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Abstract: In 2020, coronavirus (COVID-19) was declared a global pandemic and it remains prevalent
today. A necessity to model the transmission of the virus has emerged as a result of COVID-19’s
exceedingly contagious characteristics and its rapid propagation throughout the world. Assessing the
incidence of infection could enable policymakers to identify measures to halt the pandemic and gauge
the required capacity of healthcare centers. Therefore, modeling the susceptibility, exposure, infection,
and recovery in relation to the COVID-19 pandemic is crucial for the adoption of interventions
by regulatory authorities. Fundamental factors, such as the infection rate, mortality rate, and
recovery rate, must be considered in order to accurately represent the behavior of the pandemic
using mathematical models. The difficulty in creating a mathematical model is in identifying the real
model variables. Parameters might vary significantly across models, which can result in variations
in the simulation results because projections primarily rely on a particular dataset. The purpose
of this work was to establish a susceptible–exposed–infected–recovered (SEIR) model describing
the propagation of the COVID-19 outbreak throughout the Kingdom of Saudi Arabia (KSA). The
goal of this study was to derive the essential COVID-19 epidemiological factors from actual data.
System dynamics modeling and design of experiment approaches were used to determine the most
appropriate combination of epidemiological parameters and the influence of COVID-19. This study
investigates how epidemiological variables such as seasonal amplitude, social awareness impact,
and waning time can be adapted to correctly estimate COVID-19 scenarios such as the number of
infected persons on a daily basis in KSA. This model can also be utilized to ascertain how stress (or
hospital capacity) affects the percentage of hospitalizations and the number of deaths. Additionally,
the results of this study can be used to establish policies or strategies for monitoring or restricting
COVID-19 in Saudi Arabia.

Keywords: COVID-19; SEIR model; pandemic; mathematical modeling; virus

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel virus as-
sociated with the emerging coronavirus disease 2019 (COVID-19), which spread quickly
throughout the world and caused a global pandemic [1]. The first pandemic of this century
began in late December 2019 in Wuhan, China, where it was initially discovered. COVID-19
has since spread worldwide since the beginning of 2020; as of 29 November 2022, the
World Health Organization (WHO) coronavirus dashboard reported more than 640 million
positive cases globally [2]. When compared to earlier coronavirus epidemics of SARS-CoV
(severe acute respiratory syndrome coronavirus) and MERS-CoV (Middle East respiratory
syndrome coronavirus), COVID-19 exhibits distinctive epidemiological characteristics. The
fact that COVID-19 is extremely contagious and that its precise nature is still unclear are
among the factors contributing to the global pandemic. Numerous transmission events
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took place via direct human-to-human contact among people who had no or minor symp-
toms, including in nosocomial and community settings [3]. To curb the spread of the virus,
most nations enacted lockdown procedures and stringent social confinement [4]. From a
clinical perspective, these methods are a great way to prevent virus spread, but they have a
negative impact on the economy and society. Therefore, under any situation, a complete
lockdown for an extended period of time is not desirable to maintain the economic standing
of a nation. These lockdowns have disturbed the global supply chain and distribution
networks of goods and products. Therefore, the aftereffects of such lockdowns can be
considered dangerous [5]. Therefore, these two distinct aspects of governmental policies,
i.e., total lockdown and societal health, should be balanced appropriately. This is only
possible when the pertinent information is available to decision-makers at an appropriate
time. Moreover, from the point of view of healthcare strategy, understanding the pattern of
a disease’s transmission and being able to predict it over time are crucial elements because
they can lessen the social and economic effects, as well as prevent deaths.

Researchers, practitioners, and decision-makers are very much interested in develop-
ing a variety of models to comprehend the trajectory of the pandemic and to devise efficient
control tactics [6]. In the literature, a variety of models have been employed, including
mathematical models [7–13], statistical models [14–18], network-based models [19–21], arti-
ficial intelligence (AI) models [8,22–24], and simulation models [25–27]. The output of these
models has exhibited extreme importance for decision-makers in controlling the pandemic’s
spread and its adverse effects [28]. These models can compare several scenarios depending
on the available data in order to forecast the path of the pandemic, as well as propose
measures for managing it. Several such models have been reported in the literature, with
some of the widely known ones being the susceptible–infected–recovered model [29–31],
curve-fitting model [32], extended–susceptible–infected–recovered model [33], susceptible–
exposed–infected–quarantined–dead–hospitalized–recovered model [27], susceptible–unas-
certained–cases–pre-symptomatic infectiousness–exposed–infectious–recovered model [34],
susceptible–infected–diagnosed–ailing–recognized–threatened–healed–extinct model [35],
and susceptible–exposed–asymptomatic–infected–hospitalized–recovered–dead due to
COVID-19 infection–susceptible model [36]. Although these are all mathematical models,
their complexity increases and applicability decreases as the amount of data increases,
necessitating an exponential growth in computational power. Similarly, large volumes of
data are required for training AI models [37]. Consequently, simulation-based models have
also emerged as effective solutions [38].

