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Abstract: Applications of machine learning in the healthcare field have become increasingly diverse.
In this review, we investigated the integration of artificial intelligence (AI) in predicting the prognosis
of patients with central nervous system disorders such as stroke, traumatic brain injury, and spinal
cord injury. AI algorithms have shown promise in prognostic assessment, but challenges remain in
achieving a higher prediction accuracy for practical clinical use. We suggest that accumulating more
diverse data, including medical imaging and collaborative efforts among hospitals, can enhance the
predictive capabilities of AI. As healthcare professionals become more familiar with AI, its role in
central nervous system rehabilitation is expected to advance significantly, revolutionizing patient care.
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1. Introduction

Recently, artificial intelligence (AI) has been applied in various industries such as
healthcare, finance, and manufacturing, and many studies have been conducted to imple-
ment AI to overcome the limitations of existing traditional methods for analyzing data
and obtaining meaningful results [1,2]. Machine learning is eliciting growing interest and
is increasingly applied extensively in healthcare. Deep learning techniques, particularly
convolutional neural networks (CNNs), are making significant strides in medical image
analysis, having been effectively deployed for image segmentation, object detection, feature
extraction, among other tasks [3]. The technology has proven to be highly valuable for early
disease detection and the assessment of the size and rates of complications through the anal-
ysis of images, including MRI, computed tomography (CT), and ultrasound images [4–6].
Furthermore, advancements in real-time image analysis can aid surgical procedures, espe-
cially by enhancing surgeons’ precision and decision making [7]. AI can also be applied
to follow-up measures and monitoring, thus enabling clinicians to track changes more
easily and adjust treatment plans as needed [3]. Moreover, it has enabled remote healthcare
services, which benefit underserved areas and mobility-challenged patients [8]. Simi-
larly, several studies in the field of rehabilitation medicine have integrated it into clinical
practice [9].

Rehabilitation medicine for patients with central nervous system (CNS) disorders aims
to improve the function and quality of life of individuals with physical disabilities [10]. In
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rehabilitation medicine, physicians must accurately assess the prognosis of each patient
and establish treatment goals. Based on these goals, appropriate rehabilitation strategies
could be appropriately elucidated [11]. For patients with CNS disorders, factors such
as lesion size, lesion location, and demographic data are traditionally used to determine
the prognosis [12]. In addition, special tools such as diffusion tensor tractography and
transcranial magnetic stimulation can be used to evaluate therapeutic prognosis [13].
However, these methods often do not consider multiple variables and tend to rely only on
limited factors. Diffusion tensor tractography and transcranial magnetic stimulation have
high false-positive and false-negative rates [14]. Moreover, the prognosis obtained through
these conventional methods only shows general trends and does not predict personalized
treatment outcomes [15].

Currently, research is being conducted to explore whether AI can help predict the
prognosis of patients receiving rehabilitative treatment. Here, we briefly summarize the
history of advancements in AI and review its utilization in predicting the prognosis of
patients receiving CNS rehabilitation.

2. History of Artificial Intelligence

The concept of AI was established in 1943, when neurosurgeon Warren McCulloch
and logician Walter Pitts published a paper titled “A Logical Calculus of Ideas Immanent
in Nervous Activity” proposing the creation of artificial neurons based on the fundamental
principles of human neurons, which operate like on–off switches and connect them in a
network-like structure to mimic simple human functions [16]. Because of the “all-or-none”
character of nervous activity, neural events and their relations can be addressed using
propositional logic [16].

In 1950, Alan Turing published a paper titled “Computing Machinery and Intelli-
gence” [17]. The importance of the paper is reflected in analyzing the feasibility of creating
thinking machines, posing the question “Can machines think?”. Additionally, he intro-
duced the “Turing test,” an experiment aimed at determining whether a machine possessed
AI. The Turing test was based on the idea of preparing a questioner and two respondents,
where one respondent was a computer and the other was a human. The questioner is a hu-
man who was unaware of which respondent was the computer. Responses were conveyed
solely through a keyboard, and if the questioner could not consistently distinguish which
respondent was the computer, the computer was considered to have AI [17].

The term “AI” was first coined in 1956 by John McCarthy, who organized the Dart-
mouth conference and invited ten scientists [18]. During this conference, the term AI was
first used, and McCarthy defined the concept of AI as “the science and engineering of
making intelligent machines” [18].

