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Abstract: Neurocognitive Disorders (NCDs) pose a significant global health concern, and early
detection is crucial for optimizing therapeutic outcomes. In parallel, mobile health apps (mHealth
apps) have emerged as a promising avenue for assisting individuals with cognitive deficits. Under
this perspective, we pioneered the development of the RODI mHealth app, a unique method for
detecting aligned with the criteria for NCDs using a series of brief tasks. Utilizing the RODI app,
we conducted a study from July to October 2022 involving 182 individuals with NCDs and healthy
participants. The study aimed to assess performance differences between healthy older adults
and NCD patients, identify significant performance disparities during the initial administration of
the RODI app, and determine critical features for outcome prediction. Subsequently, the results
underwent machine learning processes to unveil underlying patterns associated with NCDs. We
prioritize the tasks within RODI based on their alignment with the criteria for NCDs, thus acting
as key digital indicators for the disorder. We achieve this by employing an ensemble strategy that
leverages the feature importance mechanism from three contemporary classification algorithms.
Our analysis revealed that tasks related to visual working memory were the most significant in
distinguishing between healthy individuals and those with an NCD. On the other hand, processes
involving mental calculations, executive working memory, and recall were less influential in the
detection process. Our study serves as a blueprint for future mHealth apps, offering a guide for
enhancing the detection of digital indicators for disorders and related conditions.

Keywords: neurodegenerative disorders; mHealth apps; machine learning; digital indicators

1. Introduction

The human brain undergoes structural changes throughout life, impacting individuals’
cognitive abilities. Cognitive decline in older adults is particularly worrisome due to its
medical and socioeconomic implications. Dementia, a prevalent condition among the
elderly, affects approximately 5% of the elderly worldwide, while it is projected to increase
due to population aging and longer life expectancy [1–3]. Biological and environmental
factors play a significant role in determining outcomes, ranging from healthy cognitive
aging to the development of Neurocognitive Disorders (NCDs), which can manifest years
before clinical symptoms appear [4,5]. Moreover, cognitive performance does not follow
a specific age pattern for peaking, as the onset and progression of cognitive decline can
vary [6]. Interventions aimed at healthy adults with typical cognitive functioning are
essential for promoting healthy aging and potentially reducing the risk of cognitive decline.
By harnessing brain plasticity and cognitive reserve, these interventions enhance cognitive
skills and resilience throughout the aging process [7,8].

The evaluation, diagnosis, and monitoring of cognitive function have traditionally
been conducted in clinical settings using standardized neuropsychological assessments
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and interviews. However, barriers such as limited access to healthcare services and lengthy
waiting lists can pose challenges for individuals, potentially deterring them from seeking
necessary medical care. These deterrents restrict the vital early detection of cognitive deficits
and the timely implementation of the appropriate cognitive interventions [9]. Moreover,
regular monitoring is essential for accurately assessing changes in cognitive status, enabling
the provision of suitable intervention strategies and support to individuals.

The integration of new sensors in mobile and wearable digital technology has revolu-
tionized the development of a diverse range of assistive applications, addressing various
needs and challenges across different domains of everyday living. Mobile health (mHealth)
leverages these technologies to enhance healthcare and public health, with the potential to
transform patient care, accessibility, affordability, and personalization [10]. The integration
of mHealth technologies into healthcare practices is revolutionizing the way that patient
care is delivered. mHealth technologies are reshaping healthcare by making medical ser-
vices more accessible and efficient [11]. These tools enable patients to access care remotely,
manage their health more effectively, and help healthcare providers monitor patient health
in real time. This not only empowers patients but also has the potential to reduce healthcare
costs and improve outcomes through better data analysis and patient management.

The acquired digital health data can be employed to develop innovative user function
biomarkers, enhance the accuracy and timeliness of diagnosis, monitor treatment responses,
identify individuals at risk of relapse, and provide a more objective and continuous assess-
ment of outcomes compared to conventional methods, thereby facilitating the evaluation
of intervention effectiveness [12]. The employment of mobile health applications (mHealth
apps) has emerged as a promising approach to aid individuals with cognitive deficits. These
apps provide interventions that leverage the capabilities of the Internet of Things (IoT) and
facilitate big data analysis. By combining these technologies and focusing on vital cognitive
domains, targeted mHealth apps are developed to enable the delivery of personalized and
effective interventions [13]. These applications facilitate continuous evaluation and feed-
back, allowing users to trace their performance, identify areas for progress, and collaborate
with clinicians in order to make informed decisions about their mental health.

2. Recent Developments in Mobile Platforms for Digital Evolution of
Cognitive Assessment

Recent advances in mobile technology, particularly the integration of embedded sen-
sors for passive data collection, have given rise to innovative mHealth applications for
various health-related issues [14]. These innovations have been extensively used among
older adults, addressing conditions like diabetes, chronic obstructive pulmonary disease,
Alzheimer’s disease (AD), dementia, osteoarthritis, and fall risk, employing diverse sen-
sor and implementation approaches [15–19]. Furthermore, the use of mobile technology,
particularly in the context of mental health, highlights its versatility, support features,
and adaptability in addressing various health issues, further emphasizing the potential
of mHealth in healthcare. These interventions have demonstrated effectiveness in alle-
viating depression symptoms and addressing anxiety in adults, utilizing elements like
gamification, user customization, and anonymous feedback [20,21]. Mobile-based cognitive
behavioral therapy has shown promise, enhancing adherence and reducing depression
symptoms, especially for individuals with limited access to traditional mental health-
care [21,22]. Additionally, mHealth leverages passive sensing technology to predict mood
states and improve depression and anxiety symptoms [23], offering benefits for older adults,
including those with cognitive decline. Interventions employing virtual reality, serious,
and interactive video games have the potential to improve accessibility, user experience,
and cost-effectiveness and provide a means of remotely administering cognitive training
and rehabilitation programs while monitoring cognitive health through the utilization of
new data streams and identifying indicators sensitive to detecting subtle transitions in
cognitive function.
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In line with the current trend of leveraging mobile and wearable digital technology,
various assessments that were originally paper-based have been converted into mobile-
appropriate versions, such as the eSAGE, e-CT, and eMoCA. These mobile-appropriate
digital versions have demonstrated high diagnostic accuracy in distinguishing Mild Cogni-
tive Impairment (MCI) and AD patients from healthy older adults. In addition, they offer
several advantages over traditional paper-based tests, including enhanced reliability and
efficiency [24–27].

However, it is essential to acknowledge the emphasis placed by researchers on the need
to establish new normative standards that are specifically designed for digital assessments,
particularly when validated cognitive assessments are converted into mobile-appropriate
digital formats. This recommendation stems from a comparative study that revealed
notable differences in both overall scores and individual item scores between mobile-
appropriate digital assessments and traditional paper-based examinations [28]. These
findings underscore the significance of developing appropriate benchmarks and reference
points to ensure an accurate interpretation and evaluation of cognitive performance using
digital assessment tools. By establishing standardized norms, the field can effectively
leverage the potential of digital assessments in enhancing the assessment and management
of cognitive function.

Mobile-appropriate digital versions of cognitive assessments have gained acceptance
not only compared to traditional paper-based assessments but also in comparison to digital
computer-administered counterparts. In particular, users report a superior experience with
the digital version for mobile devices, considering their performance to be superior to the
corresponding one through the evaluation conducted on desktop computers [29]. Addition-
ally, the research emphasizes the accessibility and user-friendly nature of mobile devices,
particularly for individuals facing physical challenges such as arthritis or tremors, as well
as those with limited familiarity with traditional computer interfaces [29]. These findings
highlight the enhanced user experience associated with mobile platforms and provide
further support for the strong preference for mobile versions of cognitive assessments.

In the field of cognitive assessment, significant advancements have been made in
the development of tests specifically for mobile devices and in the utilization of novel
data streams [30–32]. These innovations aim to identify and distinguish different stages
of cognitive decline [33–35]. Mobile screening tests and test batteries have emerged as
effective tools, enabling the active participation of older adults in their cognitive assessment
and monitoring [36–38].

Furthermore, mobile-appropriate cognitive evaluations have demonstrated strong
correlation with validated cognitive assessments [34,37–39]. Their ability to provide high-
quality cognitive screening without the need for clinician input is a notable advantage
of these assessments. They also demonstrate the potential to be effectively deployed
in both clinical and non-clinical settings, thereby promoting improved health outcomes
and supporting individuals’ independence [39]. This feature enables their suitability for
a wide range of healthcare settings, including community-based initiatives involving
non-clinical personnel [39]. The integration of mobile platforms with person-centered
care principles has allowed for the provision of individualized features [40]. Continuous
and repeated evaluation is facilitated by suitable mobile assessments allowing for the
collection of digital biomarkers of cognitive impairment, leading to the detection of patterns
and changes that are often difficult to detect [41,42]. Moreover, the integration of data
derived from mobile assessments with electronic health records holds promise for further
enhancement of cognitive evaluation practices [37].

