number of those diseases presented in DISNET were only 3785. On the other hand,
a crucial part of this study was to filter those diseases that did not have an associated
treatment on this platform. Eventually, the last requisite was that all the pathologies had
information related to genes and symptoms in DISNET. Applying all the requirements,
the total number of rare diseases considered was 519. Data collection and analyses carried
out throughout this study were carried out using the Python tool, and the code is avail-
able online(https://medal.ctb.upm.es/internal/gitlab/b.otero/computational_aproaches_
dr_rare_diseases (accessed on 13 July 2022)).

2.1.2. Selection of Rare Diseases

As it has been mentioned in the filter phase explained above, the number of diseases
which meets the appropriate criteria for this study comprises 519 diseases. Since this
number is still too high for a detailed analysis, an additional filtering was carried out to
select a restricted population. Hence, the definitive set of disorders was selected following
four major criteria: (i) how many genes were associated, (ii) how many symptoms, (iii) the
geographical prevalence, and (iv) the prevalence value itself.

We decided to focus on rare diseases with a global prevalence to achieve results with
significant societal–scientific outcomes. Furthermore, finding treatments for excessively

https://medal.ctb.upm.es/internal/gitlab/b.otero/computational_aproaches_dr_rare_diseases
https://medal.ctb.upm.es/internal/gitlab/b.otero/computational_aproaches_dr_rare_diseases
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rare pathologies, that is a prevalence value of 1/1,000,000, would be a far more important
discovery since it is a more arduous task. Finally, rare diseases should have a proper value
of genes and symptoms from a computational cost perspective (Figure 2).
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Figure 2. Workflow followed to choose 13 rare diseases to be studied.

After all, a definitive list of 13 rare diseases was selected to perform the experiments.
Table 1 specifies their name and Unified Medical System Language (UMLS) Concept Unique
Identifier (CUI) (https://www.nlm.nih.gov/research/umls/index.html (accessed on 25
May 2021)) and their number of associated genes and symptoms. The disease CUI allows
the normalization of the data for its query in the different databases that are used on
this analysis.

Table 1. Number of genes and symptoms of the 13 rare diseases listed.

CUIs Disease Name N. Genes N. Symptoms

C0011195 Dejerine–Sottas syndrome 31 10
C0023944 Locked-In Syndrome 1 17
C0024054 Lown–Ganong–Levine syndrome 1 6
C0024901 Diffuse cutaneous mastocytosis 1 237
C0027877 Congenital neuronal ceroid lipofuscinosis 38 52
C0036391 Schwartz–Jampel syndrome 23 5
C0265202 Seckel syndrome 15 4
C0268059 Neonatal hemochromatosis 1 43
C0549463 X-Linked Lymphoproliferative Disorder 11 1
C0751337 X-Linked Emery–Dreifuss Muscular Dystrophy 44 32
C0869083 Dahlberg–Borer–Newcomer syndrome 12 2
C1852146 Vibratory urticaria 1 11
C0796280 Acromegaloid facial appearance syndrome 1 90

2.2. Methods
2.2.1. Drug Repositioning

Advanced biomedical data are harnessed to identify new indications for existing drugs
using computational drug-repositioning techniques. A graphical summary of the objective
to be achieved in this study is shown in Figure 3. Based on an existing drug with an original
indication for a non-rare disease (in this case, a heart disease), the aim is to use the data
available on the DISNET platform to find a drug-repositioning hypothesis for a rare disease
(in the example, Ebola disease).
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Four computational methods were proposed (see Figure 4) to obtain drug candidates
to treat the 13 rare diseases previously mentioned: (1) triples approach, (2) triples with
associated target approach, (3) direct approach, and (4) paths approach.

(1) Triples approach. The first strategy was to use triples for drug repositioning. A
rare and a non-rare disease can be associated by a biological feature. The similarity
between them through a specific feature is called triples. In this work, five kinds of
triples were designed based upon five fundamental biological factors:

• Non-rare disease–Gene–Rare disease;
• Non-rare disease–Symptom–Rare disease;
• Non-rare disease–Protein interaction–Rare disease;
• Non-rare disease–Pathway–Rare disease;
• Non-rare disease–Variant–Rare disease.

To compute the biological feature-based similarity between non-rare and rare diseases,
we used Equation (1).

Jaccard (A, B) =
|A

⋂
B|

|A
⋃

B| (1)

To begin with, each of the rare diseases in the definitive set was matched with all
the non-rare diseases present in the DISNET database. On the basis of the five biological
characteristics, a similarity score was computed for all the pairs of “non-rare disease—
rare disease”. Biological properties were ranked from the highest to the lowest similarity
scores. Afterwards, in each set of biological characteristics, the five main non-rare diseases
associated with the specific rare disease were chosen. Thus, we had the top 5 non-rare
diseases derived from the similarities of genes, symptoms, protein–protein interaction,
pathways and variants for individual rare diseases. The subsequent process was to obtain
the drugs related to the top non-rare diseases.