In 1958, the neurobiologist Frank Rosenblatt devised an artificial neural neuron “per-
ceptron”, inspired by interconnected neurons in the human brain, aiming to train computers
using multiple neural networks, such as the human brain [19]. The perceptron algorithm,
which aggregates multiple inputs into a single output, is an early form of artificial neural
networks and remains one of the most commonly used models. However, in 1969, Marvin
Minsky and Seymour Papert demonstrated the limitations of the perceptron [20]. There-
after, skepticism about the progress of AI technology spread, and research on AI entered
a period of stagnation. In 1986, Geoffrey Hinton developed the “multilayer perceptron”
model, which overcame the limitations of the original perceptron [21]. In 2006, Hinton
developed a deep neural network (DNN) algorithm [22]. Using a new function called a
rectified linear unit (ReLU) as an alternative to the previously used sigmoid function, the
DNN solved the vanishing gradient problem. In addition, using the dropout function,
which deactivates neurons randomly during training, helps mitigate the issue of overfitting
by preventing the learning process from becoming overly biased towards the training data.
Subsequently, with the advancement of computer technology and the explosive growth of
information, AI technology has rapidly developed and is currently applied to almost every
social and scientific domain, reshaping human life.
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3. Use of AI to Predict the Prognosis of Patients Undergoing CNS Rehabilitation

We explored instances of AI applications for predicting the prognosis of patients
who have undergone CNS rehabilitation. Twelve articles [23–34], categorized as stroke,
traumatic brain injury (TBI), and spinal cord injury (SCI), were included in this review.
Details of the included studies are presented in Table 1.

Table 1. Characteristics of included studies.

Study Target Data Input Data Output Data Machine Learning
Model Outcome

Gupta et al., 2017
[23]

Demographic and
clinical data of 575

patients with
intracerebral
hemorrhage

Demographic data,
laboratory results, state
at admission, treatment,

neurological defects,
hospital complications,

medical history, and
discharge data

Modified Rankin Scale
for assessment of the

degree of impairment or
dependency in the daily

activities of stroke
patients

Random forest and
linear regression

3 months exercise outcome
prediction model: AUC of

0.89
12 months exercise outcome
prediction model: AUC of

0.87

Heo et al., 2019 [24]

Demographic and
clinical data of 2604

patients with ischemic
stroke

Age, sex, smoking
status, time from onset
to admission, National

Institutes of Health
Stroke Scale scores, Trial

of Org 10172 in Acute
Stroke Treatment

classification, Systolic
and diastolic blood
pressure, previous

diseases, medication
history, and laboratory

values

Modified Rankin Scale
score for assessment of

the degree of
impairment or

dependency in the daily
activities of stroke

patients

Random forest, logistic
regression, and deep

neural network

Random forest: AUC of
0.857, sensitivity of 32.1%,

and specificity of 98.4%
Logistic regression: AUC of
0.849, sensitivity of 23.2%,

and specificity of 98.9%
Deep neural network: AUC
of 0.888, sensitivity of 36.7%,

and specificity of 98.4%

Lin et al., 2018 [25]

Demographic and
clinical data of 313
patients with acute

stroke

Age, modified Rankin
Scale, Barthel index at
admission, functional
oral intake scale, mini
nutrition assessment,

European quality of life
5 dimensions
questionnaire,

instrumental activities
of daily living scale,

Berg balance test, gait
speed, 6-min walk test,

Fugl–Meyer upper
extremity assessment,
modified Fugl–Meyer
sensory assessment,
mini-mental state

examination, motor
activity log, and concise

Chinese aphasia test

Barthel index for
assessment of

independence and
mobility in daily life

activities

Random forest, logistic
regression, support

vector machine

Random forest: AUC of
0.792, sensitivity of 65.0%,

and specificity of 72.0%
Logistic regression: AUC of
0.796, sensitivity of 72.7%,

and specificity of 71.7%
Support vector machine:

AUC of 0.774, sensitivity of
67.7%, and specificity of

68.4%

Kim et al. 2022 [26]

Demographic and
clinical data of 833

consecutive patients
with stroke

Age, sex, type of stroke,
and Medical Research

Council score for
muscle strength of the

shoulder abductor,
elbow flexor, finger

flexor, finger extensor,
hip flexor, knee extensor,
and ankle dorsiflexor of

the affected side

Modified Brunnstrom
classification to evaluate

upper extremity
function and functional
ambulation category to

evaluate mobility
function

Random forest, logistic
regression, and deep

neural network

Modified Brunnstrom
classification prediction

model
- Random forest: AUC of

0.736
- Logistic regression: AUC of

0.790
- Deep neural network: AUC

of 0.836
Functional ambulation

category prediction model
- Random forest: AUC of

0.741
- Logistic regression: AUC of

0.795
- Deep neural network: AUC

of 0.0.836
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Table 1. Cont.