Hence, in this research, with the help of a susceptible–exposed–infected–recovered
epidemic (SEIR) model, a simulation-based model is developed to comprehend the dynam-
ics of COVID-19 in Saudi Arabia. This study examines how epidemiological variables such
as seasonal amplitude, societal awareness influence, and waning time can be modified in
order to accurately estimate COVID-19 scenarios, such as the number of infected persons
on a daily basis in Saudi Arabia. The optimal state of epidemiological variables and the
impact of COVID-19 are determined using system dynamics (SD) modeling and design
of experiment (DOE) techniques. The aim is to match the simulation model with empir-
ical data to determine its suitability for assessing the efficacy of the Saudi government’s
control measures, as well as forecast the disease’s future dynamics in Saudi Arabia on the
basis of various scenarios. The proposed model takes into account the dynamic nature
of person-to-person interaction behaviors, as well as the differences in susceptibility and
infectiousness across persons. The results of this study can be useful for decision- makers to
curb the spread and effects of the pandemic through proper planning. The presented study
mainly contributes to the literature through the use of SD modeling and DOE approaches to
determine the most appropriate combination of epidemiological parameters and the influ-
ence of COVID-19. Similarly, this study can help decision-makers to predict and correctly
estimate the number of infected persons on a daily basis in the Kingdom of Saudi Arabia
(KSA). The objective of this model is to ascertain how stress (or hospital capacity) affects the
percentage of hospitalizations and the number of deaths. Additionally, several scenarios
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are investigated to predict the future dynamics of COVID-19 in KSA. Hence, this model
can be used to comprehend the current state of COVID-19, as well as monitor and control
its impact. The main contribution of this study is its application of an enhanced SEIR
model in the form of a susceptible–exposed–infected–hospitalized–isolated–recovered–
susceptible (SEIHIsRS) framework to realistically simulate the pandemic’s spread. The
model established in this work considers both isolated and vaccinated persons, in contrast
to past studies that were mostly based on the classic SEIR model so as to simplify the
simulation. This study attempts to recreate the state of COVID-19 as precisely as possible
by considering a number of aspects that were disregarded in previous research. Specifically,
this work takes into account factors such as the influence of lockdowns, social awareness,
seasonality, and vaccine efficacy, along with standard criteria such as latent time, recovery
time, and mortality rate. Prior studies did not simultaneously study all of these variables.
The integration of DOE with Vensim modeling, particularly for COVID-19, is an efficient
method to calibrate the simulation model in accordance with the real scenario; however,
this approach was not previously applied in the literature.

This study is structured into five main sections. The research background and study
objectives are covered in Section 1. Section 2 provides a review of the literature to identify
research gaps that assisted in defining the objectives. The methodology comprising a
description of the model and experiments is presented in Section 3. Lastly, the results and
conclusions are summarized in Sections 4 and 5, respectively.

2. Literature Survey

There has been a significant volume of research in the literature on the dynamics and
progression of contagious diseases such as COVID-19. For example, Mwalili et al. [39]
adopted the fourth and fifth-order Runge-Kutta method to depict only the COVID-19
transmission dynamics and does not describe the disease severity and deaths. He et al. [40]
studied the impact of quarantined and hospitalization in predicting the dynamics of
COVID-19. The model was applied to the actual COVID-19 data of Hubei province. In
their model, the rate of infectious to hospitalized individuals and the recovered rate
of quarantined infected individuals were estimated using a particle swarm optimization
algorithm with actual data of recovered and hospitalized. It was found that with seasonality
and stochastic infection, the system could generate chaos. The dynamics of the system
were found to be different for a different set of parameters. Whereas, Annas et al., 2020 [41]
considered vaccination and isolation factors as model parameters. Their results showed
that the vaccination could enhance disease healing and maximum isolation could slow
down the spread of COVID-19 in Indonesia. Yarsky [42] incorporated a genetic algorithm
to fit the population-dependent parameters to forecast the spread of COVID-19 for different
states in the US. The most important parameter that could vary from state to state was
considered to be the contact rate. Other parameters such as transmission probability, death
rate, diagnostic test eligibility, and the test result period were found to vary to a lesser
extent between the states. The use of a genetic algorithm was found to result in good
agreement with the model and actual data. Chen et al. [43] proposed a model to establish
the relationship between the spread of COVID-19 and mitigation measures to control it.
The data was segmented into eight different periods with corresponding SEUIR models
for each period and estimated the transmission rate and reduced rate for each period. The
performance of the proposed model was tested for the US COVID-19 data obtained from the
world meter. Similarly, Zhang et al. [44] proposed a model to study the effect of intra-city,
and inter-city population movements as well as medical investments on the spread of
COVID-19 in three cities of Hubei Province, China. Reproduction numbers of the proposed
model were derived theoretically using the next-generation matrix method and the effect of
selected parameters on the spread of COVID-19 was simulated. Liu et al. [45] studied the
effectiveness of the control measure adopted during COVID-19 using area-based exposure
to infections during travel and quarantine. The proposed model considered infections
during travel and the effect of control measures such as social distancing, working from
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home, circuit breaker, and phase advisory on infection risk. The developed model was
applied to assess Singapore’s COVID-19 response concerning the national policies and
transport policy. The movement of commuters between the zones was modeled using
Singapore’s mass rapid transit data. After model calibration and parameter estimation,
a long-term investigation of the COVID-19 pandemic along with a disease transmission
dynamics model was presented.