However, the accessibility of mHealth apps that effectively cater to a broad spectrum
of cognitive domains, operate within user-selected environments and timeframes, enable
unsupervised self-administration, function on a single user mobile device, and assist
the purpose of training, evaluating, and monitoring, while also facilitating discreet data
collection, is currently limited [13,43].
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Additionally, expanding the target population beyond individuals with cognitive
deficiencies to include all adults presents a significant challenge. To address this significant
gap, we recently published a mHealth application, the RODI app [44], tailored to meet these
multifaceted needs. The RODI app is a mobile application designed to enhance cognitive
function, seeking to uplift the user’s overall well-being and psychological state (further
information in the following section). In this study, we utilized the RODI app on both
healthy participants and those diagnosed with NCDs to identify their unique features and
the primary elements that differentiate them.

In this context, the RODI application [44] was presented, which is an intervention
specifically designed for mobile devices with a dual objective. Firstly, it aims to provide
process-based training to enhance function and address deficits across various domains.
The application offers a user-friendly experience on mobile devices, enabling active en-
gagement with tasks and thereby fostering motivation and enjoyment [44]. In addition,
the RODI app offers several advantages in the context of assessment. It facilitates continu-
ous and repetitive evaluations while discretely collecting data. The obtained data allow
for trend identification, enabling the monitoring of changes in users’ performance. This
approach provides a more comprehensive understanding of abilities and their fluctuations,
which may be challenging to discern through traditional assessment methods.

Harnessing the features of the RODI app, users can enhance their monitoring and
analysis of performance, resulting in more informed decision making and personalized
interventions. Primarily targeting older adults with cognitive deficits, the app is also suit-
able for healthy adults aiming to assess and enhance their reserve. It allows individuals to
self-administer cognitive tasks in their preferred environments and timeframes. Operating
on a single mobile device and presenting a variety of tasks and difficulty levels, the RODI
application intends to offer users a challenging and stimulating experience that supports
cognitive health.

The RODI app was developed using a user-centered approach, which involved pilot
testing the application in a sample of cognitively healthy adults ranging in age from 21
to 88 years old. The feedback collected from this pilot testing was then used to refine
and optimize the application to better meet the needs of its users. The app’s pilot usage
revealed that adults were willing to use mobile technologies for cognitive stimulation,
with participants acknowledging the importance and convenience of such technologies for
cognitive awareness [44].

3. Materials and Methods
3.1. Case Study Description

Having originally pioneered the RODI mHealth app as an innovative approach for
NCD detection, we assess its effectiveness and explore its full potential. We employed
the RODI app in an extensive, methodologically robust study that encompassed a diverse
cohort of 182 participants, including both individuals diagnosed with NCDs and healthy
controls (Figure 1). Our primary objective was twofold: firstly, to harness advanced
machine learning techniques to analyze the data, aiming to discern clear patterns and
indicators representative of NCDs; and secondly, to interpret these findings biologically,
providing a holistic understanding of the underlying mechanisms. Our aim is also to
exploit the insights from this study to guide the evolution of the RODI app. Our ambition is
to integrate the knowledge acquired, refining the app into a more robust version enhanced
by artificial intelligence. Although RODI’s cognitive tasks align with the standard criteria
for NCDs [45], we believe that AI can contribute significantly to building an upgraded
version for better detection of early signs of NCDs. In the subsequent subsections, we
provide a detailed elaboration of the experimental study methodology and findings.
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Figure 1. The figure illustrates the deployment of the RODI app in a robust study with 182 partici-
pants, including both NCD-affected individuals and healthy controls. Within the app, users engaged
with 15 distinct cognitive tasks. We adopted an ensemble feature selection method to pinpoint the
most significant tasks based on participants’ performance data. This method utilized an ensemble
Variable Importance (VI) metric derived from analyses conducted by three advanced classifiers:
XGBoost, LightGBM, and CatBoost. Following data collection, we ranked these cognitive tasks using
the Borda count technique to determine their relative importance. The final analysis revealed the key
tasks that effectively differentiate between NCD and healthy cognitive states.

3.2. Participants

Several elderly care centers, open care centers for the elderly, day care centers for
patients with dementia, and workplaces were approached for the recruitment of partic-
ipants. The potential participants were introduced to the RODI mHealth app and the
study’s intentions, and they were informed about the research approval obtained from the
Ionian University’s Research Ethics and Deontology Committee (protocol number 3600).
The research population included patients diagnosed with NCDs and healthy participants.
This research was conducted from July 2022 to October 2022.

A total of 182 individuals participated in the study, with non-randomized and non-
blinded selection criteria. Among the participants, eight (8) individuals had been diagnosed
with NCD, including diagnoses of subjective cognitive decline, mild cognitive impairment,
early dementia, and moderate dementia. The study included 99 female participants (54.4%)
and 83 male participants (45.6%). The mean age of the participants was 46.1 years, with a
mean of 15.58 years of education. The age of the participants ranged from 19 to 89 years old.
Out of the total participants, 34 individuals (18.68%) were retired, while 148 individuals
(81.32%) were still employed.

3.3. RODI App Execution

The mHealth RODI app comprises ten cognitive tasks, including three that present
alternative response formats in either images or words. Additionally, one of these tasks is
re-evaluated twice, increasing the total number of tasks to fifteen. The Back Task is intended
to test the user’s ability to recall a displayed integer and enter it via a keypad, with recall
tested one and three tasks later. The New Object Task presents the user with a set of images,
with one replaced, and requires identification of the new item. In the Object Series Task,
the user is requested to identify the original items in a set of objects or words. The Colours
And Shapes Task is a speeded selection task of a specific combination (shape/color).
The Calculating Task presents numerical values as images for simple arithmetic operations.
In the Shapes Task, the user must identify the original location of a missing colored shape.
The Colour-Shape Task involves the user matching a colored shape to columns of different
shapes and colors. The Descending Integer Task presents the user with three consecutive
numbers in a descending sequence, with the user asked to calculate the next or second term.
In the Name Task, the user is presented with a name in capital letters made up of straight
segments and is required to find the number of segments used. The Who Task requires the
user to match images of individuals with their corresponding names, with different shots of
the images shown. The user’s choices and responses, time taken, and accuracy are tracked
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and scored. Difficulty levels in all tasks increase with a growing number of elements or
complexity, which helps to continuously challenge and stimulate users’ cognitive abilities.

We utilized a tailored lighter version of the RODI app, specifically designed for one-
time use per participant on personal or shared Android® mobile devices. The app was
modified to a single protocol configuration to ensure consistency, operating in default
Practice mode without a time limit, and displaying the correct answers after each task.
Tasks were presented in random order with levels of difficulty alternating between Easy and
Medium to accommodate this extended demographic of participants. To ensure variability
in the required answer formats, tasks with different conditions, such as providing an image
or a word as the answer, were presented in rotation. This approach allowed participants to
encounter diverse formats in each task, contributing to a more comprehensive cognitive
assessment and reducing potential biases in the data. The app’s features were adjusted,
disabling unnecessary features, while retaining essential functions like Sign In, Practice
mode, Show Correct Answer, and Show Results.

Data collection was conducted utilizing Firebase Cloud Storage. This approach en-
abled discrete data collection while restricting access to authenticated users only. Partic-
ipants granted digital consent before creating an account and receiving comprehensive
information regarding the research’s objectives, data collection procedures, anonymization
processes, and subsequent analysis. During the study, several tablets were employed, each
equipped with the pre-installed lighter configuration of the RODI app.

3.4. Methodology

We employed a Machine Learning (ML) workflow to analyze the data collected from
the RODI application. ML algorithms were utilized to automatically discover patterns
and relationships in the data, offering a unique perspective that can uncover non-linear
relationships often missed by traditional statistical models. This ML approach is particularly
advantageous for complex and unstructured data, providing valuable insights that are
difficult to obtain through conventional statistical analysis. Leveraging ML techniques
to analyze data collected from smartphones and tablets has the potential to significantly
enhance the user experience, customizing it to individual needs and maximizing efficiency.

3.4.1. Dimensionality Reduction Techniques for 2D Data Visualization

The study specifically used dimensionality reduction techniques to project the RODI
application’s responses, aiming to differentiate between healthy individuals (Health state)
and those diagnosed with Neurocognitive Disorders (NCD state). This visualization
approach enabled the identification of patterns and trends within the data, potentially
leading to the discovery of biomarkers and therapeutic targets. Three dimensionality
reduction techniques, including t-SNE [46], UMAP SNE [47], and PCA SNE [48], were
employed to assess the separability of the RODI outcomes, providing insights into the
performance and predictive power of the reduced data.