Study Target Data Input Data Output Data Machine Learning
Model Outcome

Kim et al., 2021 [27]

Clinical data and MRI
images of 221 patients
with a corona radiata

infarct

2-weighted axial images
of corona radiata

Functional ambulation
category to evaluate

mobility function

Convolutional neural
network

Prediction model included
image data only: AUC of

0.751
Prediction model included

clinical data and image data:
AUC of 0.919

Shin et al., 2022 [28]
Clinical data and MRI

images of 1233 patients
with stroke

2-weighted axial images
of brain

Modified Brunnstrom
classification to evaluate

upper extremity
function and functional
ambulation category to

evaluate mobility
function

Convolutional neural
network

Modified Brunnstrom
classification prediction

model: AUC of 0.768,
sensitivity of 71.36%,

specificity of 71.14%, and
precision of 78.5%

Functional ambulation
category prediction model:
AUC of 0.828, sensitivity of

78.95%, specificity of 79.61%,
and precision of 90.91%

Rizoli et al., 2016
[29]

Demographic and
clinical data of 1089

patients with traumatic
brain injury

Age, sex, systemic
blood pressure, Head

Abbreviated Injury
Scale, Marshall score on
the first head computed
tomography, and pupil
reactivity at emergency
department admission

Glasgow Coma Scale to
ascertain consciousness
following brain injury

Decision tree
AUC of 0.67, sensitivity of
72.3%, and specificity of

62.5%

Gravesteijn et al.,
2020 [30]

Demographic and
clinical data of 11,022

patients with traumatic
brain injury

Age, initial CT findings,
presence of

subarachnoid
hemorrhage and

hypoxia, and blood
levels of glucose,

sodium, and
hemoglobin

Glasgow Coma Scale to
ascertain consciousness
following brain injury

Ridge regression,
LASSO regression,

random forest, logistic
regression, gradient
boosting machines,

support vector
machines, and neural

network

Prediction model for
mortality

- Ridge regression: AUC of
0.82

- LASSO regression: AUC of
0.82

- Random forest: AUC of 0.81
- Logistic regression: AUC of

0.82
- Gradient boosting

machines: AUC of 0.83
- Support vector machines:

AUC of 0.81
- Neural network: AUC of

0.82
Prediction model for
unfavorable outcome

- Ridge regression: AUC of
0.77

- LASSO regression: AUC of
0.77

- Random forest: AUC of 0.76
- Logistic regression: AUC of

0.77
- Gradient boosting

machines: AUC of 0.78
- Support vector machines:

AUC of 0.78
- Neural network: AUC of

0.78
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Table 1. Cont.

Study Target Data Input Data Output Data Machine Learning
Model Outcome

Matsuo et al., 2020
[31]

Demographic and
clinical data of 232

patients with traumatic
brain injury

Age, Glasgow Coma
Scale score, abnormal

pupillary response,
systemic blood pressure,

major extracranial
injury, CT findings, and

laboratory findings
(glucose, C-reactive

protein, and
fibrin/fibrinogen

degradation products)

Glasgow Outcome Scale
to assess functional
recovery after brain

injury

Ridge regression,
LASSO regression,

random forest, gradient
boosting, extra trees,

decision trees, Gaussian
naïve Bayes,

multinomial naïve
Bayes, and support

vector machines (kernel
consisted of linear,

radial basis function,
polynomial, and

Sigmoid)