Kamrujjaman et al. [46] developed a COVID-19 epidemic model using first-wave data
from Italy and Spain. The fit of the proposed model with real data was found to be good
when tested using the least square method and residuals. Sensitivity analysis revealed the
most sensitive model parameters as disease transmission rate, panic, tension/anxiety of
susceptible and infected, natural death rate, and disease-induced death rate. Tello et al. [47]
proposed a mechanism to monitor the dynamics of an epidemic in a prescribed region with
a varying population using time-variant parameters of diffusion and transmission along
with the data from health authorities regarding positive tests and deaths. Kiarie et al. [48]
proposed a model to forecast the spread of the COVID-19 pandemic in Kenya. Their
model parameters were estimated using historical data and model fit was evaluated.
Yin et al. [49] proposed a population-based model to study the COVID-19 transmission
dynamics in India during the first wave. The model was constructed considering the
infection complexities, symptoms, and transmission pathways to perform a retrospective
analysis of government policies such as lockdown, individual protection actions, testing,
and screening. The model was calibrated using the reported data on daily infected, death,
and recovered cases from various states of India. The analysis showed that the strict
practice of individual protection methods is essential to moderate lockdown policy and
mitigate the propagation of disease. Hatami et al. [50] considered the spatial heterogeneity
of the pandemic and proposed a model with spatial extension to simulate and predict
the dynamics of the COVID-19 delta variant in the Metropolitan Statistical Area in the
US. The model was fitted with the daily data of COVID-19 cases and deaths from John
Hopkins University. Thus, multiple models were developed considering various external
covariates and relevant datasets such as mobility, pharmaceutical, and non-pharmaceutical
interventions, demographics, and weather data to improve the robustness and predictive
performance of the model. Phan et al. [51] developed a quantitative framework to estimate
COVID-19 prevalence and predict virus transmission using wastewater-based surveillance
data from the second wave pandemic data of three counties in Massachusetts. They
presented a dynamic model that connects the viral load in wastewater with the total
number of infected cases in the sewer shed. Sun et al. [52] focused on an asymptomatic/pre-
symptomatic population and a symptomatic population to study the dynamics of COVID-
19 in Japan. Furthermore, Carcione et al., 2020 [53] first implemented an SEIR model to
determine the infected, recovered, and dead individuals in the Italian region of Lombardy.
The model was calibrated with the data from Lombardy available online till 5 May 2020
which was then used to predict the dynamics of the epidemic. The analysis also showed
the importance of isolation, social distancing, and knowledge of diffusion conditions to
better understand the dynamics of the epidemic and stop the spread of disease. Feng et al.,
2021 [54] incorporated an SEIR model to study the dynamics of the epidemic in Wuhan.
Furthermore, neural networks-based artificial intelligence models were used to analyze the
epidemic trend in non-Wuhan areas. The model was calibrated using the data from January
to March 2020 obtained from the literature. The proposed SEIR and AI models effectively
predicted the epidemic peaks and sizes in Wuhan and non-Wuhan areas respectively. The
study also found that the control measures taken by the Chinese government helped in
reducing the scale of the epidemic. Prem et al., 2020 [55] evaluated the effect of control
strategies such as social distancing measures on the spread of the COVID-19 epidemic
in Wuhan using SEIR modeling. The results showed that the control measures for social
mixing in the population are effective in reducing the spread and delaying the peak of
the epidemic. Chung and Chew, 2021 [56] studied the COVID-19 outbreak in Singapore
using the SEIR model with multiplex and temporal networks. The study considered the
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complex human interactions such as social interactions in households and at the workplace
in addition to the interactions between crowds, and social gatherings. The simulation
results showed that the residents in densely populated areas were more susceptible and
easily infected. The spread of infections in these areas could be uncontrollable without
proper control measured.

It is evident from the literature that there are several variables whose values have been
thoroughly investigated and documented in the literature. There are also some epidemio-
logical variables, such as seasonal amplitude, social awareness impact, waning time, etc.,
which have not been studied in the past but can play a crucial role in understanding the
dynamics of COVID-19. Therefore, these variables have been examined in this study using
DOE and SD modeling so that the developed model could be changed to account for the
COVID-19 trend in KSA. Furthermore, the values of already investigated variables, such
as infection period, isolation time, recovery time, etc., are obtained from the literature or
online sources. Additionally, initial trials or exploratory experiments, and expert opinions
are used to obtain the values for some variables that are not available in the literature. For
example, the initial hospitalization percentage, days to seasonal change, days to achieve
social awareness, etc., are among these variables.