3.4.2. NCD Prediction Performance

The study aimed to evaluate the prediction performance of RODI outcomes in binary
classification, distinguishing healthy individuals from those with NCDs. To achieve this,
five classifiers were employed: k-Nearest Neighbors (k-NNs), Support Vector Machines
(SVMs), naive Bayes, decision trees, and Random Under Sampling and Boosting (RUS-
Boost) [49]. The latter was selected as the majority of samples belonged to the healthy class.
K-NN is a supervised learning algorithm that classifies a new observation based on its
nearest neighbors. SVMs find the best boundary to separate different classes. Naive Bayes
is a probabilistic classification algorithm based on the Bayes theorem. Decision trees create
a tree-like model of decisions, and RUSBoost is an ensemble method combining random
under-sampling and boosting techniques to handle imbalanced datasets.
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3.4.3. Feature Importance

In our experimental study, 182 participants engaged with the RODI mHealth app,
completing 15 brief tasks, which resulted in a 182 × 15 data matrix. We implemented an
ensemble feature selection strategy aimed at identifying the most dominant tasks regarding
NCD identification. Our unique framework relies on the Variable Importance (VI) measure,
extracted from three state-of-the-art classifiers: XGBoost, LightGBM, and CatBoost. We
then systematically prioritized these 15 features by employing the Borda count. The inte-
gration of machine learning within our method unfolds immense potential, offering both
precision and depth to our results. Machine learning, especially with robust classifiers
like XGBoost [50], LightGBM [51], and CatBoost [52], can discern intricate patterns within
large datasets, revealing relationships that might be obscured for conventional methods.
In essence, the adoption of such an ML-driven approach not only amplifies the accuracy of
our findings but also provides a richer, deeper understanding of the data, enabling us to
draw more nuanced insights from the RODI app’s results.

The logic behind this approach is to leverage the strengths of each classifier to gain a
comprehensive understanding of the data. These classifiers evaluate the tasks based on their
’Variable Importance’ (VI), which is a measure indicating how much each task contributes
to the accuracy of the model in predicting NCDs. Feature selection is a critical process in
machine learning that involves selecting a subset of relevant features (or variables) for use
in model construction. Removing irrelevant features can lead to improved accuracy for
machine learning models. Also, by eliminating redundant or irrelevant features, feature
selection helps to reduce the chances of a model overfitting to the training data. More
specifically, XGBoost operates on gradient-boosted decision trees. The variable importance
in XGBoost is calculated by taking into account the number of times a variable appears in a
tree across the ensemble of trees. Mathematically, for a given feature f :

VIXGBoost( f ) =
T

∑
t=1

I( f appears in tree t), (1)

where T is the total number of trees and I is the indicator function. LightGBM, another
gradient-boosting framework, computes feature importance by considering two aspects:
“split” and “gain”. While “split” counts the number of times a feature is used in a model,
“gain” measures the contribution brought by a feature to the model. For a feature f :

VILight GBM( f ) =
T

∑
t=1

Gain ( f in tree t), (2)

where Gain represents the improvement in accuracy brought by a feature. CatBoost,
a boosting algorithm built on categorical features, determines feature importance by tracing
back through the trees in the model and measuring how much each split improves the loss
function. For feature f :

VICatBoost ( f ) =
T

∑
t=1

∆ Loss ( f in tree t), (3)

where ∆ Loss represents the change in the loss function due to the inclusion of the feature in
tree t. From the above three classifiers, we exported the VI score for each task within RODI,
reflecting their capability to differentiate between the NCD and Health states. Then, we
applied the Borda count method [53], a rank-based approach that is employed to prioritize
and rank features. In our context, for each classifier, features were ranked based on their
variable importance, with the most important feature receiving the highest rank (e.g., 15 for



Healthcare 2023, 11, 2985 8 of 21

the most important, 1 for the least). These ranks were then aggregated across all classifiers.
For a feature f :

Bordacount ( f ) =
C

∑
c=1

Rankc( f ), (4)

where Rankc( f ) is the rank of feature f in classifier c and C is the total number of classifiers.
The features were then prioritized based on their cumulative Borda count, with higher
counts indicating greater overall importance across classifiers.

4. Results

Before delving into the intricacies of machine learning, it is imperative to first under-
stand the inherent nature and behavior of our data. Thus, we initiate a primary exploration
focusing on the 15 feature tasks derived from the RODI app. By doing so, we aim to
establish a foundational perspective on the inherent information within the data and
discern any preliminary patterns or distinctions, setting the stage for subsequent, more
advanced analyses.

Our first visualization, a violin plot (Figure 2), exhibits the distribution of each of
the 15 feature tasks across the two states: Health and NCD. At a cursory glance, the plot
illustrates a complex dataset where the boundaries between the two states are not distinctly
demarcated. Such overlaps and intricacies in the data distribution underscore the need
for a more sophisticated approach, positioning machine learning as an invaluable tool in
extracting meaningful insights from such intricate datasets.
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Figure 2. Violin plot illustrating the distribution of 15 feature tasks across two states: Health and
NCD. The overlapping distributions highlight the complexity of the dataset and the challenges in
distinguishing between the two states.

Subsequently, we turn our attention to a heatmap showcasing the correlations among
the feature tasks (Figure 3). Interestingly, the heatmap does not highlight any significant
correlations among the tasks. This lack of strong correlations further complicates the
dataset, making traditional analysis techniques less effective in distilling knowledge. This
emphasizes the challenge in our dataset, reinforcing the perspective that machine learn-
ing, with its advanced algorithms, stands as one of the few methods adept at effectively
navigating and extracting meaning from such multifaceted data landscapes.
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Figure 3. Heatmap displaying the correlations among feature tasks. The absence of significant
correlations underscores the complexity of the dataset and the necessity for advanced machine
learning techniques to decipher it.

The findings (Figure 4) suggest a noteworthy degree of overlap between the Health
and NCD categories, which poses a considerable challenge in the clear differentiation
of individuals. This intricate data complexity underscores the multifarious nature of the
problem, emphasizing the requirement for machine learning techniques capable of handling
the aforementioned limitations.
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Figure 4. Visualization of RODI application responses using dimensionality reduction techniques:
t-SNE, UMAP SNE, and PCA SNE. The projection aims to differentiate between the Health state and
NCD state, highlighting patterns and potential biomarkers within the data.

Concerning the prediction performance, a 10-fold cross-validation technique was
employed to evaluate the performance of the algorithms. The models were trained and
tested 10 times independently to ensure the robustness of the results. The default parameter
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settings of each algorithm were utilized; however, a significant improvement in the perfor-
mance metrics was observed through the variation in the parameters. All algorithms were
examined using six measures: balanced accuracy, F1-score, specificity, sensitivity, precision,
and false positive rate (Figure 5). Balanced accuracy was utilized as a metric to address
class imbalance in the dataset by averaging the recall rate of each class. It is particularly
useful for binary classification problems with under-represented classes. The F1-score is
a measure of model accuracy that considers the harmonic mean of precision and recall.
Precision is the ratio of true positive instances to the total number of true positive and false
positive instances, while recall is the ratio of true positive instances to the total number of
true positive and false negative instances. The F1-score is beneficial for imbalanced datasets
because it equally emphasizes precision and recall. Specificity measures a classification
model’s ability to correctly identify negative instances in binary classification problems. It
is defined as the proportion of True Negatives (TNs) out of all instances that are negative
(TN + FP). Lastly, the false positive rate indicates the proportion of negative instances that
were misclassified as positive. By examining all these measures, we adopted a systems
view of the evaluation, ensuring a holistic understanding of the algorithm’s performance
across various facets of classification.
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Figure 5. Boxplots illustrating the performance of five classifiers (k-NN, SVMs, naive Bayes, decision
tree, and RUSBoost) in predicting RODI outcomes for binary classification of Health and NCD
states. Using a 10-fold cross-validation, the models were trained and tested through 10 independent
iterations. The evaluation assessed balanced accuracy, F1-score, specificity, sensitivity, precision,
and false positive rate.