Morbidity prediction
performance assessed using

five-fold cross-validation
- Ridge regression: AUC of
0.879, sensitivity of 88.2%,

and specificity of 70.6%
- LASSO regression: AUC of

0.863, sensitivity of 94.5%,
and specificity of 48.3%

- Random forest: AUC of
0.857, sensitivity of 97.2%,

and specificity of 49.2%
- Gradient boosting: AUC of

0.869, sensitivity of 93.7%,
and specificity of 62.8%

- Extra trees: AUC of 0.881,
sensitivity of 95.8%, and

specificity of 53.6%
- Decision trees: AUC of

0.754, sensitivity of 87.5%,
and specificity of 58.1%

- Gaussian naïve Bayes: AUC
of 0.842, sensitivity of 68.7%,

and specificity of 82.8%
- Multinomial naïve Bayes:
AUC of 0.69, sensitivity of
83.2%, and specificity of

41.1%
- Support vector

machines(average): AUC of
0.882, sensitivity of 93.3%,

and specificity of 57.2%
Mortality prediction

performance assessed using
five-fold cross-validation

- Ridge regression: AUC of
0.939, sensitivity of 85.1%,

and specificity of 84.9%
- LASSO regression: AUC of

0.776, sensitivity of 77.6%,
and specificity of 91.7%

- Random forest: AUC of
0.960, sensitivity of 64.4%,

and specificity of 99.3%
- Gradient boosting: AUC of

0.951, sensitivity of 73.8%,
and specificity of 93.2%

- Extra trees: AUC of 0.949,
sensitivity of 68.0%, and

specificity of 97.8%
- Decision trees: AUC of

0.813, sensitivity of 68.5%,
and specificity of 86.3%

- Gaussian naïve Bayes: AUC
of 0.890, sensitivity of 71.6%,

and specificity of 89.4%
- Multinomial naïve Bayes:
AUC of 871, sensitivity of
66.4%, and specificity of

92.5%
- Support vector

machines(average): AUC of
0.917, sensitivity of 75.3%,

and specificity of 95.2%
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Table 1. Cont.

Study Target Data Input Data Output Data Machine Learning
Model Outcome

Zariffa et al., 2016 [32] 129 sets of GRASSP
evaluation data

Data of impairment
domain in GRASSP

Data of task
performance domain in

GRASSP
Random forest

The Spearman
correlation coefficient

between predicted task
performance scores and
actual scores was 0.92
after removing outlier

data

Mccoy et al., 2019 [33]

MRI images of 47
patients with acute

traumatic spinal cord
injury

T2-weighted axial
images of the cervical or

thoracic spine

Spinal cord and lesion
segmentation, and

association with motor
scores

Three models based on
Brain and Spinal Cord

Injury Center
segmentation (basicseg)

network

Dice coefficient of 0.93
for spinal cord
segmentation

There was a significant
correlation between the
size of collision-related

lesions and motor
scores at admission

(p = 0.002) and
discharge (p = 0.009)
based on automatic

segmentation

Okimatsu et al., 2022
[34]

MRI images of 215
patients with spinal

cord injury

T2-weighted sagittal
images of the cervical

spinal cords

American Spinal Cord
Injury Association

Impairment Scale score
to assess sensory and

motor function

Ensemble model based
on deep learning-based
radiomics and random

forest

0.714 of accuracy, 0.590
of precision, 0.565 of
recall, and 0.567 of f1

score

Note: GRASSP, Graded Redefined Assessment of Strength, Sensibility, and Prehension; LASSO, least absolute
shrinkage and selection operator.

3.1. Use of AI to Predict the Prognosis of Patients with Stroke

Gupta et al.’s study published in 2017 [23] used AI to predict motor outcome in patients
with stroke. They recruited 575 patients with intracerebral hemorrhage and collected more
than 200 data points, including demographic data, laboratory results, state at admission,
treatment, neurological defects, hospital complications, medical history, and discharge
data. Random forest and linear regression models were used to develop an AI algorithm.
Additionally, they employed a backward elimination approach to eliminate unnecessary
variables, resulting in predictive models that utilized six and four variables for motor
function prediction. They categorized 3- and 12-month outcomes as either ‘good’ (Modified
Rankin Scale: 0–3) or ‘poor’ (Modified Rankin Scale: 4–6) based on functional status. The
areas under the curve (AUCs) were 0.89 and 0.87 for predicting 3-month and 12-month
motor outcomes, respectively. The high accuracy of the AI models can be attributed to
their utilization of a more precise scoring system in algorithm development by integrating
existing cognitive and physical function assessment tools.