3. Model Description and Experiments

In this research, modeling is undertaken using the SD approach [57], a simulation
method for comprehending the nonlinear behavior of complicated systems that are fre-
quently used for feedback loop assessment. The main elements of this modeling approach
are stocks (represented by a box), flows (symbolized by valves with arrows), auxiliary, and
delay components. A variation of the well-known compartmental disease diffusion model,
known as the SEIHIsRS model and analogous to the models outlined in [58,59], is used
to simulate a realistic pandemic spread situation. Figure 1 shows a high-level stock-flow
schematic of the intended framework. The entire population is divided into five sections
in this model, including Susceptible (S), Exposed (E), Infected (I), Hospitalized (H), and
Isolated (Is)—Recovered (R). This model assumes that each compartment’s population
composition is uniform. Additionally, no birth and natural death rates are considered, and
there is no infection rate due to hospitalized patients.
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The following discusses how the SEIHIsRS pandemic model works. Anyone who
becomes infected (I) exposes the susceptible (S) people to the disease. The migration of
the susceptible population to exposure (or the number of infections) relies on the infection
rate. According to Equation (1), the infection rate (IR) is the result of the initial infection
rate (IRi), contact rate (λ), proportion susceptibility (Sp), seasonal impact (ϕ), and social
awareness impact (α).

IR = IRi × λ × Sp × ϕ × α (1)

The infection rate in the absence of any additional influencing elements, such as social
awareness, season, lockdown, etc., is known as the initial infection rate. It only takes into
account the reproduction number (R0) i.e., the number of times the certain virus reproduces,
and the infection period (IP), as indicated in Equation (2). The average number of infected
contacts per infected person is known as the reproduction number, whereas the infection
period refers to the duration of an individual’s infectiousness. The R0 in the present case is
assumed to be 3.3 [60–64] while the IP is considered as 7 [65,66].

IRi =
R0

IP
(2)

In the present case, it is presumable that the lockdown plan (β) to start and stop, as
well as its time of impact (timpact), will affect the contact rate. It means that the contact rate is
higher when there is no lockdown (it is supposed to be eight in the current experiment [67]),
but it drops when there is a lockdown. The contact rate (λ) is represented by Equation (3)
and its behavior which is represented by the exponential delay of the first order can be seen
in the following Figure 2a. The duration of time after which the effects of lockdown are felt
is known as the time of impact. The timpact is obtained through experimentation.

λ = (λNL − DELAY1(β, timpact)) (3)
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Figure 2b depicts the behavior of the variable β as defined by Equation (4). It means
there will not be a lockdown for 30 days, at which point its value is seven. Consequently,
after 120 days, the value of the β is reduced to five, and the cycle then repeats as predicted
by Equation (4).

β = Step(7,30) − Step(2,120) − Step(5,300) + Step(7,395) − Step(7,410) (4)
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The “proportion susceptibility” reflects the fraction of the initial population other than
the susceptible. It depicts the people who are located in the less dense region of the social
network. This component loses relevance and its value in cases when the entire population
is presumed to be susceptible. The susceptible population in the present work is the entire
population, hence the Sp is set at 1.

ϕ = 1 + ρ × (SMOOTH (PULSE TRAIN (Ts, TD, TR, TF), dseason)) (5)

The inclusion of the seasonal impact considers the influence of the season on the
progression of the pandemic. It is defined using the SMOOTH and PULSE functions as
depicted in Equation (5). The season impact, according to the equation, begins on the
60th day and lasts for 60 days. This process repeats every 365 days, and since this model
is created over two years, it ends after 21 months. The seasonal impact on the infection
rate is considered using the SMOOTH function, which incorporates an exponential delay
of the first order (Figure 3a). The variable “Days to seasonal change (dseason)” is used to
lessen the abrupt change and ease the impact of the seasons. After several preliminary
experiments, the dseason is assumed to be 30 days in the current study. Furthermore, the
variable ρ represents the seasonal amplitude and it is estimated through experimentation.
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Social awareness is used to consider how the infection rate is impacted by actions like
social distancing, mask use, frequent hand sanitization, etc. It implies that the spread of
COVID-19 can be limited if the public is aware of its responsibilities. The model incorpo-
rates the effect of social awareness using Equation (6). Following the implementation of
social awareness measures, it states that the impact will be 1 for 30 days before dropping
to τ. The value of τ is estimated through experimentation and it represents the social
awareness impact. The influence of social awareness on the infection factor is smoothed
using the function DELAY1, as seen in Figure 3b. After the initial simulation runs, the
variable dachieve is fixed at 60 days, and it shows that the impact of social awareness on the
infection rate steadily decreases to half in the 60 days.