Our study revolves around a crucial factor, a novel ensemble method, which isolates
the most critical elements in the classification of NCDs. The results of our analysis, which
ranks the 15 tasks from the RODI mHealth app based on their importance in NCD iden-
tification using the Borda count ranking system and Variable Importance (VI) measures
from XGBoost, LightGBM, and CatBoost classifiers, are presented in Figure 6. This ranking
emphasizes the significance of tasks related to visual working memory in distinguishing
between healthy individuals and those with NCDs.
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Figure 6. Dot plot ranking of the 15 tasks from the RODI mHealth app based on their importance
in NCD identification. Features were prioritized using the Borda count ranking system, derived
from the Variable Importance (VI) measure of three classifiers: XGBoost, LightGBM, and CatBoost.
Our analysis revealed that tasks related to visual working memory were the most significant in
distinguishing between healthy individuals and those with NCD. In contrast, processes involving
mental calculations, executive working memory, and recall were less influential. This ensemble
feature selection strategy showcases the potential of machine learning in discerning key patterns for
NCD detection.

5. Discussion

The escalating global concern around Neurocognitive Disorders (NCDs) underscores
the importance of early and effective detection methods. Early identification of NCDs is
not just medically pertinent but is pivotal for optimizing therapeutic outcomes. With the
evolution of technology, mobile health applications (mHealth apps) have burgeoned as
potential tools to cater to this need, especially for those with cognitive deficits. In this
evolving landscape, our study presents the RODI mHealth app, a tool that we developed
to cater to this very demand. Designed in alignment with the diagnostic criteria for NCDs,
the RODI app employs a series of concise tasks as an innovative approach to discern
NCD patterns. Drawing from a sample of 182 participants, both with NCDs and healthy
individuals, our comprehensive study ventured to probe the app’s efficacy in differentiating
between the two groups.

The focus was not only on the app’s diagnostic ability but also on streamlining the
app’s features, identifying those most indicative of NCDs. To achieve this granularity,
we leveraged an ensemble approach, utilizing the feature importance metrics from three
cutting-edge classification algorithms. Our findings spotlighted tasks related to visual
working memory as the most pivotal in distinguishing between healthy individuals and
those with NCDs. Conversely, tasks related to mental calculations, executive working
memory, and recall proved less essential. Interestingly, our results showed that participants,
regardless of their technological proficiency and background, could navigate the app
effectively, hinting at its user-friendly design.

The RODI app stands as a testament to the potential of mHealth apps in the sphere
of NCD screening. Its ability to segregate healthy adults from those with NCDs amplifies
its relevance as a screening tool, making it a promising candidate for future adaptations
and wider clinical applications. This study sets the stage for future research, serving
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as a reference for mHealth app developments aiming to enhance the identification of
digital markers for disorders and allied conditions. In the evaluation of performance
differences between cognitively healthy adults and NCD patients, the feature importance
scores obtained from the random forest algorithm were utilized to identify the critical
features that differentiate between the two groups. The aim was to determine the most
important characteristics that predict the outcome of interest, and the identified features
were used to distinguish between Health and NCD conditions.

Furthermore, the study’s findings indicate that the top five tasks that received the
highest importance scores are dependent on visual working memory abilities. These results
underscore the critical role of evaluating visual working memory skills to identify cognitive
impairments and aid in diagnosing and tracking cognitive decline. These findings align
with earlier research conducted on both individuals who are cognitively healthy and those
who have cognitive disorders. The accurate recall of fundamental visual features, such as
color, shape, brightness, size, orientation, and texture, heavily relies on memory capacity
and the ability to associate them correctly in memory. The developmental trajectory of
visual working memory abilities shows a peak around the age of 20, followed by a gradual
decline. Immediate visual memory is poorer in individuals aged 55 and above compared to
young children [54]. Additionally, aging differentially impacts short-term feature memory
and binding memory, with a decline in short-term color–shape binding memory primarily
attributed to a reduced capacity for retaining individual features [55].

Moreover, the Shapes Task obtained the highest importance score, surpassing the
immediately following task by at least 0.6 and the third task by 1.40 in order of significance
scores. This specific task combines visual working memory skills and spatial representa-
tions. The observation aligns with previous studies indicating that spatial abilities decline
with normal aging, albeit not uniformly, and that visuospatial deficits can manifest in very
early stages of dementia. Spatial information encompasses processes and data required for
determining positions and directions in one’s surroundings, including fundamental spatial
abilities like object location memory. Humans utilize two primary frames of reference,
namely the egocentric and allocentric, to encode and organize spatial information in mem-
ory [56,57]. Prior studies have indicated that allocentric representations operate at a slower
pace compared to egocentric ones [58]. Visuospatial information and processes are essential
for non-verbal cognitive functions that involve the representation and manipulation of
information spatially [57]. The decline in spatial memory associated with healthy aging is
influenced by coherent factors as well as attentional and executive [59]. In the early stages
of AD, visuospatial deficits manifest as impairments in various cognitive abilities, including
constructive skills, visuospatial intelligence, spatial short-term memory, and spatial orienta-
tion [59]. These spatial orientation difficulties are evaluated as early signs of dementia and
are frequently attributed to hippocampal damage, which is crucial for both general and
spatial memory [60–62]. Furthermore, research findings suggest that neurodegenerative
processes affect visual neural pathways, potentially contributing to declines in other cogni-
tive domains [63]. Some researchers proposed that visuospatial deficiencies may occur very
early in the course of dementia, while the allocentric component of spatial memory has
been suggested as a potential predictor of AD from MCI and early-onset dementia [64–66].
Overall, deficits in spatial memory are crucial in understanding cognitive decline and may
serve as an indicator demonstrating departure from normal aging [59].

The task ranked second in terms of importance scores demonstrated superior perfor-
mance compared to the third-ranked task by a margin of 0.60. Similarly, the third-ranked
task outperformed the subsequent task by approximately 0.40. In addition to evaluating
visuospatial working memory skills, these tasks also assess executive function, which
Miyake and Friedman [67] describe as higher-order cognitive processes that allow indi-
viduals to adapt their behavior in response to contextual changes, with a particular focus
on inhibition and cognitive flexibility. Diamond’s model [68] identifies three main compo-
nents of executive function, namely inhibition, working memory (including visuospatial
working memory), and cognitive flexibility, that facilitate the development of complex
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cognitive processes. Previous research has reported deficits in inhibitory control [69,70]
and partially in cognitive flexibility [71,72] in patients with AD. Additionally, it is indicated
that individuals with MCI exhibit deficits in tasks that assess executive function, including
inhibition and cognitive flexibility [73]. The findings suggested that these tasks may offer
clinically relevant information about the decline in executive functions in individuals with
MCI, providing diagnostic potential by assessing their discriminatory power. Similar re-
sults were observed in individuals diagnosed with dementia, indicating a clear executive
deficit in inhibitory control and a partial deficit in cognitive flexibility [74]. The researchers
suggested that there exists an executive functioning profile in AD, characterized by im-
pairment in inhibitory control and cognitive flexibility, where performance variations may
reflect differences in executive function deterioration levels during Alzheimer’s disease
progression. Furthermore, the researchers noted that the use of computerized versions of
these tasks provides more precise measurements of reaction times and accuracy, which are
more discriminative and sensitive in detecting executive function decline, indicating their
usefulness in neuropsychological batteries for MCI diagnosis.

According to the importance scores, projects that assess visuospatial abilities rank
higher than other visual projects, which is consistent with the findings of Alescio-Lautier
et al. [64]. In their study, they examined whether visual or visuospatial modalities were
more affected in early memory impairment in Alzheimer’s disease by comparing AD and
MCI patients with healthy controls. The results indicated that both MCI and AD patients
exhibited impairments in short-term memory and visuospatial short-term memory when
compared to the healthy control group. Notably, the impairment in spatial performance
was more pronounced than in visual performance. MCI patients exhibited intermediate
performance levels between the healthy controls and AD patients. Additionally, the cogni-
tive memory profiles differed based on the modality tested, indicating distinct underlying
processes. Specifically, AD patients exhibited more significant visuospatial deficits and
were more impacted by experimental modifications, possibly due to a phenomenon known
as the attentional blink. This phenomenon leads to temporary functional blindness when
sequentially presented stimuli are presented rapidly. The researchers suggested that differ-
ences in visual recognition may result from deficits in attentional and executive resources,
while scarcities in spatial recognition may be indicative of a genuine spatial disorder.