Subsequently, many studies have been conducted to develop AI algorithms for pre-
dicting prognosis after stroke [24,25]. Various data collected in the early stages after stroke
onset, such as age, sex, smoking, laboratory findings, comorbidities, modified Rankin Scale
score, Barthel index, oral intake, nutritional state, activities of daily living, Berg balance
test score, gait speed, 6-min walk test score, Fugl–Meyer assessment score, Mini-Mental
State Examination score, and language function, were used as input data. To develop
the AI algorithms, various models, including logistic regression, decision tree, random
forest, support vector machine, extreme gradient boosting, deep neural network (DNN),
adaptive boosting, and K-nearest neighbors, were used. The output of the developed AI
algorithm was the motor outcome, which was categorized according to Barthel index scores
or the modified Rankin Scale at discharge. The developed AI algorithms achieved AUCs
predominantly ranging from the late 0.7s to the late 0.8s [24,25].

In addition, in 2022, Kim et al. [26] attempted to develop a practical AI prediction
model using a small amount of input data, which are commonly checked in almost all stroke
hospitals. The following demographic and clinical data were collected during the early
stages of stroke: age; sex; type of stroke (ischemic/hemorrhagic); modified Brunnstrom
classification (MBC); functional ambulation score (FAC); and Medical Research Council
(MRC) score for muscle strength of the shoulder abductor, elbow flexor, finger flexor, finger
extensor, hip flexor, knee extensor, and ankle dorsiflexor of the affected side. They used
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data from 833 consecutive patients with stroke. Patients with an MBC of <5 and FAC of
<4 at 6 months after stroke onset were considered to have a “poor” outcome, whereas
those with an MBC ≥ 5 and FAC ≥ 4 were considered to have a “good” outcome. In the
model developed using the DNN, the AUC was 0.836 for upper and lower limb motor
functions. The input variables used by Kim et al. (2022) [26] are data commonly collected
to assess the functional status of patients with stroke across various institutions. Compared
with prognostic prediction models developed using a more extensive clinical dataset, it
demonstrated outstanding performance in terms of accuracy. These results indicate the
potential generalizability of predictive models developed using common variables across
many institutions.

Although most previous studies used demographic or clinical data as input variables
for developing AI algorithms to predict prognosis after stroke, some recently used imaging
data as input variables for the development of AI algorithms. In 2021, Kim et al. [27] used
three consecutive T2-weighted axial brain magnetic resonance (MR) images at the level of
the corona radiata per patient from 221 patients with a corona radiata infarct and created
an AI model to predict ambulatory outcomes at 6 months after the infarct. They used
a CNN, and the AUC of the developed algorithm was 0.751. To increase the prediction
accuracy, Kim et al. combined clinical data. The AUC was significantly improved to
0.919. In 2022, Shin et al. [28] developed an AI algorithm using brain MR image data, not
only from the corona radiata infarct but also from all patients with stroke. They obtained
whole T2-weighted axial brain MR images of each patient taken at an early stage of stroke
from 1233 patients with stroke. Favorable outcomes in the upper and lower limbs were
categorized as having MBC scores of ≥ 5 and FAC scores of ≥ 4, respectively, at 6 months
after stroke, and poor outcomes were defined by MBC scores of < 5 and FAC scores of < 4.
The CNN architecture was employed to train the image dataset. For the prediction of upper
and lower limb motor functions using the validation dataset, the AUC were determined
to be 0.768 and 0.828, respectively. Furthermore, the sensitivities were 71.36% and 78.95%,
respectively, and the specificities were 71.14% and 79.61%, respectively.

While previous studies have demonstrated the potential of AI in predicting functional
outcomes in stroke patients, its accuracy is not yet sufficiently high for practical use in
real-world settings. AI algorithms utilize limited or structured data, which may impede
their performance. The accuracy of machine learning networks, especially DNNs, and
data quantity are positively correlated [35]. However, there are constraints associated
with obtaining structured data that are commonly collected in clinical settings, such as
demographic and clinical data. Stroke, which is prevalent among the elderly population, is
often accompanied by comorbidities [36]. This can introduce confusion when developing
predictive algorithms that solely target stroke because the presence of comorbidities must be
considered. Consequently, collecting abundant data exclusively from patients with stroke
can be challenging. Image data can be leveraged to enhance the algorithm performance.
Most patients with stroke undergo brain MRI or CT scans for diagnostic purposes [37].
Combining stroke lesion images with clinical data can facilitate the development of robust
AI algorithms.