α = 1 − DELAY1(Step (τ, 30), dachieve) (6)

The exposed individuals begin to experience symptoms after the latent time (LT) and
move to the infected (I) compartment to seek healthcare. The patient is promptly moved to
the Hospitalized (H) compartment if the hospital permit based on the availability of beds,
medications, PPE kits, staff, etc.; otherwise, they proceed to the Isolation (Is) compartment
and are permitted to continue in self-recovery. The admission rate or percentage of the
Infected population that is hospitalized (HP) has been estimated. HP has been calculated
in the developed model using the percentage of initial hospitalization (IHP) and the stress
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(σ). After the expert’s advice, the value of IHP is assumed to be 0.2 in the current model.
The value of 0.2 indicates that 20 out of every 100 infected people are hospitalized. The
percentage of infected individuals who are hospitalized, however, dramatically declines as
the stress, which is defined as the ratio of the hospitalized to the capacity of the hospital (or
healthcare facilities), increases. The burden or distress placed on the healthcare system as a
result of overloading is conceptually referred to as stress. Thus, if the stress level is less
than 0, the HP remains at the normal 0.2, but as soon as it rises above 0, it has a significant
impact on the HP. This is done to ensure that patients only enter hospitals if they can receive
the necessary care; otherwise, they move to isolation to recover on their own.

People in hospitals frequently recuperate following “Recovery time (RT)” and transi-
tion to the Recovered class (R). After an isolation time (IST) longer than the RT, a percentage
of the isolated infected patients achieve self-recovery. A certain number of isolated people
are also hospitalized if their health deteriorates to a serious level. Some of the hospitalized
patients also pass away depending on their stress level and mortality rate (µ). Those who
have recovered lose their immunity to the disease and are once more vulnerable to it
(probably as a result of disease strain mutation) after a considerable amount of time or the
“Waning time (WT)”. This model also considers how immunizations affect the number
of infected populations and it also assumes that vaccination immunity is lost depending
on the vaccine efficacy (ζ). The model also considers the fact that immunization in KSA
starts in mid of December 2020 [68]. The governing equations of this model for different
compartments can be presented using Equations (7)–(13). The notations used in the model,
their description, and their units are presented in Table 1.

S = {(1− ζ)× (η)}︸ ︷︷ ︸
Immunity lost

+
R

WT︸︷︷︸
Waning

−{(I)× (IR)}︸ ︷︷ ︸
Infections

− η︸︷︷︸
Vaccination per day

(7)

E = {(I)× (IR)} − E
LT︸︷︷︸

Advancing

(8)

E = {(I)× (IR)} − E
LT︸︷︷︸

Advancing

(9)

H = {(I)× (HP)} +I×HP× 0.5︸ ︷︷ ︸
Hospitalizations

−{H× µ× σ}︸ ︷︷ ︸
Mortality

− H
RT︸︷︷︸

Recovery

(10)

R =
H
RT

+
I

IST︸︷︷︸
Self recovery

− R
WT

(11)

V = ηζ (12)

Is = {(I)× (1−HP)}−{I × HP × 0.5} − I
IST

(13)
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Table 1. Notations deployed in the SEIHIsRS model.

Symbol Name Description Units

S Susceptible People who have not yet been exposed to the infection but are
likely to be vulnerable to the virus Person

E Exposed Persons who have been exposed to the virus but have not yet
begun to infect others Person

I Infected Individuals who are infectious and spread the disease Person
H Hospitalized People treated with infectious diseases in the hospital Person

Is Isolated Persons who are not admitted to a hospital for treatment but
are instead kept in disconnection Person

R Recovered Patients recuperated from COVID-19 Person
D Deaths Individuals who have succumbed to COVID-19 infection Person

V Vaccinated Individuals who have been immunized for COVID-19
infection Person

Capacity The number of individuals that can be effectively treated by
the healthcare system. Person

IRi Initial Infection Rate The infection rate in the absence of any additional influencing
elements 1/Day

IR Infection Rate The rate at which infection takes place and it depends on
several influencing factors 1/Day

HP Hospitalization Percentage Admission rate or percentage of the infected population that
is hospitalized 1/Day

IHP Initial Hospitalization
Percentage

A normal proportion of infected patients admitted to
hospitals 1/Day

µ Mortality rate Number of deaths among COVID-19 patients each day 1/Day
IP Infection Period Duration of an individual’s infectiousness Day

LT Latent time Duration after which the COVID-19 exposed individual
becomes contagious Day

timpact Time of impact Duration after which the effects of lockdown are felt Day
dseason Days to seasonal change The timeframe during which the seasonal impact takes place Day

dachieve Days to achieve The timeframe during which the effect of social awareness
takes place Day

Ts Start time Day of the year when season impact begins Day
TD Season impact duration The period during which the effects of the season persist Day
TR Season impact repeat Day of the year when season effect recurs Day
TF Final time The final time of the simulation Day

IST Isolation time Duration of patients in seclusion after which self-recovery
takes place Day

RT Recovery time Duration of patients in hospital after which recovery takes
place through treatment Day