To establish candidate drugs for repositioning to treat the related rare disease, we
looked for drugs that were shared among those linked to the top 5 non-rare diseases in their
respective biological collection. Our next step was to determine which drugs appeared in
all feature groups (set intersection). We considered that these drugs could be potentially
repositioned as treatments for the rare diseases in the study based on two ideas: (1) the
selected top 5 pairs had the highest biological feature based similarity score, showing a
clear similarity between the rare disease and the non-rare disease; and (2) the intersection
among the groups of those characteristics allowed us to find only those disease pairs where
the relationships were based on several characteristics, reinforcing the idea that those pairs
were having potential shared underlying molecular elements or interactions.

(2) Triples with Associated Target Approach. In this case, the triples are composed
by the rare and non-rare diseases, and one biomedical feature. The difference with
respect the previous method was that we forced the two diseases to share the gene
that encoded the protein target of the non-rare-disease-associated drug. Then, the
drug detection procedure was carried out as described in the above approach.

(3) Direct Approach. An encoding gene for a drug target was associated with the rare
disease. As a result, the drug can be used to treat rare diseases because there is a direct
relation between the disease and the drug.

(4) Paths Approach. This method is based on creating 6 strategies, named as paths,
following the diseases’ biological characteristics and associated drugs. The drugs
intersecting in these 6 paths (excluding those returning empty sets) are considered as
the final list of this fourth computational approach.

a. Rare disease–symptom–drug: we obtained the drugs which are indicated for
the symptoms of the rare disease.

b. Rare disease–symptom–disease–drug: we selected the drugs associated with
the diseases that shared symptoms with the rare disease.

c. Rare disease–symptom–gene–target–drug: given a rare disease and its symp-
toms, those non-rare diseases that present the same symptoms were searched.
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From these symptomatically similar diseases, we extracted their genes, targets
and related drugs.

d. Rare disease–gene–disease–drug: we obtained the drugs used for the diseases
that shared genes with the rare disease.

e. Rare disease–gene–protein–target–drug: in order to obtain the potential drugs,
we obtained the genes, proteins and targets associated with these rare diseases.

f. Rare disease–gene–protein–protein interaction–target–drug: from all of the rare
diseases, we extracted the genes, proteins and the powerful protein–protein
interactions data. After having obtained this information, we collected the
associated target from which the corresponding drug.
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2.2.2. Validation in Scientific Literature and Clinical Trials

The drugs obtained through the explained computational methods for the rare diseases
under study needed to be corroborated. For this aim, an exhaustive search was carried
out from a literature and clinical trials standpoint. We checked information present in
platforms such as PubMed (https://pubmed.ncbi.nlm.nih.gov (accessed on 11 June 2021)),
scientific journals, and the clinical trials website (https://www.clinicaltrials.gov (accessed
on 11 June 2021)).

The process of verifying the repositioning of candidate drugs was carried out follow-
ing steps:

1. The names of the drugs and diseases were searched on Pubmed, Google, and clinical-
trials.gov.

2. We checked the presence of results that related to both concepts.
3. If positive results were obtained, all were selected. If the number was very high, the

first 10 were selected.
4. The chosen information was read.
5. A conclusion was drawn for each relationship: whether the drug treats the studied

disease or, on the contrary, causes it.

We found cases with a large amount of information linking the disease being studied to
the potential treatment. If this occurred, the first searches that appeared in the information
source were selected. There were also cases in which the information was very scarce,
and the references obtained were all those found. However, there are also many drugs for
which no information was found relating the treatments to the rare diseases studied.

The set of potential drugs that were computationally obtained and that have been
verified with the scientific literature or clinical trials will be referred to throughout the
paper as “checked-drugs”, to facilitate their reference in the text.

2.2.3. Drug Classification

Once the checked-drugs set was identified, we extracted their classification to analyse
the nature of the drugs in search of patterns. That is, to see if any categories are more
susceptible to repositioning than others.

https://pubmed.ncbi.nlm.nih.gov
https://www.clinicaltrials.gov
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To classify the drugs, the categories established by ATC were considered. Based on
this classification of drugs, the different groups are formed considering the organ or system
that will be affected by the drug, as well as its pharmacological, therapeutic, and chemical
properties. Depending on these characteristics, five levels are obtained:

• ATC 1st level: Anatomical or pharmacological groups.
• ATC 2nd level: Pharmacological or therapeutic subgroup.
• ATC 3rd and 4th levels: Chemical, pharmacological, or therapeutic subgroup.
• ATC 5th level: Chemical substance.

The level to be borne in mind in this work for the classification of potential candidates
is going to be ATC 1st level.

2.2.4. Phenotypical Similarity

For drug repositioning, the fact that two diseases share many symptoms can be a
good starting point to find a new target for an existing drug. For this reason, part of
this study focuses on testing the phenotypic similarity (PS) of rare diseases for which
drug repositioning has been found both computationally and bibliographically, with the
non-rare diseases that were the original indication for those drugs. The only condition
was that both diseases (non-rare and rare) shared the gene that encoded the target of the
corresponding drug.