Previous studies have employed various AI algorithms to develop predictive models
for stroke outcomes, including random forests, decision trees, logistic regression, sup-
port vector machines, DNNs, CNNs, extreme gradient boosting, adaptive boosting, and
k-nearest neighbors. Random forest and decision trees enhance the accuracy and address
diverse datasets through ensemble learning [38]. Logistic regression, a simple linear classi-
fication algorithm used for binary and multiclass classification tasks, provides interpretable
results [39]. Support vector machines are effective at classifying data with a maximum
margin [39]. DNNs and CNNs are well-suited for learning complex data patterns and per-
forming tasks such as image and speech recognition [35,38]. Extreme gradient boosting and
adaptive boosting facilitate model performance optimization and error minimization [39].
K-nearest neighbors are useful for classification and regression tasks based on data point
proximity in the feature space [39].
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3.2. Use of AI to Predict the Prognosis of Patients with Traumatic Brain Injury

In 2016, Rizoli et al. [29] recruited 1089 patients with TBI. They used several clinical
data, including age, sex, systemic blood pressure, Glasgow Coma Scale, Head Abbreviated
Injury Scale, Marshall score on the first head computed tomography (CT), and pupil
reactivity at emergency department admission as input data. Outcome was categorized
into acceptable outcome (Glasgow outcome scale > 4 at 6 months after onset) and poor
outcome (Glasgow outcome scale ≤ 4 at 6 months after onset). They used a decision tree
to create an algorithm for predicting the prognosis. The decision tree had a sensitivity of
72.3%, a specificity of 62.5%, and an AUC of 0.67. The poor performance of the prediction
model can be attributed to various reasons, including TBI’s characteristic wide-ranging
outcomes and the nature of decision trees. Decision trees can exhibit instability when
predicting new data, and the selection of criteria values at each step of forming a tree
structure plays a crucial role [40]. Such low-performance models are difficult to apply in
actual clinical settings. Utilizing more patient data or applying various recently developed
deep learning algorithms may enhance the prediction accuracy.

In 2020, Gravesteijn et al. [30] used clinical data from 11,022 patients with TBI and
compared the capacities of machine learning and traditional regression to predict patient
prognosis. They used age; Glasgow Coma Scale score; initial CT findings; presence of sub-
arachnoid hemorrhage and hypoxia; and blood levels of glucose, sodium, and hemoglobin.
They divided the patients’ outcomes at 6 months after onset into favorable outcome (Glas-
gow outcome scale ≥ 4) and unfavorable outcome (Glasgow outcome scale <4). The ML
algorithms were developed using support vector machines, random forests, gradient boost-
ing machines, and a DNN. The average AUC was 0.82, which is not significantly different
from that of the traditional regression test. Ultimately, this comparison proved that the key
to improving prediction accuracy is to incorporate predictive variables with a substantive
incremental prognostic value because using new ML algorithms did not improve outcome
predictions. In addition, ongoing refinement is necessary to ensure that the developed
algorithms can be applied to emerging populations.

In the same year, Matsuo et al. [31] studied the feasibility of machine learning for
predicting poor in-hospital outcomes (Glasgow Outcome Scale < 4) after TBI. They included
232 patients and the following clinical data were used as inputs: age, Glasgow Coma Scale
score, abnormal pupillary response, systemic blood pressure, major extracranial injury,
CT findings, and laboratory findings (glucose, C-reactive protein, and fibrin/fibrinogen
degradation products). They used ridge regression, least absolute shrinkage and selection
operator (LASSO) regression, random forest, gradient boosting, extra trees, decision trees,
Gaussian naïve Bayes, multinomial naïve Bayes, and support vector machines to create
the AI algorithm. Random forest showed the best performance for poor-outcome predic-
tion, with 100% sensitivity, 72.3% specificity, 91.7% accuracy, and an AUC of 0.895. The
developed random forest model may be useful for predicting adverse outcomes in patients
with TBI. However, it is important to note that a relatively small sample size was used,
and important parameters, such as hypoxia or anemia, were not considered. Additionally,
approximately half of the subjects had severe TBI; therefore, caution should be exercised
when applying the model to patients with mild TBI. In the future, the development of
prediction models categorized according to injury severity will be necessary.