WT Waning time Duration after which recovered people lose their immunity
and are once more vulnerable to COVID-19 Day

η Vaccination per day Daily doses of vaccines administered Person/Day

λ Contact rate The rate at which individuals come in contact with each other,
resulting in disease spread Dimensionless

λNL No lockdown contact rate Contact rate when there is no lockdown Dimensionless

SP Proportion susceptibility Fraction of the initial population other than susceptible who
are located in the less dense region of the social network Dimensionless

ϕ Seasonal impact Seasonal effects on the spread of the pandemic Dimensionless
ρ Seasonal amplitude The extent to which the seasons influence the disease’s spread Dimensionless

α Social awareness Effect of measures such as social distancing, usage of masks,
frequent hand sanitization, etc. Dimensionless

τ Social awareness impact The extent to which social awareness influences the control of
disease’s spread Dimensionless

R0 Reproduction number Number of times the virus reproduces Dimensionless
β Lockdown plan Establishing the lockdown plan with start and end times Dimensionless

σ Stress The burden on the healthcare system as a result of
overloading Dimensionless

ζ Vaccine efficacy Effectiveness of immunization Dimensionless
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3.1. Experimentation

The SD model is created in the commercial software Vensim® (Ventana Systems, Inc.,
Harvard, MA, USA), and it is simulated using the Euler integration method with a time-step
of 1. Vensim is the simulation program that predominantly provides continuous simulation
for SD by offering a graphical modeling interface for stock-and-flow and causal loop
diagrams where text-based equations can be included. There are several variables whose
values have been thoroughly investigated and documented in the literature. Therefore,
values for these variables, such as infection period, isolation time, recovery time, etc., are
obtained from the literature or online sources. Initial trials or exploratory experiments and
expert opinions are used to obtain the values for some variables that are not available in the
literature. The initial hospitalization percentage, days to seasonal change, days to achieve
social awareness, etc., are among these variables. Finally, some variables have not been
studied in the past but can play a crucial role in understanding the dynamics of COVID-19.
These variables are adjusted in this study using DOE so that the existing model could
be changed to account for the national COVID-19 trend. As a result, this model can be
utilized to comprehend the actual COVID-19 scenario in KSA as well as monitor and control
the impact of COVID-19. The appropriate range for these parameters is chosen through
preliminary runs. Table 2 shows the model tuning parameters and their levels, whereas
Table 3 shows the remaining parameters with known or initially determined values.

Table 2. Variables and their corresponding levels chosen for refining the model.

Parameter Levels

E (Initial) 75 persons 100 12
ρ Insignificant Partial significant Significant
τ Low high Very high

timpact 15 days 30 45
WT 90 days 180 365

Table 3. Parameter settings for experimentation.

Symbol Values Symbol Values

S 34,810,000 LT 14 [69]
I 0 dseason 30
H 0 dachieve 60
Is 0 IsT 15 [70]
R 0 RT 20 [71]
R0 3.3 [60–64] µ 0.003 [71]
D 0 Sp 1

IHP 0.2 ζ 0.95
IP 7 [65,66] η Data [72]

The developed model is calibrated from the actual data by calculating the percentage
difference in the total number of cases over 21 months. Around 243 simulation experiments
are carried out in the calibration (or tuning). The model is run for each parameter combina-
tion for 21 months since the actual data for KSA is taken into consideration from March
2020 to November 2021. The COVID-19 scenario in KSA can be realized perfectly using
this model (with idealized parameters) when the percentage difference is minimized at a
specific set of parameters. Consequently, this model could be used to develop strategies and
policies for reducing the COVID-19 spread and to research the impact of various policies
on the COVID-19 spread. The values of parameters that have not been considered in DOE
are presented in Table 3.
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3.2. Impact of Policies Using the Established Model

Once the model has been adjusted for the KSA context, it is utilized to assess the
impact of various policies on the number of hospitalizations per day and fatalities. The
different policies that are investigated are as follows.

3.2.1. Effect of Lockdowns

A lockdown is a state of confinement that compels individuals, a community, or an
entire nation to remain in their current location. It restricts mobility or operations in a society
while letting only those organizations operate regularly that provide essential goods and
services. The extent of enforcement required in the implementation of lockdown can vary
depending on necessity [73]. A lengthy lockdown may have highly negative effects on the
economy. Additionally, there are also possibilities for long-term psychological repercussions
including dissatisfaction, monotony, and worries about becoming sick, running out of
supplies, etc. Therefore, the lockdown could have a detrimental effect rather than a good
one depending on how well it is designed or executed. The impact of lockdown has
been explored in this work so that proper lockdown policies can be developed at the
appropriate moment.