In terms of importance scores, the projects related to executive working memory rank
from 8th to 12th, exhibiting a range of approximately 0.25. However, the Object Series
Task (image) stands out as an exception, with an importance score exceeding 1 (namely
1.44) and securing the fourth rank. The unique characteristic in question can be attributed
to the task’s demand for identifying, in a random sequence, the precise arrangement of
images that do not have explicit correspondences with identifiable objects that can be
linked to language. The images employed in this task derive from mahjong and domino
tiles as well as playing cards and dices, thus heightening its level of difficulty. Image
memory tasks are employed to evaluate executive working memory, and their potential
utility in assessing individuals with MCI and AD has been extensively explored. Studies
have demonstrated that AD patients perform poorly on conventional tests of executive
function [75] and working memory [76], which is attributable to impairments in the central
executive function [77]. The prefrontal cortex primarily processes executive control [78]
and the significant accumulation of plaques in the frontal lobes observed could account
for the lower executive function scores in AD patients [79,80]. According to an exploratory
study that investigated EEG changes during memory tasks, including word memory, it
was observed that the picture memory task showed notable EEG differences between MCI
patients and controls [81]. Moreover, in a study focused on identifying a potential biomarker
for distinguishing between MCI and AD, multi-domain cognitive testing was used to
evaluate executive working memory in patients with MCI and AD compared to control
participants [82]. The study was consistent with previous findings that executive working
memory is significantly impaired in both MCI and AD patients compared to controls.
Furthermore, a positive correlation was found between executive working memory tasks
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(word and picture memory) and MCI, suggesting that better performance in these tasks
may lead to improved global cognitive scores. Executive working memory was found to be
more severely affected in AD patients compared to both MCI and controls. Additionally,
a negative relationship was observed between word and picture memory tasks and Clinical
Dementia Rating. Among the administered cognitive tests, picture memory was found
to be more robust, exhibiting high sensitivity and specificity compared to controls. These
findings indicate that the picture memory task may be a useful tool for distinguishing
differences among all groups and therefore may aid in the early detection of cognitive
impairment, enabling timely interventions.

In the context of image selection, the Who Task holds the fifth rank in order of score
importance, whereas its counterpart with name selection ranks third from the end, with a
minimum difference of 0.5 between them. The formation of face–name associations is a
widely recognized challenging task, particularly among older adults, who frequently report
difficulties in remembering proper names [83]. Conversely, the association of a face with
other biographical information, such as occupation or hobbies, is relatively easier, primarily
due to the inherent unrelatedness of a face with a name [84]. This specific task lacks
contextual cues, making it difficult to form an associative link between a proper name and
a unique face, thereby requiring higher cognitive effort. Successful performance on face–
name association tasks has been linked to increased brain activity within memory-related
networks in both young and older populations [85]. The rank of the Who Task in the case
of image selection is consistent with the findings of previous studies. A review of studies
exploring the use of a demanding test of face–name associative memory as a tool for early
diagnosis of AD concluded that it may be a valuable diagnostic tool, and its performance
is related to Aβ in brain regions associated with memory systems [86]. Additionally,
a computerized, self-administered test was found to be suitable for discriminating between
cognitively healthy and amnestic MCI individuals [87]. Performance on this test was
associated with AD cerebrospinal fluid biomarkers, enabling the detection of memory-
impaired cases resulting from other aetiologies. Furthermore, the researchers stated that
the test can detect the AD endophenotype and is associated with AD-related changes in
MRI and cerebrospinal fluid in patients with early-onset MCI.

In terms of tasks requiring the user to input answers using the device’s built-in
keyboard, the Back Task (3rd) ranked highest, appearing as the sixth task in descending
order. This task involves delayed recall, occurring three tasks after the number to be
recalled is presented. On the other hand, Immediate recall, Back Task (1st), ranked last,
with a significance score of only 0.01. Back Task (2nd), a post-immediate recall task, was
ranked eleventh in terms of importance score. These findings are consistent with prior
research that has demonstrated an association between lower scores on delayed recall
tasks and older age [88]. Delayed recall tasks have been shown to be the most effective
neuropsychological predictors of conversion from MCI to AD [89,90]. Moreover, a study by
Sano et al. [91] aimed at determining the usefulness of delayed recall assessment in clinical
trials for MCI and AD showed that the addition of delayed recall increased the sensitivity
to detecting changes in subjects with MCI, while it increased the variance in subjects with
AD, even in those with mild impairment.

In the context of mental calculations, which involve arithmetic operations performed
without the aid of devices or tools, the Calculating Task ranks seventh in terms of impor-
tance with a score of 0.73, followed by the Name Task in tenth place with a score of 0.65.
Conversely, the Descending Integer Task is ranked second, but only has an importance
score of 0.1. Mental calculation is a fundamental mathematical skill that is closely related
to procedural fluency, one of the five main components of mathematical proficiency, which
refers to the ability to perform procedures efficiently, accurately, and flexibly. According to
an exploratory study that investigated EEG changes during memory tasks, including word
memory, it was observed that the picture memory task showed notable EEG differences
between MCI patients and controls [92,93]. With an aging population, the likelihood of cog-
nitive deterioration is expected to increase, potentially affecting financial capabilities [94].
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Such deficits in financial abilities within this demographic could also present societal risks.
In particular, written arithmetical skills have been identified as the key predictor of financial
capability across the various stages of dementia [95]. Patients with MCI may experience
difficulties with mathematics that affect their everyday functioning. In a study investi-
gating the brain changes and cognitive factors associated with these deficits, researchers
noted that among MCI patients, issues with number comprehension and formal numerical
performance were linked to variations in brain volume in the right middle occipital and
right frontal gyrus region deficits [92]. These findings indicate that early neuropathological
changes in various brain areas, including the frontal, temporal, and occipital regions, can
lead to cognitive deterioration in MCI, affecting daily numerical functioning. As a result,
they have significant implications for the diagnosis, clinical care, and at-home support of
MCI patients.

Furthermore, a study investigated the numerical-information-processing ability of in-
dividuals with MCI but without dementia and those with mild dementia of the Alzheimer’s
type [96]. In particular the study evaluated the capacity of patients to perform simple
numerical operations without added attentional or executive load and when required to
switch between functions or control and inhibit automatic retrieval processes. The results
showed that both patient groups could retrieve numerical knowledge from long-term
memory without added load. However, under executive load, patients with dementia
of the Alzheimer’s type demonstrated compromised executive function, while patients
with MCI exhibited difficulty inhibiting previously learned associations. The researchers
emphasized the importance of assessing numeracy processing in a mixed condition that
mimics everyday numeracy activities, as it highlights the contribution of attention and
executive functions to numeracy. They also suggested that patients who score within the
normal range on routine neuropsychological numerical assessments may still experience
difficulties when additional non-numerical resources are required.

In summary, the study’s findings support the potential of the RODI app as a screening
tool for NCD, as it was able to distinguish between healthy cognitive adults and NCD
patients. The analysis also revealed the feature importance scores obtained from the
random forest algorithm, indicating the most salient features that differentiate between
the two situations. The “Shapes Task” feature exhibited the highest level of importance,
while the “Back Task (1st)” feature displayed the lowest level of importance. The low
importance of “Back Task (1st)” suggests that its exclusion would not significantly impact
the overall performance of the model. The importance of certain features, specifically those
related to visuospatial abilities, in discriminating between the two situations is noteworthy.
The observation that the four features with importance scores above 1 are related to visual
working memory further reinforces this finding. These results suggest that future research
may benefit from focusing on these features.

Furthermore, future research should address the primary limitations of this study,
which include various aspects. Firstly, the sample selection process was non-randomized
and non-blinded, relying on a convenience sample. Additionally, the study faced challenges
with a relatively small sample size, especially concerning the NCD cohort. While the
preliminary findings from the current study seem favorable, there is a compelling need for
further research to comprehensively establish the application’s effectiveness. The app’s
tasks align with criteria for neurocognitive disorders, target related domains, and offer
diverse tasks. Despite positioning RODI as a promising tool for identifying deficits, rigorous
scientific investigations are necessary to confirm its validity and effectiveness.

It is worth mentioning that the naive Bayes classifier outperformed other machine
learning algorithms, including RUSBoost, kNN, SVM, LDA, and decision trees, for the
specific problem that we addressed. One possible explanation for the superior performance
of the naive Bayes classifier is its independence assumption. This classifier assumes that
features are conditionally independent given the class label. This simplification can make
the naive Bayes classifier more robust and efficient when handling high-dimensional or
noisy data. If our dataset exhibits relatively independent features, this characteristic may
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have contributed to the strong performance of the naive Bayes classifier compared to other
algorithms. Additionally, the probabilistic nature of the naive Bayes classifier may be more
suitable for our specific problem. As a probabilistic classifier, it can manage uncertainty
effectively and provide probabilities associated with each class. These probabilities can be
valuable for decision making in our application. The study’s findings provide substantial
evidence supporting RODI’s potential as an assessment tool for Neurocognitive Disorders
(NCDs), given its effectiveness in distinguishing between healthy adults and NCD patients.
The analysis also yields importance scores, shedding light on the most critical attributes
contributing to this differentiation. Notably, tasks associated with visuospatial abilities
stand out as the most crucial, with the four related to visual working memory achieving
the highest importance scores. These findings suggest that future research endeavors may
benefit from prioritizing investigations into these specific characteristics.