Previous AI studies predicting the prognosis of patients with TBI divided the func-
tional outcomes using the Glasgow Outcome Scale. However, the Glasgow Outcome Scale
classifies patients’ functional state into death, neurovegetative stage, severe and moderate
disability, and good recovery [41]. Thus, it is necessary to utilize tools that allow for a
finer measurement of the function of patients with TBI to create more precise AI models.
Consideration could be given to the use of the Glasgow Outcome Scale-Extended, which
provides a more comprehensive and detailed assessment of the functioning of patients
with TBI, or the functional independence measure, which evaluates cognitive and physical
independence. Another approach is the use of cutting-edge technologies to gather precise
data. This may entail considering the use of AI-based wearable devices, such as wearable
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accelerometers, that are capable of capturing motion data and providing insights into a
patient’s level of physical activity, gait, and balance [42]. Alternatively, an electroencephalo-
gram can be used to monitor brain activity and detect anomalies, thus serving as a means
of collecting detailed and accurate data [43].

3.3. Use of AI to Predict the Prognosis of Patients with Spinal Cord Injury

In 2016, Zariffa et al. [32] defined predictive values for the impairment assessment
of simultaneous functional tasks in traumatic cervical SCIs as measured by the Graded
Redefined Assessment of Strength, Sensibility, and Prehension (GRASSP). The GRASSP
evaluation comprises four domains: muscle strength, sensory function, grasping ability,
and prehension performance. In total, 129 sets of GRASSP evaluation data were used
for the analysis. Measurements corresponding to areas of bodily function and structure
were designated as ‘impairment’ measurements, while those relating to areas of activity
were labeled as ‘task performance’ measurements. A random forest model was developed
using ‘impairment’ measurements as input data and ‘task performance’ measurements as
output data. The prediction model comprised 50 trees. Leave-one-out cross-validation was
used to train the classifier and test its performance. The Spearman’s correlation coefficient
between the predicted task performance scores and actual scores was 0.84. After removing
the outliers, which accounted for 6.2% of the dataset, the coefficient increased to 0.92,
indicating the high performance of the predictive model.

In 2019, McCoy et al. [33] recruited 47 patients with acute traumatic SCIs and devel-
oped a model utilizing a 2D CNN to segment the entire spinal cord and intramedullary
spinal cord lesions using T2-weighted axial images of the cervical or thoracic spine. The
model was based on the Brain and Spinal Cord Injury Center segmentation (BASICseg)
network, which was further segmented into three variants: BASICseg-1 using dropout,
BASICseg-2 using batch normalization, and BASICseg-3 using batch normalization and a
noise adaptation layer. The segmentation outcomes of the BASICseg model were compared
with those of the state-of-the-art methods PropSeg and DeepSeg. Performance assessments
of the spinal cord and lesion segmentation were conducted using Dice coefficients. Ad-
ditionally, segmented lesion volumes were employed in a linear regression analysis to
determine their association with motor scores. Compared to manual labeling, the BASICseg
model exhibited an average test set Dice coefficient of 0.93 for spinal cord segmentation,
while PropSeg and DeepSeg achieved coefficients of 0.80 and 0.90, respectively. The BASIC-
seg model demonstrated greater adaptability to lesion regions than PropSeg and DeepSeg.
The volume of collision-related lesions based on automated segmentation were significantly
associated with the motor scores upon admission (p = 0.002) and discharge (p = 0.009).

In 2022, Okimatsu et al. [34] developed a model to predict the American Spinal Cord
Injury Association Impairment Scale (AIS) score using T2-weighted sagittal images of the
cervical spinal cords of 215 individuals. They employed deep learning-based radiomics
(DLR) to calculate the probabilities of AIS grades. In the MRI images, the region of interest
was defined as the area encompassing the damaged segment of the spinal cord and the
anterior and posterior boundaries at the injury level. The AIS grades were classified into
five levels, ranging from the most severe grade, A (indicating the most serious injury),
to the normal grade, E. Subsequently, an identification model was constructed using a
random forest model based on three features: the probability of each AIS grade being
obtained through DLR, age, and the initial AIS grade upon admission. The ensemble model
based on DLR and random forest achieved an accuracy of 0.714, precision of 0.590, recall
of 0.565, and an f1 score of 0.567. These results indicate the potential utility of combining
DLR and random forest for predicting short-term neurological outcomes in acute cervical
spinal cord injury. However, further refinement of the predictive model performance is
necessary for practical clinical use. Efforts should be directed towards gathering data from
a larger cohort of patients with cervical injuries to enhance accuracy. Additionally, potential
confounding variables, such as blood pressure management or surgical intervention, could
be considered. This study was conducted to investigate neurological prognosis one month
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post-injury; therefore, consideration should be given to developing algorithms for assessing
long-term outcomes by collecting extended-term data.