The phenotypical similarity was calculated using the Jaccard’s index, as explained
in the previous Section 2.2.2. On the one hand, the similarity was computed between the
rare diseases and the non-rare diseases with which they shared the gene that encoded the
target protein of the corresponding drugs. On the other hand, the similarity was calculated
for the rare diseases and the rest of non-rare diseases present in DISNET database. The
comparison between the two datasets was made using a Welch’s T-test to determine if
there were statistically significant differences between the two groups. The idea behind
this experiment was to verify whether the phenotypical connections between the non-rare
and rare diseases in the newly generated repurposing hypotheses were stronger than the
rest of non-rare–rare disease pairs in DISNET.

2.2.5. Disease–Gene Associations (GDAs)

As part of this study, we aim to use for validation purposes the relationship between
the rare disease and the target gene of the potential drug proposed to treat this disease.
We only considered the checked-drugs dataset. This relationship is measured using the
gene–disease score present in the DISNET database, previously extracted from DisGeNET,
which is an in-house metric varying from 0 to 1 and that represents how well established a
particular association is based on the current knowledge.

DisGeNET is a digital discovery platform hosting one of the greatest public collections
of genes and variants associated with human pathologies. The update version of Dis-
GeNET (v7.0) includes 1,134,942 gene–disease associations (GDAs), between 21,671 genes
and 30,170 diseases, disorders, traits, and clinical or abnormal human phenotypes, and
369,554 variant-disease associations, between 194,515 variants and 14,155 diseases, traits,
and phenotypes. In the DISNET platform, a total amount of 358.209 GDAs are collected,
coming from the above-mentioned DisGeNET [18].

In addition to the GDA score, we obtained the disease specificity index (DSI) that
varies from 0 to 1 and is inversely proportional to the number of diseases associated with
a particular gene. Furthermore, the disease pleiotropy index (DPI) was included, which
varies from 0 to 1 and is proportional to the number of different disease classes with which
a gene is associated.

Finally, once the value of this association had been obtained using the GDA score, we
checked, for each of the rare diseases, whether there was a greater association between the
target gene and the rare disease than between all the DISNET diseases and their respective
genes. For this purpose, the Mann–Whitney U Test was used since the data did not follow
a normal distribution.
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3. Results
3.1. Drug Repositioning

We have generated drug-repositioning hypotheses in the scope of rare diseases. The
13 diseases previously selected have been studied applying the aforementioned four com-
putational methods individually.

In Table 2, we represent the results obtained from each approach, as well as the final
result that arose from the intersection of the non-empty sets. That is, we searched those
drugs that were in common in all the approaches in which at least one possible candidate
drug was obtained. Two different columns refer to the final results. On the one hand, ALL
represents the intersection of the non-empty sets of all approaches. On the other hand,
the column TT.DDR.P represents the intersection without the Triples approach since it is
too generalist.

Table 2. The four computational drug-repositioning approaches developed are summarized here.
Each case’s number in the table represents the number of drugs involved.

Diseases
Approaches

Triples T. Target Direct DR Paths All TT.DDR.P *

Dejerine–Sottas syndrome 6 17 17 2 0 2
Locked-In Syndrome 46 0 0 80 44 80

Lown–Ganong–Levine syndrome 0 0 0 965 965 965
Diffuse cutaneous mastocytosis 7 0 0 4 2 4

Congenital neuronal ceroid lipofuscinosis 2 0 0 48 2 48
Schwartz–Jampel syndrome 533 0 30 15 10 14

Seckel syndrome 6 2 2 0 0 2
Neonatal hemochromatosis 2 0 0 91 0 91

X-Linked Lymphoproliferative Disorder 0 0 7 1 1 1
X-Linked Emery–Dreifuss Muscular Dystrophy 10 0 0 126 10 126

Dahlberg–Borer–Newcomer syndrome 1 8 0 0 0 8
Vibratory urticaria 2 0 0 0 2 0

Acromegaloid facial appearance syndrome 35 2 2 0 2 2

* TT = Triples target; DDR = Direct Drug Repositioning; P = Paths.

We found potential drugs for the 13 rare diseases. However, the Lown–Ganong–Levine
syndrome disease was discarded because the number of drugs obtained was very high
(965), and they were very non-specific. The reason for this result is that, for this disease,
potential drugs were only obtained by one of the designed methods (paths) instead of
several like the others. In addition, the potential drugs had very general uses.

3.2. Validation in Clinical Trials

Upon the candidate drugs for repositioning which were obtained using the proposed
methods, it was necessary to check whether these drugs had been considered in the scientific
literature to treat the rare disease that is being proposed as a new treatment.

Out of the 378 drugs that we obtained computationally as possible drugs to be repo-
sitioned, we found in the scientific literature 60 drugs (checked-drugs) that have been
validated as possible candidates to treat the rare diseases under study. From these 60 drugs
found in the scientific literature to be related to the rare diseases under study, 33 of them
were identified as toxic, that is, they produce the disease or promote its occurrence. Nonethe-
less, a total of 27 drugs have been obtained that can treat the symptoms caused by the
particular disease or prevent complications that may result from the disease (Table 3).
These drugs, which have finally been obtained for the set of rare diseases selected for
this research, do not correspond to treatments that can end these diseases, but the term
treatment is used because they could help patients suffering from these pathologies to have
fewer complications in their daily lives. When we talk about treating a disease, it is not
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synonymous with cure, but in many cases, what is achieved with treatments is to improve
or extend the life of patients and these 27 drugs can be a great starting point.