There are additional areas of investigation to explore, including the use of the full
version of the RODI mHealth app with its active features. Furthermore, analyzing the
comprehensive dataset collected by the app, including user demographics, task completion
times, screen time, and any corrections made, would provide valuable insights. Exploring
the interaction of the app with other technological tools that provide biomarkers is also
promising. The app’s potential as both a cognitive training intervention and an evaluation
tool highlights its value for future research and clinical applications. These investigations
can enhance our understanding of the app’s efficacy and its clinical utility.

RODI has the potential to be directed toward younger older adults with normal
cognitive function who have not displayed any cognitive impairment. This approach can
facilitate the detection of cognitive disorders in the earliest stages or can be utilized to
evaluate cognitive reserve. Furthermore, RODI can be aimed at individuals who do not
have access to appropriate healthcare services or those living in territories with prolonged
waiting lists for such services, thus discouraging them from seeking medical care.

The engaging nature of mobile cognitive interventions and their potential of self-
administered screening without imposing extra limitations on the healthcare system present
an opportunity for extensive screening and alleviating the strain on primary healthcare
services. Incorporating screening into apps that the elderly are inclined to use, particularly
self-administered tasks, could prove to be an effective approach. However, the inclusion of
such mHealth apps into healthcare systems, information policies, and awareness campaigns
requires additional investigation [97]. It is also essential to study the perspectives and
requirements of application users in order to develop more effective apps that encourage
older adults to self-monitor and enhance their cognitive functions.

Remote assessment and cognitive training utilizing mHealth apps allow for unsu-
pervised sessions. However, sessions conducted in the presence of clinicians provide the
benefit of professional judgment. Therefore, it is essential to emphasize that these interven-
tions are not meant to substitute for regular visits to specialists but rather to supplement
them by offering data and insights into individuals’ progress and cognitive status.

6. Conclusions

Our study underscores the pivotal role of mHealth applications, particularly the
RODI app, in the early detection and assessment of Neurocognitive Disorders (NCDs).
The study’s outcomes demonstrate RODI’s effectiveness in distinguishing between NCD-
affected individuals and healthy controls, emphasizing the relevance of tasks associated
with visual working memory. These tasks emerged as the most critical indicators in
identifying the presence of NCDs, overshadowing other cognitive tasks in predictive
significance. The importance scores derived from our machine learning analysis provide a
valuable roadmap for prioritizing features in future mHealth tools. Our research opens the
road for the advancement of digital health technologies and sets a strategic direction for
subsequent explorations into neurocognitive assessment.



Healthcare 2023, 11, 2985 17 of 21

Author Contributions: Conceptualization, P.G. and P.V.; methodology, P.G.; investigation, P.G.;
writing—original draft preparation, P.G.; writing—review and editing, P.G., A.G.V., M.-A.P., and P.V.;
supervision, P.V. All authors have read and agreed to the published version of the manuscript.

Funding: This research is funded by the European Union and Greece (Partnership Agreement for
the Development Framework 2014–2020) under the Regional Operational Programme Ionian Islands
2014–2020, project title: “Enhancing cognitive abilities of people with Mild Cognitive Impairment
through measurable cognitive training—NEUROEDUCATION”, project number: 5016113. The face
images from CVL Face Database used in this work have been provided by the Computer Vision
Laboratory, University of Ljubljana, Slovenia.

Institutional Review Board Statement: This study has received formal ethical approval from the
Ionian University’s Research Ethics and Deontology Committee under protocol number 3600. The ap-
proval ensures that the research conforms to recognized ethical standards and principles, safeguarding
the rights, well-being, and dignity of the participants.

Informed Consent Statement: Informed consent was obtained from all individual participants in-
cluded in the study. Potential participants were provided with detailed information about the study’s
intents, the RODI mHealth app, and their rights as participants, ensuring their understanding and
voluntary agreement to participate. Participants were made aware of their right to withdraw from
the study at any time without facing any consequences, ensuring the autonomy and respect of each
individual involved in the research. Consent for publication was obtained from all participants in-
volved in the study. Participants were informed that the collected data would be used for publication
and scholarly purposes, with the assurance that all published data would be anonymized to maintain
confidentiality and protect the participants’ privacy. Any identifying information has been removed
or altered to prevent the identification of individual participants in the published work, ensuring
adherence to ethical standards and respect for participant rights.

Data Availability Statement: The data for the experiment can be accessed online at: https://www.dro
pbox.com/scl/fo/vx7ovu6i8uaqi9maaqqpm/h?rlkey=5gkeyaularf0vteszcna5sggw&dl=0.

Conflicts of Interest: The authors have no competing interests to declare that are relevant to the
content of this article.

References
1. Ismail, Z.; Babulal, G.M. Attitudinal adjustment about dementia awareness and assessment: Finetuning inclusion, diversity, and

measurement of behavioral and psychological symptoms. Int. Psychogeriatr. 2023, 35, 7–10. [CrossRef] [PubMed]
2. Wimo, A.; Seeher, K.; Cataldi, R.; Cyhlarova, E.; Dielemann, J.L.; Frisell, O.; Guerchet, M.; Jönsson, L.; Malaha, A.K.; Nichols, E.;

et al. The worldwide costs of dementia in 2019. Alzheimer’s Dement. 2023, 19, 2865–2873. [CrossRef]
3. World Health Organization. Integrated Care for Older People: Guidelines on Community-Level Interventions to Manage Declines in

Intrinsic Capacity; World Health Organization: Geneva, Switerland, 2017; Section ix, 46p.
4. Katsuno, M.; Sahashi, K.; Iguchi, Y.; Hashizume, A. Preclinical progression of neurodegenerative diseases. Nagoya J. Med. Sci.

2018, 80, 289–298. [CrossRef] [PubMed]
5. Koen, J.D.; Rugg, M.D. Neural Dedifferentiation in the Aging Brain. Trends Cogn. Sci. 2019, 23, 547–559. [CrossRef]
6. Elliott, M.L.; Belsky, D.W.; Knodt, A.R.; Ireland, D.; Melzer, T.R.; Poulton, R.; Ramrakha, S.; Caspi, A.; Moffitt, T.E.; Hariri, A.R.

Brain-age in midlife is associated with accelerated biological aging and cognitive decline in a longitudinal birth cohort. Mol.
Psychiatry 2021, 26, 3829–3838. [CrossRef]

7. Aron, L.; Zullo, J.; Yankner, B.A. The adaptive aging brain. Curr. Opin. Neurobiol. 2022, 72, 91–100. [CrossRef]
8. Stern, Y.; Albert, M.; Barnes, C.A.; Cabeza, R.; Pascual-Leone, A.; Rapp, P.R. A framework for concepts of reserve and resilience in

aging. Neurobiol. Aging 2023, 124, 100–103. [CrossRef] [PubMed]
9. Mackintosh, N.; Armstrong, N. Understanding and managing uncertainty in health care: Revisiting and advancing sociological

contributions. Sociol. Health Illn. 2020, 42, 1–20. [CrossRef]
10. Zhang, M.W.; Ho, R.C. M-health and smartphone technologies and their impact on patient care and empowerment. In The

Digitization of Healthcare: New Challenges and Opportunities; Palgrave Macmillan: London, UK, 2017; ISBN-10: 1349951722
11. Zakerabasali, S.; Ayyoubzadeh, S.M.; Baniasadi, T.; Yazdani, A.; Abhari, S. Mobile health technology and healthcare providers:

Systemic barriers to adoption. Healthc. Informat. Res. 2021, 27, 267–278. [CrossRef]
12. Marsch, L.A. Digital health data-driven approaches to understand human behavior. Neuropsychopharmacology 2021, 46, 191–196.