The application of AI in predicting the prognosis of SCI is diverse, encompassing the
development of models for identifying spinal cord lesions and predicting motor function
prognosis. However, in the domain of predicting motor function, there are perceived
limitations in practical applications in clinical settings.

4. Discussion

In this study, we investigated the integration of AI in predicting the outcome of CNS
disorders. Active research has been aimed at utilizing AI to predict the prognosis of patients
with stroke, TBI, and SCI. The application of AI algorithms is believed to assist in assessing
the prognosis of patients with CNS disorders undergoing rehabilitation. However, the
algorithms developed for specific medical conditions cannot be applied to other diseases.
Therefore, it is necessary to develop AI algorithms for predicting the prognosis of various
CNS disorders such as Parkinson’s disease, dementia, and multiple sclerosis, in addition to
stroke, TBI, and SCI. Furthermore, to implement the AI algorithm effectively in real clinical
scenarios, the accuracy of the predictions must be enhanced. To enhance the capabilities
of AI algorithms, it is necessary to accumulate large volumes of data and integrate them
from multiple medical institutions. Furthermore, previous studies have predominantly
employed clinical data as the input. Given the proficiency of deep learning in analyzing
image data, there is a need for research that employs imaging, such as MR and CT scans,
to predict prognoses. However, there are several limitations to improving the prediction
accuracy when applying AI algorithms in actual clinical settings. The availability of high-
quality data is limited, and cooperation between institutions is essential for integrating data
from multiple sources [3,44]. In addition, privacy concerns related to data usage can arise,
making it crucial to securely anonymize and protect patient data [3]. The variability among
patients can also pose challenges to the application of AI algorithms in clinical settings [44].
Given the wide range of patient responses to rehabilitation interventions, it is important to
consider variability, because inaccurate predictions by AI algorithms can lead to serious
problems. Considering these limitations, future research directions are suggested as follows:
(1) Longitudinal tracking data can be highly useful in tracing recovery trajectories [45];
therefore, researchers should develop models capable of detecting changes over time. (2)
Through international cooperation and data-sharing initiatives, researchers from different
countries can access diverse datasets, towards facilitating the development of more robust
and generalizable prognostic prediction models. (3) Multidisciplinary collaboration among
ethics and policy experts, AI specialists, neuroscientists, clinicians, medical technicians, and
healthcare professionals can promote a comprehensive understanding of CNS disorders.
Moreover, sensitive privacy concerns related to patient data can be addressed. (4) Utilizing
cutting-edge technologies, such as explainable AI, quantum computing, and advanced
natural language processing, can facilitate the prognosis of CNS rehabilitation.

In the context of CNS rehabilitation, AI holds significant potential not only for progno-
sis prediction but also for pain management and complication prediction. Machine learning
models can be used to identify pain-inducing factors and formulate personalized pain
management strategies [46]. They can also be used to identify risk factors and predict and
prevent complications associated with CNS disorders such as pressure sores and muscle
contracture [47]. Furthermore, it is anticipated that AI-based prognostic prediction in CNS
rehabilitation will significantly mitigate costs. Employing a targeted approach to identify
patients who are most likely to benefit from specific rehabilitation interventions can lead to
more effective treatment and faster recovery, which can reduce the overall treatment cost by
minimizing the need for prolonged or unnecessary interventions. Another application of
AI is resource allocation. Establishing examination and treatment plans based on a patient’s
financial situation can ensure that patients receive the appropriate level of care without
excessive resource consumption, thereby guaranteeing cost-effective care.
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It is anticipated that as clinicians increasingly study and comprehend machine learn-
ing, AI will be further harnessed in the realm of CNS rehabilitation, paving the way for
significant advancements in the future.
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