Table 3. Summary of the process to obtain the final number of potential drugs to treat the rare
diseases under study. For each disease, the first column shows the number of drugs obtained through
the approaches; the second column shows how many of these drugs have been found in the scientific
literature; the third column is the number of drugs that can be used to treat the disease; and finally,
the last column represents the number of toxic drugs that can produce the disease.

Diseases Computational
Drugs

Drugs Clinical
Trials Drugs Effects Drugs Toxic

Dejerine–Sottas syndrome 2 2 1 1
Locked-In Syndrome 80 11 2 9

Diffuse cutaneous mastocytosis 4 4 3 1
Congenital neuronal ceroid lipofuscinosis 48 7 5 2

Schwartz–Jampel syndrome 14 1 1 0
Seckel syndrome 2 1 0 1

Neonatal hemochromatosis 91 8 3 5
X-Linked Lymphoproliferative Disorder 1 0 0 0

X-Linked Emery–Dreifuss Muscular Dystrophy 126 15 11 4
Dahlberg–Borer–Newcomer syndrome 8 8 0 8

Vibratory urticaria 2 2 0 2
Acromegaloid facial appearance syndrome 2 1 1 0

We describe, hereunder, the potential scientific justifications described in the literature
supporting the presented hypotheses.

Dejerine–Sottas syndrome. The two drugs (dexamethasone and thalidomide) that
were obtained to be repurposed were found in the scientific literature for Charcot–Marie–
Tooth (CMT), Derejine–Sottas being a specific type of CMT.

• Dexamethasone. It is used for the treatment of CMT disease [25].
• Thalidomide. It is potentially toxic for patients with CMT [26]. In high doses, it

increases the risk of peripheral neuropathy [27,28].

Locked-in syndrome. A total of 80 drugs were obtained computationally and 11 of
them were found in the literature. Furthermore, most of them were toxic, that is, the cause
of the disease.

• Amphetamine. Applying stimulant drugs such as this can help brain communication
occur when the patient has this disease [29].

• Baclofen. Unsatisfactory data are obtained in patients treated with this drug presenting
locked-in syndrome [30]. Another study was found where the data obtained are not
conclusive [31].

• Cisplatin together with doxorubicin produces the disease in combination with intrathe-
cal cytosine arabinoside or methotrexate, which is another of the drugs that has been
found for repositioning [32].

• Cytarabine. Another of the drugs obtained, cytarabine, is related to this line [33].
• Cocaine. A clinical case was collected where a woman developed this disease after the

abusive consumption of cocaine [34].
• Deferoxamine. It is a risk factor for this disease when used for iron chelation [35].
• Furosemide. It produced locked-in syndrome in a case study when furosemide was

being used to treat anasarca disease [36].
• Methamphetamine. The abuse of this substance can lead to neurological diseases that

trigger locked-in syndrome [37].
• Methylprednisolone. It has been suggested to treat paraneoplastic symptoms but to a

limited extent, because it is highly toxic [30].
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Diffuse cutaneous mastocytosis. The four drugs that were obtained by the computa-
tional methods were found in the scientific literature.

• Alcohol. In accordance with the literature recommendation, patients with this diagno-
sis should avoid taking it [38].

• Silver sulfadiazine. A skin treatment to be applied on erosion areas affected by this
pathology [39].

• Dexamethasone. Corticosteroids and glucocorticoids, to which this drug belongs, are
used to palliate the symptoms of this pathology [39–42].

• Acetaminophen. Postoperative patients used it to relieve pain [40,42].

Congenital neuronal ceroid lipofuscinosis. A total of 48 possible drugs for this disease
were obtained. Of the 48, 7 drugs have been found in the scientific literature.

• Carbamazepine. It is stated that it should be avoided in conjunction with other sodium
channel blockers because it can increase seizures despite being an anticonvulsant
drug [43].

• Copper. The CNL6 gene participates in this disease. When the CNL6 gene is impaired,
it produces the accumulation of biometals such as copper and this leads to the patho-
genesis of the CNL6 disease. More research is needed on the function of the CNL6
gene [44]. Therefore, copper would not be an effective treatment against this disease.

• Dexamethasone. Its efficacy has not been proven 100%, more studies are needed to see
if corticosteroids could influence the progression of the disease of the CNL3 gene by
decreasing it [45]. What we hypothesize is that this anti-inflammatory treatment with
corticosteroids may be beneficial in ameliorating some of the symptoms of juvenile
CLN3 disease [45]. It also serves to alleviate the symptoms of another treatment that
has been tried in this disease [46].

• Gentamicin sulfate. Literature evidence has been found for gentamicin. It can read
premature termination codons (PTCs) and partially restore protein expression or
function. PTC mutations are present in the CLN2 type of disease, and gentamicin can
carry out this restoration [45].

• Methionine. It increases vacuolar acidification, which elevates the useful life of the
vacuole. This mechanism affects a metabolic pathway in yeast proven for this dis-
ease [47].