[CrossRef]
13. Thabtah, F.; Peebles, D.; Retzler, J.; Hathurusingha, C. Dementia medical screening using mobile applications: A systematic

review with a new mapping model. J. Biomed. Informat. 2020, 111, 103573. [CrossRef] [PubMed]

https://www.dropbox.com/scl/fo/vx7ovu6i8uaqi9maaqqpm/h?rlkey=5gkeyaularf0vteszcna5sggw&dl=0
https://www.dropbox.com/scl/fo/vx7ovu6i8uaqi9maaqqpm/h?rlkey=5gkeyaularf0vteszcna5sggw&dl=0
http://doi.org/10.1017/S1041610222000886
http://www.ncbi.nlm.nih.gov/pubmed/36193702
http://dx.doi.org/10.1002/alz.12901
http://dx.doi.org/10.18999/nagjms.80.3.289
http://www.ncbi.nlm.nih.gov/pubmed/30214078
http://dx.doi.org/10.1016/j.tics.2019.04.012
http://dx.doi.org/10.1038/s41380-019-0626-7
http://dx.doi.org/10.1016/j.conb.2021.09.009
http://dx.doi.org/10.1016/j.neurobiolaging.2022.10.015
http://www.ncbi.nlm.nih.gov/pubmed/36653245
http://dx.doi.org/10.1111/1467-9566.13160
http://dx.doi.org/10.4258/hir.2021.27.4.267
http://dx.doi.org/10.1038/s41386-020-0761-5
http://dx.doi.org/10.1016/j.jbi.2020.103573
http://www.ncbi.nlm.nih.gov/pubmed/32961306


Healthcare 2023, 11, 2985 18 of 21

14. Jakob, R.; Harperink, S.; Rudolf, A.M.; Fleisch, E.; Haug, S.; Mair, J.L.; Salamanca-Sanabria, A.; Kowatsch, T. Factors influencing
adherence to mHealth apps for prevention or management of noncommunicable diseases: Systematic review. J. Med. Internet Res.
2022, 24, e35371. [CrossRef]

15. Rollo, M.E.; Ash, S.; Lyons-Wall, P.; Russell, A. Trial of a mobile phone method for recording dietary intake in adults with type 2
diabetes: Evaluation and implications for future applications. J. Telemed. Telecare 2011, 17, 318–323. [CrossRef]

16. Joe, J.; Demiris, G. Older adults and mobile phones for health: A review. J. Biomed. Informat. 2013, 46, 947–954. [CrossRef]
[PubMed]

17. Kotani, K.; Morii, M.; Asai, Y.; Sakane, N. Application of mobile-phone cameras to home health care and welfare in the elderly:
Experience in a rural practice. Aust. J. Rural Health 2005, 13, 193–194. [CrossRef]

18. Lee, R.Y.; Carlisle, A.J. Detection of falls using accelerometers and mobile phone technology. Age Ageing 2011, 40, 690–696.
[CrossRef] [PubMed]

19. Nguyen, H.Q.; Gill, D.P.; Wolpin, S.; Steele, B.G.; Benditt, J.O. Pilot study of a cell phone-based exercise persistence intervention
post-rehabilitation for COPD. Int. J. Chron. Obstr. Pulmonary Dis. 2009, 4, 301–313. [CrossRef]

20. Josephine, K.; Josefine, L.; Philipp, D.; David, E.; Harald, B. Internet-and mobile-based depression interventions for people with
diagnosed depression: A systematic review and meta-analysis. J. Affect. Disord. 2017, 223, 28–40. [CrossRef]

21. Richards, D.; Richardson, T. Computer-based psychological treatments for depression: A systematic review and meta-analysis.
Clin. Psychol. Rev. 2012, 32, 329–342. [CrossRef]

22. Watts, S.; Mackenzie, A.; Thomas, C.; Griskaitis, A.; Mewton, L.; Williams, A.; Andrews, G. CBT for depression: A pilot RCT
comparing mobile phone vs. computer. BMC Psychiatry 2013, 13, 1–9. [CrossRef]

23. Burns, M.N.; Begale, M.; Duffecy, J.; Gergle, D.; Karr, C.J.; Giangrande, E.; Mohr, D.C. Harnessing context sensing to develop a
mobile intervention for depression. J. Med. Internet Res. 2011, 13, e55. [CrossRef]

24. Berg, J.L.; Durant, J.; Léger, G.C.; Cummings, J.L.; Nasreddine, Z.; Miller, J.B. Comparing the Electronic and Standard Versions of
the Montreal Cognitive Assessment in an Outpatient Memory Disorders Clinic: A Validation Study. J. Alzheimer’s Dis. 2018,
62, 93–97. [CrossRef]

25. Scharre, D.W.; Chang, S.I.; Nagaraja, H.N.; Vrettos, N.E.; Bornstein, R.A. Digitally translated Self-Administered Gerocognitive
Examination (eSAGE): Relationship with its validated paper version, neuropsychological evaluations, and clinical assessments.
Alzheimer’s Res. Ther. 2017, 9, 44. [CrossRef] [PubMed]

26. Wu, Y.H.; Vidal, J.S.; De Rotrou, J.; Sikkes, S.A.; Rigaud, A.S.; Plichart, M. A Tablet-PC-Based Cancellation Test Assessing
Executive Functions in Older Adults. Am. J. Geriatr. Psychiatry 2015, 23, 1154–1161. [CrossRef] [PubMed]

27. Wu, Y.H.; Vidal, J.S.; De Rotrou, J.; Sikkes, S.A.M.; Rigaud, A.S.; Plichart, M. Can a tablet-based cancellation test identify cognitive
impairment in older adults? PLoS ONE 2017, 12, e0181809. [CrossRef] [PubMed]

28. Ruggeri, K.; Maguire, Á.; Andrews, J.L.; Martin, E.; Menon, S. Are we there yet? Exploring the impact of translating cognitive
tests for dementia using mobile technology in an aging population. Front. Aging Neurosci. 2016, 8, 21. [CrossRef]

29. Mielke, M.M.; Machulda, M.M.; Hagen, C.E.; Edwards, K.K.; Roberts, R.O.; Pankratz, V.S.; Knopman, D.S.; Jack, C.R.; Petersen,
R.C. Performance of the CogState computerized battery in the Mayo Clinic Study on Aging. Alzheimer’s Dement. 2015,
11, 1367–1376. [CrossRef]

30. Suzumura, S.; Osawa, A.; Maeda, N.; Sano, Y.; Kandori, A.; Mizuguchi, T.; Yin, Y.; Kondo, I. Differences among patients with
Alzheimer’s disease, older adults with mild cognitive impairment and healthy older adults in finger dexterity: Finger skills of
AD and MCI patients. Geriatr. Gerontol. Int. 2018, 18, 907–914. [CrossRef]

31. Tong, T.; Chignell, M.; Tierney, M.C.; Lee, J. A Serious Game for Clinical Assessment of Cognitive Status: Validation Study. JMIR
Serious Games 2016, 4, e7. [CrossRef]

32. Zygouris, S.; Ntovas, K.; Giakoumis, D.; Votis, K.; Doumpoulakis, S.; Segkouli, S.; Karagiannidis, C.; Tzovaras, D.; Tsolaki, M. A
Preliminary Study on the Feasibility of Using a Virtual Reality Cognitive Training Application for Remote Detection of Mild
Cognitive Impairment. J. Alzheimer’s Dis. 2017, 56, 619–627. [CrossRef]

33. Kokubo, N.; Yokoi, Y.; Saitoh, Y.; Murata, M.; Maruo, K.; Takebayashi, Y.; Shinmei, I.; Yoshimoto, S.; Horikoshi, M. A new
device-aided cognitive function test, User eXperience-Trail Making Test (UX-TMT), sensitively detects neuropsychological
performance in patients with dementia and Parkinson’s disease. BMC Psychiatry 2018, 18, 220. [CrossRef] [PubMed]

34. Possin, K.L.; Moskowitz, T.; Erlhoff, S.J.; Rogers, K.M.; Johnson, E.T.; Steele, N.Z.R.; Higgins, J.J.; Stiver, J.; Alioto, A.G.; Farias,
S.T.; et al. The Brain Health Assessment for Detecting and Diagnosing Neurocognitive Disorders. J. Am. Geriatr. Soc. 2018,
66, 150–156. [CrossRef] [PubMed]

35. Zorluoglu, G.; Kamasak, M.E.; Tavacioglu, L.; Ozanar, P.O. A mobile application for cognitive screening of dementia. Comput.
Methods Programs Biomed. 2015, 118, 252–262. [CrossRef] [PubMed]

36. Allard, M.; Husky, M.; Catheline, G.; Pelletier, A.; Dilharreguy, B.; Amieva, H.; Pérès, K.; Foubert-Samier, A.; Dartigues, J.F.;
Swendsen, J. Mobile Technologies in the Early Detection of Cognitive Decline. PLoS ONE 2014, 9, e112197. [CrossRef] [PubMed]

37. Bissig, D.; Kaye, J.; Erten-Lyons, D. Validation of SATURN, a free, electronic, self-administered cognitive screening test. Alzheimer’s
Dementia Transl. Res. Clin. Interv. 2020, 6. [CrossRef] [PubMed]