3.2.2. Impact of Social Awareness

Infectious transmission can be inhibited by social awareness and personal actions.
These campaigns can take a variety of forms, from governmental rulings to societal pres-
sure [74]. In the case of COVID-19, the results of public awareness campaigns and personal
initiatives include better cleanliness habits (sanitization), the use of masks and personal
protective equipment, social distancing, etc. These efforts demonstrate a population’s readi-
ness to take part in infection prevention, which can help reduce obstacles to the execution
of preventive policies. Social awareness can stop the disease from spreading, but it needs to
be properly monitored and applied [75]. Therefore, to create effective policies for reducing
COVID-19, the effect of social awareness has been researched in this study.

3.2.3. Influence of Vaccination Efficacy

Throughout the COVID-19 period, many vaccinations have been developed, however,
their efficacies vary significantly. For instance, Pfizer has a 95% efficacy rate, compared to
76% for Astra Zeneca [76]. This implies that the type of vaccine may also have a significant
role in limiting the transmission of COVID-19. Therefore, the impact of various vaccine
efficacies on infections, hospitalizations, and fatalities has been investigated in this work.
This research enables us to comprehend how the effectiveness of immunizations affects the
transmission of COVID-19.

4. Results and Discussions

This study aims to identify appropriate parameter values (refer to Table 2) that reason-
ably fit the actual COVID-19 daily infection data. Therefore, the 21-month data for daily
verified COVID-19 infected cases have been considered in this investigation. This informa-
tion is obtained from open-access published data [72]. The historical confirmed infected
cases from March 2020 to November 2021 are represented by the graph in Figure 4 below.

In Minitab software (Minitab 17, State College, PA, USA), a general full factorial DOE
comprising 243 experiments is generated. The developed model is then put through a
simulation to comprehend the dynamics of infected individuals for various parameter
combinations. Then, for each simulation run, the daily infected cases are plotted and
compared to the aforementioned historical actual data of daily infected cases. The error for
each run is estimated and compared on average to identify the percentage difference. The
lowest values and the best fitting parameter values for the three best and worst runs are
presented in the following Table 4.
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Table 4. Three best and worst runs parameters.

Parameter↓
Runs→

Best Three Runs in the Best Fitting Order Worst Three Runs in the Best Fitting Order

053 15 188 037 157 187

timpact 30 30 45 45 45 15
E (Initial value) 75 75 100 125 125 75

WT 90 180 90 180 90 90
τ high high low low low low
ρ significant significant significant significant significant partial significant

The daily infected cases for each above simulation runs are plotted and are presented
in Figure 5a–f.

From the above comparison of the model’s daily infected cases vs actual daily infected
cases, it is observed that the model parameters set for Run053 are the best-fitted parameters
to understand the impact of pandemic management policies. These parameters are 30 days
(timpact), 75 persons (E initial value), 90 days (WT), high (τ), and significant (ρ). This
model can be utilized to explain the dynamics of COVID-19 with the least percentage
difference, once these parameter values are included together with additional parameter
values gathered from literature and preliminary experiments.

There is a decline in the number of daily infected individuals after a few days of
enforcing the lockdown. The effect of lockdown is observed to be 30 days in the KSA based
on the DOE analysis of the established pandemic model mentioned above, and the initial
value of those exposed should be considered 75 people. Similarly, to control and reduce
the number of daily infected people, initiatives are taken by government agencies via
educating and enforcing the public to maintain social distancing, making the use of masks
and sanitizer compulsory in public places, etc. All of these initiatives are incorporated
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into τ, and three distinct levels of τ are used to test the model. For the example of KSA,
the appropriate value of τ in this model is found to be 0.53. It is also apparent from the
available literature and scientific facts that the season affects how contagious the pandemic
virus is. This parameter is also considered as ρ in the model. Following the DOE study,
the value of ρ is determined to be 0.5. Once the model is fine-tuned, it is used to study
the effect of different policies on hospitalization and fatalities. Similarly, the influence of
the efficacy of different vaccines and their effect on hospitalization and fatalities are also
studied and discussed here below.
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The burden on hospitals during pandemics is primarily affected by government
isolation measures and the daily infected population, which indirectly influences stress
and the number of fatalities. Additionally, the chosen best and worst experiments and the
related graphs shown below in Figures 6 and 7 make this quite clear. This shows that the
model is sensitive to changes in the parameters.
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Decision-makers in government organizations must evaluate pandemic policies before
choosing and putting them into practice. The various strategies are thus examined after
choosing the parameters that best match the actual daily infected numbers for the KSA. The
model with run 053 is chosen to examine the efficacy of vaccinations, societal awareness
campaigns, and lockdown implementation procedures. The policies must be balanced.
For example, a full lockdown will greatly affect the economy of the country. Aggressive
social awareness measures will distress individuals and affect their mental health. Higher
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vaccine efficacy comes with higher vaccination costs. Therefore, it is important to analyze
the different scenarios and understand their effect on the evolution of the pandemic.