• Valproic acid. It is effective in controlling seizures in this disease [43].
• Tamoxifen. It increases the production of cathepsin D, which helps to prevent this

disease from occurring since it has been shown that many neurodegenerative diseases
arise when there are low levels of cathepsin D or it is inactive, causing failures in one
of the genes that produces this disease [48].

Schwartz–Jampel syndrome. A total of 14 drugs were obtained but only information
about one of them was found in the scientific literature.

• Carvedilol. It is associated with this disease through congenital myotonia. It is used
for heart problems, some of them produced by congenital myotonia [49].

Seckel syndrome. Two drugs were obtained from the repositioning approaches, but
only one was obtained in the literature.

• Caffeine. This disease occurs as a response to DNA damage in the replication fork.
Caffeine inhibits the activity of ATR kinase, which prevents DNA damage from being
repaired; therefore, this molecule favours the appearance of this syndrome [50,51].

Neonatal hemochromatosis. A total of 91 potential drugs were obtained through com-
putational methods. Out of these 91, only 8 have been found in the scientific literature.
Within these eight, five are possible causes of the disease and three can be considered as
treatments for liver problems.

• Acetaminophen. It promotes the accumulation of excess iron in the liver leading to
the appearance of the disease under study [52,53].
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• Albendazole and fluconazole. Both drugs cause liver failure and can, therefore, trigger
liver failure [54].

• Alcohol. It results in hereditary hemochromatosis in foetuses [55,56].
• Ceftriaxone. It causes neonatal liver pathologies such as the one studied [57].
• Ciprofloxacin, sulfamethoxazole, and doxycycline. They are used to treat infections

associated with haemochromatosis [58].

In addition, within the 91 drugs, 10 more drugs were found to be related to the
treatment of certain liver problems, such as liver cancer. Additionally, some of them cause
different liver diseases.

X-linked lymphoproliferative disorder. The drug obtained through repositioning routes
was not present in the scientific literature associated with this disease. Therefore, we could
not conclude that it was a potentially repositionable drug for this disease.

X-linked Emery–Dreifuss muscular dystrophy. A total of 126 drugs were obtained by
computational repositioning methods. Of these 126 drugs, 15 were found in the literature,
and 11 can treat the disease.

• Amiodarone. It is used to treat or prevent heart failure in patients with this disease [59–61].
• Aspirin. It is used as a prophylactic treatment to prevent thromboembolism in patients

with this disease, but its efficacy has not been fully demonstrated, and more studies
are needed [62].

• Carbamazepine. It is used to treat the epileptic seizures that occur in this disease and
other muscular dystrophies [63,64].

• Cyclosporine. It is used to perform immunosuppression that could be useful to
perform heart transplants in patients with Emery–Dreifuss Muscular Dystrophy
(EDMD) [59].

• Dantrolene. Anesthetic that was previously used for muscular dystrophies and may
pose a risk to some patients [65].

• Enalapril, losartan, and enalaprilat. Both drugs are ACE inhibitors that are the first
line of treatment for chronic heart failure although a substitute combination is being
sought in this study [61]. In another article, this treatment is found to be used for
heart failure [66]. They also help the blood vessels open wider and the heart can pump
blood with less pressure [67].

• Isoproterenol. Atrial arrhythmias are a major problem in EDMD disease. Isoproterenol
is used to prevent blockages in the heart or cardiac arrest, in a similar manner to
epinephrine. In this study, it is administered to the patient at high levels but without
causing arrhythmias [68].

• Methamphetamine. It produces dilated cardiomyopathy, as cocaine and amphetamine
do [61,69].

• Metoprolol. It is indicated to control the heart rate and prevent further arrhyth-
mias [68].

• Sirolimus. Rapamycin is a synonym, and it is used to prevent the progression of
cardiomyopathies in mice. With it, a metabolic remodelling has been reached, which
could be giving rise to a cardioprotective mechanism that slows the progression of
EDMD and improves its prognosis [70].

• Valproic acid. It is used to treat the epileptic seizures that occur in this disease and
other muscular dystrophies [63].

Moreover, other drugs obtained from the computational approaches were found
in the scientific literature, not directly indicated for this disease but related with other
associated diseases or symptoms. Amlodipine, propranolol, and verapamil are treatments
for cardiac problems, but they did not appear as such in the literature in relation to the
disease. Propranolol has a molecular structure like isoprenaline, which is the drug found
in the scientific literature to treat heart problems. This is because both are beta-adrenergic,
but one is an agonist and other one is an antagonist of these receptors. Dexamethasone
and gentamicin sulfate are used for Duchenne muscular dystrophy, which has conditions
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in common with this disease, so they could probably be repositioned for both diseases.
Phenobarbital is used for the treatment of epilepsy, which is one of the symptoms that
appear in other diseases related to muscular dystrophy but is not the case in the disease we
are considering. Zoledronic acid is used for laminopathies which is a disease genetically
related to the disease under study. Ramipril is another ACE inhibitor; it does not appear
as such in the scientific literature, but it has the same molecular structure as the other two
ACE inhibitors that have been found by computational repositioning approaches and have
been justified with the literature (enalapril and enalaprilat). It appears in the section of
similar structures in DrugBank.