38. Brouillette, R.M.; Foil, H.; Fontenot, S.; Correro, A.; Allen, R.; Martin, C.K.; Bruce-Keller, A.J.; Keller, J.N. Feasibility, Reliability,
and Validity of a Smartphone Based Application for the Assessment of Cognitive Function in the Elderly. PLoS ONE 2013,
8, e65925. [CrossRef]

http://dx.doi.org/10.2196/35371
http://dx.doi.org/10.1258/jtt.2011.100906
http://dx.doi.org/10.1016/j.jbi.2013.06.008
http://www.ncbi.nlm.nih.gov/pubmed/23810858
http://dx.doi.org/10.1111/j.1440-1854.2005.00682.x
http://dx.doi.org/10.1093/ageing/afr050
http://www.ncbi.nlm.nih.gov/pubmed/21596711
http://dx.doi.org/10.2147/COPD.S6643
http://dx.doi.org/10.1016/j.jad.2017.07.021
http://dx.doi.org/10.1016/j.cpr.2012.02.004
http://dx.doi.org/10.1186/1471-244X-13-49
http://dx.doi.org/10.2196/jmir.1838
http://dx.doi.org/10.3233/JAD-170896
http://dx.doi.org/10.1186/s13195-017-0269-3
http://www.ncbi.nlm.nih.gov/pubmed/28655351
http://dx.doi.org/10.1016/j.jagp.2015.05.012
http://www.ncbi.nlm.nih.gov/pubmed/26238229
http://dx.doi.org/10.1371/journal.pone.0181809
http://www.ncbi.nlm.nih.gov/pubmed/28742136
http://dx.doi.org/10.3389/fnagi.2016.00021
http://dx.doi.org/10.1016/j.jalz.2015.01.008
http://dx.doi.org/10.1111/ggi.13277
http://dx.doi.org/10.2196/games.5006
http://dx.doi.org/10.3233/JAD-160518
http://dx.doi.org/10.1186/s12888-018-1795-7
http://www.ncbi.nlm.nih.gov/pubmed/29976167
http://dx.doi.org/10.1111/jgs.15208
http://www.ncbi.nlm.nih.gov/pubmed/29355911
http://dx.doi.org/10.1016/j.cmpb.2014.11.004
http://www.ncbi.nlm.nih.gov/pubmed/25481217
http://dx.doi.org/10.1371/journal.pone.0112197
http://www.ncbi.nlm.nih.gov/pubmed/25536290
http://dx.doi.org/10.1002/trc2.12116
http://www.ncbi.nlm.nih.gov/pubmed/33392382
http://dx.doi.org/10.1371/journal.pone.0065925


Healthcare 2023, 11, 2985 19 of 21

39. Scanlon, L.; O’Shea, E.; O’Caoimh, R.; Timmons, S. Usability and Validity of a Battery of Computerised Cognitive Screening Tests
for Detecting Cognitive Impairment. Gerontology 2016, 62, 247–252. [CrossRef]

40. Molony, S.L.; Kolanowski, A.; Van Haitsma, K.; Rooney, K.E. Person-Centered Assessment and Care Planning. Gerontology 2018,
58, S32–S47. [CrossRef]

41. Jongstra, S.; Wijsman, L.W.; Cachucho, R.; Hoevenaar-Blom, M.P.; Mooijaart, S.P.; Richard, E. Cognitive Testing in People at
Increased Risk of Dementia Using a Smartphone App: The iVitality Proof-of-Principle Study. JMIR MHealth UHealth 2017, 5, e68.
[CrossRef]

42. Lange, S.; Süß, H.M. Measuring slips and lapses when they occur – Ambulatory assessment in application to cognitive failures.
Conscious. Cogn. 2014, 24, 1–11. [CrossRef]

43. Giannopoulou, P.; Vlamos, P. Analysis and design of an information system for cognitive training of patients with mild cognitive
impairment using mobile devices. In Proceedings of the 2020 5th South-East Europe Design Automation, Computer Engineering,
Computer Networks and Social Media Conference (SEEDA-CECNSM), Corfu, Greece, 25–27 September 2020; pp. 1–6. [CrossRef]

44. Giannopoulou, P.; Vlamos, P.; Papalaskari, M.A. Evaluation of a Mobile Application for Cognitive Training in Healthy Adults.
Int. J. Interact. Mob. Technol. (iJIM) 2023, 17, 84–102. [CrossRef]

45. Association, A.P.; Association, A.P. (Eds.) Diagnostic and Statistical Manual of Mental Disorders: DSM-5, 5th ed.; American
Psychiatric Association: Washington, DC, USA, 2013.

46. Maaten, L.V.D. Accelerating t-SNE using Tree-Based Algorithms. J. Mach. Learn. Res. 2014, 15, 3221–3245.
47. McInnes, L.; Healy, J.; Saul, N.; Großberger, L. UMAP: Uniform Manifold Approximation and Projection. J. Open Source Softw.

2018, 3, 861. [CrossRef]
48. Kurita, T. Principal Component Analysis (PCA). In Computer Vision; Springer International Publishing: Cham, Switerland, 2020;

pp. 1–4. [CrossRef]
49. Seiffert, C.; Khoshgoftaar, T.M.; Van Hulse, J.; Napolitano, A. RUSBoost: A Hybrid Approach to Alleviating Class Imbalance.

IEEE Trans. Syst. Man Cybern.—Part A Syst. Hum. 2010, 40, 185–197. [CrossRef]
50. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [CrossRef]
51. Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. LightGBM: A Highly Efficient Gradient Boosting Decision

Tree. In Proceedings of the Advances in Neural Information Processing Systems; Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H.,
Fergus, R., Vishwanathan, S., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2017, Volume 30.

52. Hancock, J.T.; Khoshgoftaar, T.M. CatBoost for big data: An interdisciplinary review. J. Big Data 2020, 7, 94. [CrossRef] [PubMed]
53. Paplomatas, P.; Krokidis, M.G.; Vlamos, P.; Vrahatis, A.G. An Ensemble Feature Selection Approach for Analysis and Modeling of

Transcriptome Data in Alzheimer’s Disease. Appl. Sci. 2023, 13, 2353. [CrossRef]
54. Park, D.C.; Lautenschlager, G.; Hedden, T.; Davidson, N.S.; Smith, A.D.; Smith, P.K. Models of visuospatial and verbal memory

across the adult life span. Psychol. Aging 2002, 17, 299–320. [CrossRef]
55. Brockmole, J.R.; Logie, R.H. Age-Related Change in Visual Working Memory: A Study of 55,753 Participants Aged 8–75. Front.

Psychol. 2013, 4. [CrossRef] [PubMed]
56. Iachini, T.; Ruotolo, F.; Rapuano, M.; Sbordone, F.L.; Ruggiero, G. The Role of Temporal Order in Egocentric and Allocentric

Spatial Representations. J. Clin. Med. 2023, 12, 1132. [CrossRef]
57. Kosslyn, S.M. Image and Brain: The Resolution of the Imagery Debate; MIT Press: Cambridge, MA, USA, 1994.
58. De Wit, M.M.; Van Der Kamp, J.; Masters, R.S. Distinct task-independent visual thresholds for egocentric and allocentric

information pick up. Conscious. Cogn. 2012, 21, 1410–1418. [CrossRef]
59. Iachini, T.; Iavarone, A.; Senese, V.; Ruotolo, F.; Ruggiero, G. Visuospatial Memory in Healthy Elderly, AD and MCI: A Review.

Curr. Aging Sci. 2009, 2, 43–59. [CrossRef]
60. Puthusseryppady, V.; Emrich-Mills, L.; Lowry, E.; Patel, M.; Hornberger, M. Spatial Disorientation in Alzheimer’s Disease: The

Missing Path From Virtual Reality to Real World. Front. Aging Neurosci. 2020, 12, 550514. [CrossRef] [PubMed]
61. Tu, S.; Wong, S.; Hodges, J.R.; Irish, M.; Piguet, O.; Hornberger, M. Lost in spatial translation – A novel tool to objectively assess

spatial disorientation in Alzheimer’s disease and frontotemporal dementia. Cortex 2015, 67, 83–94. [CrossRef]
62. Forno, G.; Lladó, A.; Hornberger, M. Going round in circles—The Papez circuit in Alzheimer’s disease. Eur. J. Neurosci. 2021,

54, 7668–7687. [CrossRef]
63. Rizzo, M.; Anderson, S.; Dawson, J.; Myers, R.; Ball, K. Visual attention impairments in Alzheimer’s disease. Neurology 2000,

54, 1954–1959. [CrossRef] [PubMed]
64. Alescio-Lautier, B.; Michel, B.; Herrera, C.; Elahmadi, A.; Chambon, C.; Touzet, C.; Paban, V. Visual and visuospatial short-term

memory in mild cognitive impairment and Alzheimer disease: Role of attention. Neuropsychologia 2007, 45, 1948–1960. [CrossRef]
[PubMed]
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