From Figure 8, it can be observed that the number of cases without lockdown (WLD)
increased in multiples of one hundred, while in partial lockdown (PLD), initially the number
of the daily infected cases are downplayed, but subsequently, in the second seasonal wave
impact it rises to double that of first wave infections. Similarly, when one follows a full
lockdown policy, the number of daily infected cases is at a very low level in the thousands
only. This supports the full lockdown policy adopted by WHO operational planning
guidelines to support and control the pandemic effect.
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The success or failure of controlling any outbreak is not only depending upon lock-
down measures but also requires public awareness in tackling pandemics. The majority of
social awareness comes from media and preventive measures of pandemic awareness about
diseases. As shown in Figure 9, social awareness is effective at the end of the pandemic
cycle. This is obvious because making social awareness as described above takes a long
time to reach a susceptible population. It is a cumulative effect and thus shows relative
impact. One can observe that when social awareness is insignificant, the rise in infected
persons will be in the very high range in the second wave. Thus, social awareness plays a
significant role in controlling the pandemic.

All vaccines approved by WHO for use have been through randomized clinical trials
to test their quality, safety, and efficacy. To be approved, vaccines are required to have a
high efficacy rate of 50% or above. A vaccine’s efficacy is measured in a controlled clinical
trial and is a measure of how much the vaccine lowered the risk of becoming sick. It is
evident that when a vaccine has high efficacy, it lowers the risk of becoming sick. Vaccines
were not available in the earlier beginning stage of the pandemic, they were only developed
and made available eight months after the pandemic started, which is seen in Figure 10. In
earlier months of the pandemic, vaccine efficacy has no impact on the number of infected
cases as the vaccines were in the development stage. The impact of vaccine efficacy on the
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infected case is seen in the later stages of the pandemic. It is worth noting that as vaccine
efficacy increases from low to high, the number of infected people drops significantly. Thus,
the policy to select effective vaccines by decision-makers has very high importance.
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5. Conclusions and Future Work

It is essential to model the dynamics of the contagious COVID-19 virus to prevent
its spread across the world. As a result, it is an effort in that direction. The objective
of this work is to build a Susceptible-Exposed-Infected-Hospitalized-Isolated-Recovered-
Susceptible model that can demonstrate how the COVID-19 outbreak spread throughout
the KSA. It seeks to understand the critical COVID-19 epidemiological factors by using
actual data. It employs SD modeling and the DOE to identify the most suitable combination
of epidemiological variables and the impact of COVID-19. Some epidemiological factors,
such as seasonal amplitude, social awareness impact, waning time, etc., which have not
previously been investigated but can be vital to know the dynamics of COVID-19, should
be taken into consideration. Consequently, the primary focus of this work has been on these
variables. It is discovered from the relation of the model’s daily infected cases vs actual
daily infected cases that the best-fit input variables to realize the implications of pandemic
management policies are 30 days for timpact, 75 persons for E initial value, 90 days for WT,
high social awareness impact, and greater value of seasonal amplitude. Thus, the proposed
model can be effectively utilized to explain the dynamics of COVID-19 with a minimum
percentage difference when the input values are appropriate.

It has been discovered that the number of daily affected people is decreasing only
after a few days of imposing the lockdown. It means that the impact of the lockdown is
seen 30 days after it is put into place in the KSA. This implies that the lockdown’s timing
is vital for realizing its impact at the appropriate time before the situation goes out of
control. The suitable value for the influence on social awareness is also found to be high.
It shows that the steps taken by the government organizations, such as social distancing,
the wearing of masks, frequent hand washing, etc., have a big impact on containing and
reducing the spread of COVID-19 in KSA. It is also apparent that the pandemic virus’s
contagiousness is significantly influenced by the season. It emphasizes the importance of
additional precautions and stringent regulations when the virus may be more active and
extra contagious.

It has also been observed that the full lockdown policy, along with an abiding and
aware population (greater social awareness), considerably reduces any pandemic effect,
particularly COVID-19. In addition, it is crucial to use vaccines that are effective enough
to inhibit and stop the transmission of any contagious virus such as COVID-19. As a
result, not just any vaccine should be selected, but a vaccine that can give the desired
level of long-lasting immunity should be chosen. Additionally, it is critical for decision-
makers in government entities to assess a variety of pandemic strategies before selecting
and implementing them. The policies must be balanced because a complete lockdown is
excellent, yet it can negatively impact the nation’s economy. Although aggressive social
awareness campaigns are essential, at the same time they can irritate people and ruin
their mental health. Similarly, more expensive vaccinations come with increased vaccine
efficacy. Henceforth, it is crucial to evaluate the various scenarios and understand how
they will affect the dynamics of the pandemic. The developed model will be made more
relatable in future research by incorporating natural birth and death rates. The model will
be further refined by taking into account infection rates associated with hospitalization,
age-dependent transmission rates, and virus mutation or variants. Incorporating a strong
healthcare inventory management model makes the SEIR model more useful by ensuring
that the necessary healthcare requirements are available when they are required. Thus,
the inventory supply chain model will be integrated with the SEIHIsRS model to evaluate
various inventory supply scenarios and simulate the demand for desirable medical items
such as pharmaceuticals, vaccinations, beds, etc. at the appropriate moment.
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