Dahlberg–Borer–Newcomer syndrome. Eight drugs were obtained from the computa-
tional repositioning approaches, but none of them were found in the literature. However,
the eight drugs have in common that they are kinase inhibitors. These drugs cause thyroid
failure, one of the consequences that occurs in this disease, hypoparathyroidism [71].

Vibratory urticaria. The two drugs that were obtained computationally as reposition-
able drugs are present in the scientific literature.

• Valproic acid. It causes skin reactions along with other drugs used to treat nervous
system problems [72,73].

• Estradiol. It promotes mast cell release by causing increased histamine liberation
resulting in hives/chronic urticaria (seen in women taking contraceptives or hormone
replacement therapy) [74].

Acromegaloid facial appearance syndrome. The drugs found for this disease in the
scientific literature were indicated for general acromegaloid. Of the two drugs obtained,
only one of them was found in the literature. Glyburide was found under the name Gliben-
clamide. Patients with acromegaloid have increased growth hormone and insulin resistance,
which makes them insulin-dependent. Glibenclamide is used to treat diabetes [75,76].

3.3. Drug Classification

The drugs obtained as potential treatments for the rare diseases studied were classified
according to the ATC code. A total of 60 drugs were considered for this part of the study,
which are listed in the checked-drugs set.

As Figure 5 shows, there are two categories (antineoplastic and immunomodulating
agents, and nervous system) that stand out in the classification of drugs according to the
ATC code.
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It should also be noted that within the set of 60 drugs, we find the presence of at
least one of them in all the possible 14 categories that make up the first level of ATC code
classification. This is a very important fact in the results obtained in this research since it
indicates that there is great heterogeneity among the drugs proposed as potential candidates
for repositioning, and this may be due to the complementarity of the computational RD
methods proposed in this study. This means that the developed methods can find possible
treatments for the diseases without biasing by the type of drugs they are; they are all
considered equally.

3.4. Phenotypical Similarity

PS between the (i) rare–non-rare diseases involved in the repurposing hypotheses
compared to (ii) the disease pairs in the DISNET database varied significantly according to
these two groups of diseases considered.

Five rare diseases for which potential repositionable drugs were obtained through
computational methods and in the scientific literature were considered for this comparison.

In Table 4, we can observe the results obtained by comparing rare and non-rare
diseases by their symptoms.

Table 4. Results of the phenotypic similarity comparison between rare and non-rare diseases with
potential drugs versus DISNET disease pairs.

Disease PS. DISNET Diseases
(Mean Jaccard)

PS. Rare—Non-Rare Diseases
(Mean Jaccard) p-Value

Dejerine–Sottas syndrome 0.0466 0.0904 0.0112

Schwartz–Jampel syndrome 0.0500 0.8425 0.0000

Seckel syndrome 0.0607 0.0312 0.0173

Dahlberg–Borer–Newcomer syndrome 0.0396 0.1996 0.0000

Acromegaloid facial appearance syndrome 0.0471 0.0319 0.0000

To sum up, Dejerine–Sottas syndrome, Schwartz–Jampel syndrome, and Dahlberg–
Borer–Newcomer syndrome presented a phenotypic similarity with the non-rare diseases
(in their respective repurposing hypotheses) above the mean of DISNET disease pairs,
showing statistically significant differences. However, in the case of Acromegaloid facial
appearance syndrome and Seckel syndrome, the phenotypic similarity with the non-rare
diseases was below the mean of DISNET disease pairs (showing here statistically significant
differences as well).

3.5. Disease–Gene Associations (GDAs)

Out of the 13 rare diseases considered for this study, the gene–disease association
could be obtained for 5 of them. This is due to, as explained above, the fact that we only
used those diseases with computational drug-repositioning results and that shared the
gene that encoded the target of the potential drugs. Additionally, these drugs were related
to the rare diseases in the scientific literature.

In Figure 6, we can see the values of GDAs scores for each of the rare disease–gene
involved in the repurposing hypothesis pairs statistically compared with the value of the
rest of GDA scores in DISNET database.

In this representation, statistically significant differences between all the studied rare
diseases compared to the mean obtained from DISNET can be observed. Although all of
them present such differences, in the case of the rare diseases Dejerine–Sottas syndrome
and Seckel syndrome, these differences are reversed from what we expected. That is, the
GDA score value is higher in the case of the DISNET database. For the rest of the rare
diseases, we can see that GDAs are stronger between the potential drug target gene and
the rare disease than in rest of the GDAs present in DISNET.
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In Table 5, we can observe the results obtained for these rare diseases and their
associated target genes. The DSI and DPI values are also shown.

Table 5. Results of the disease–gene association in each of the rare diseases studied according to the
target gene of the selected potential drug.

Disease Drug Gen
Symbol DSI DPI GDA

Dejerine–Sottas syndrome

Dexamethasone NR0B1 0.512 0.621 0.02

Thalidomide PTGS2 0.338 0.897 0.02

Thalidomide TNF 0.263 0.966 0.02

Schwartz–Jampel syndrome Carvedilol VEGFA 0.298 0.897 0.3

Seckel syndrome Caffeine ATM 0.401 0.862 0.02

Dahlberg–Borer–Newcomer
syndrome

Sorafenib

BRAF 0.352 0.793 0.2

Fostamatinib

Vemurafenib

Encorafenib

Regorafenib

Dabrafenib mesylate

Sorafenib tosylate

Dabrafenib

Fostamatinib ICK 0.602 0.621 0.2

Acromegaloid facial
appearance syndrome Glyburide ABCC9 0.59 0.517 0.3

4. Discussion

The use of drug repositioning is a potential field of study to find new treatments for
rare diseases in a shorter period. The development of this type of studies can have great
social benefits since medicines can be found for diseases that are not being as thoroughly
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investigated and this can cure or alleviate the symptoms of many people suffering from
these pathologies. Rare diseases affect many people worldwide. In addition, new ones
appear every year, increasing the great diversity of rare diseases that exist today. The fact
that there are so many of them and that separately, they affect a small number of people,
makes it much more complicated to investigate them. Despite this, this study has been
able to verify that the use of drug-repositioning techniques for rare diseases is a useful and
effective strategy for finding treatments.

The DISNET platform used throughout the study is proposed as a tool and potential
data source for obtaining treatments for rare diseases in conjunction with the computational
techniques developed throughout this research. DISNET can be established as a starting
point in the search for new treatments for diseases, since, although in this study we have
focused on rare diseases, this platform has been verified in other research as a useful tool
for drug repositioning, such as for COVID-19.

In this work, we have proposed a series of repurposing hypotheses for 13 different rare
diseases. We have followed four computational methods that involve rare disease-related
features including genes, protein interactions, pathways, symptoms, and drug targets.
Through different approaches considering these connections we obtained different drugs
with potential of treating each disease. We here discuss the most important findings.

The resulting drugs have been verified in the scientific literature. In 75% of the cases,
drugs were found to be potentially therapeutic, although evidence was also obtained for
92% of them. If we consider the total number of drugs included in this 92%, we would also
be including references that point to purely toxic treatments. Even so, it is an interesting
value to consider, because it shows that there are underlying characteristics of those that
have been analysed that represent relationships between diseases, although these are not
always necessarily positive. Nonetheless, the data obtained are very favourable considering
the difficulty of finding scientific literature dealing with these rare diseases.

Within this section, it is of added value to focus on the rare disease Schwartz–Jampel
syndrome, which is a neuromuscular disease of genetic origin that mainly affects neonates.
For this disease, 14 potential drugs have been obtained by computational methods and one
of them has been verified in the scientific literature. The drug Carvedilol belongs to the
type of cardiovascular system within the ATC code classification used in this work. This
type of drug is in the top five of the most common drug types we obtained in our case.
If we focus on the phenotypic similarity, even though this rare disease has only a total of
five associated symptoms, it shows a very high similarity value (0.84) with the selected
non-rare diseases. Additionally, therefore, it strongly diverges from the similarity value
obtained in DISNET showing statistically significant differences. As for the GDAs, this
disease has an association score value with VEGFA gene of 0.3, which is not a very high
value since the maximum is 1, but it is the highest value we have obtained in this study.
Furthermore, it shows statistically significant differences when compared with the mean
value obtained in DISNET. The associated DSI value is low, so the gene is associated with a
high number of diseases and is therefore not very specific. The DPI value is large, so this
gene is usually associated with the same type of disease.

Of the potential drugs also found in the scientific literature, a classification has been
made according to the ATC code, where most of the drugs obtained as possible treatments
for these rare diseases are divided into two categories: antineoplastic and immunomodulat-
ing agents, and nervous system. It is worth noting the importance of antineoplastic drugs
used for cancer treatment, which are based on inhibiting the production of proteins that
prevent the immune system from fighting cancer cells. Of the rare diseases studied, none of
them are representing carcinoma. However, due to the great deregulation that occurs in the
human body when suffering from cancer, since it is a disease that affects many biological
processes, these drugs can target many pathways and could be potential drugs to treat
a specific rare disease. Therefore, a large number of potential drugs are drawn from this
category. It should also be noted that research into this type of drug is enormous, so there
is a wide range of options that could be reused for the treatment of rare diseases since, as



Healthcare 2022, 10, 1784 17 of 21

this study is demonstrating, these drugs play a very important role. A specific case of the
rare disease Dahlberg–Borer–Newcomer syndrome is that seven antineoplastic drugs (see
Table 5) out of the nine verified in the scientific literature have been obtained to treat this
disease. It is a dysmorphic/multiple congenital anomaly syndrome in which many of the
biological pathways that are involved in the development of this disease may be affected
by failures that correct or prevent these drugs. Another important type of drug is those of
the nervous system; of the 13 rare diseases studied, 6 of them are classified as diseases of
the nervous system. For this reason, it is understandable that most of the drugs that have
been found as potential treatments for them belong to this category.

Even so, at least one drug has been obtained for each of the categories considered by
this classification. This demonstrates the variability present among potential drugs and
how our model can find future treatments without being biased by the category to which
they belong. Furthermore, it allows a generalization of the model used because it is not
only effective for finding a specific type of drug but also for all existing categories of ATC.
Knowing which the predominant categories in the potential repositioning cases for rare
diseases are will allow us in the future to narrow down the search for drugs as possible
repositionable treatments within these categories. This would mean considering that it is
more likely to find a potential treatment for rare diseases in these categories.

If we look at the phenotypic similarity, we can conclude that the importance of this
measure in drug repositioning is strictly related to the type of diseases being compared.
The diseases considered in this study show very different patterns. Within our data, we
found that three of the three cases studied support the known hypothesis that phenotypic
similarity is an important feature in the selection of a drug candidate, as there are numerous
cases of drugs being used for different diseases only because they share symptoms.

However, we found two cases that did not follow this line, showing a lower phenotypic
similarity than the one found in DISNET. This happens in the diseases acromegaloid facial
appearance syndrome and Seckel syndrome. In the case of acromegaloid facial appearance
syndrome, it has 90 symptoms associated. The problem is, in this case, that these symptoms
are very disparate, which makes it more complicated to find shared phenotypic features,
since some of these symptoms may coincide with some diseases, but not in such a high
number that a high similarity value can be found. In the case of Seckel syndrome, only four
symptoms are associated with it. All of them are very specific symptoms that are related
to a few diseases. Two of these symptoms, “Cryptorchidism” and “Low birth weight” are
related to less than 165 diseases. This represents a very small percentage compared to many
existing diseases. This may explain why the phenotypic similarity found for this disease
was so small.

The GDA scores studied have shown favourable results for most of the rare diseases
considered. Based on these results, we can consider this GDA score as a good measure
for the selection of drug candidates. However, it should also be noted that for two of the
diseases studied, the expected results were not obtained. Seckel syndrome has the ATM
gene related to its potential drug target. This gene does not play a major role in the disease
as it is mainly caused by faults in three genes of the SCKL family. This may explain the
low degree of association between the disease and the gene. In the case of Dejerine–Sottas
syndrome, the three related genes, as in the previous case, are also not part of the major
mutations that give rise to this disease. One of the related genes (TNF) is a very common
gene in many diseases because it is the tumour necrosis factor. It has a DPI close to 0.97 so
it is present in all types of diseases, and a very low DSI because it is very unspecific. These
are some of the factors that may explain why there is no strong association between these
genes and the rare disease studied.

5. Conclusions

Rare diseases are pathologies that affect a small percentage of the population. Ac-
cordingly, research and treatments for them are limited. Drug repositioning is the process
of finding new therapeutic purposes for existing drugs. In this work, we have suggested
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four different computational approaches to provide new drug-repositioning hypotheses,
opening valuable prospects in the scope of rare diseases. As the main conclusion, we can
state that given the scarcity of treatments for this type of disease, data-driven method-
ologies can help in finding already-existing medicines to treat rare diseases. Focusing
on the results obtained, we can conclude that the computational methods developed to
suggest treatments for the selected rare diseases are effective and useful, since repositioning
candidates have been obtained for the 13 diseases. This opens the door to applying this
methodology to the rest of the existing rare diseases.

Other conclusions that arise from the present study are the following ones. The
results obtained from the classification of the potential drugs by the ATC code have been
relevant to this research because they have provided a broad idea of the types of drugs that
may be the most likely candidates to reposition. The study of the phenotypic similarity
has validated the importance of symptom sharing when finding a new use for an existing
drug. Moreover, we have uncovered that GDAs are significant elements to be able to
verify whether a drug is a potential and effective candidate to be used as a new treatment
for a disease different from the original indication of that drug. This implies that the
measurement of GDAs can be considered for future studies as an indicator capable of
differentiating between better or worse cases of drug repositioning.

However, we have found some limitations. The most important one is the lack of
research on rare diseases, which directly derives from a lack of associated data. For other
types of diseases, the number of disease–drug relationships is superior, which has led us to
not being able to validate many of the computationally obtained drugs with the scientific
literature. Moreover, rare diseases have a limited number of evidenced associations with
biological features, what makes it also difficult to generate these new hypotheses.

In order to tackle these problems, we suggest the following future lines. We would
like to perform a similar analysis with a larger number of rare diseases. Additionally,
applying more complex strategies on the data available on DISNET, such as graph neural
networks (GNNs) for the prediction of new relationships focused on repurposing, would
be a favourable next step. Along these lines, another fundamental point would be the
improvement in the scientific literature validation process. The potential drugs that have
been obtained computationally are manually validated with the literature, being a time-
consuming and tedious task. Hence, it would be helpful to automatize the clinical trials
search. Another future line to be explored, and given the obtained results, probably one
of the most enlightening, is the use of biological pathways as a source of repurposing
information. We would like to consider biological pathways as a way to find future
candidates, since pathways could play a more important role than the one currently played
by drug target genes in some cases.

The main endpoint of this research has been to demonstrate the great potential of
the developed computational strategies as well as data-driven methods for the search for
possible candidate treatments for rare diseases. Furthermore, emphasis has been placed
on the existing misinformation on rare diseases which has hindered these computational
processes as well as the obtaining of more favourable results.
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